
ICPC Latin American Regional – 2012 14

Problem I

Interval Product
It’s normal to feel worried and tense the day before a programming contest. To relax, you went out for
a drink with some friends in a nearby pub. To keep your mind sharp for the next day, you decided to
play the following game. To start, your friends will give you a sequence of N integers X1, X2, . . . , XN .
Then, there will be K rounds; at each round, your friends will issue a command, which can be:

• a change command, when your friends want to change one of the values in the sequence; or

• a product command, when your friends give you two values I, J and ask you if the product
XI ⇥XI+1 ⇥ . . .⇥XJ�1 ⇥XJ is positive, negative or zero.

Since you are at a pub, it was decided that the penalty for a wrong answer is to drink a pint of
beer. You are worried this could a↵ect you negatively at the next day’s contest, and you don’t want
to check if Ballmer’s peak theory is correct. Fortunately, your friends gave you the right to use your
notebook. Since you trust more your coding skills than your math, you decided to write a program to
help you in the game.

Input

Each test case is described using several lines. The first line contains two integers N and K, indicating
respectively the number of elements in the sequence and the number of rounds of the game (1 
N,K  105). The second line contains N integers Xi that represent the initial values of the sequence
(�100  Xi  100 for i = 1, 2, . . . , N). Each of the next K lines describes a command and starts
with an uppercase letter that is either “C” or “P”. If the letter is “C”, the line describes a change

command, and the letter is followed by two integers I and V indicating that XI must receive the value
V (1  I  N and �100  V  100). If the letter is “P”, the line describes a product command, and
the letter is followed by two integers I and J indicating that the product from XI to XJ , inclusive
must be calculated (1  I  J  N). Within each test case there is at least one product command.

Output

For each test case output a line with a string representing the result of all the product commands in
the test case. The i-th character of the string represents the result of the i-th product command. If
the result of the command is positive the character must be “+” (plus); if the result is negative the
character must be “-” (minus); if the result is zero the character must be “0” (zero).



ICPC Latin American Regional – 2012 15

Sample input

4 6

-2 6 0 -1

C 1 10

P 1 4

C 3 7

P 2 2

C 4 -5

P 1 4

5 9

1 5 -2 4 3

P 1 2

P 1 5

C 4 -5

P 1 5

P 4 5

C 3 0

P 1 5

C 4 -5

C 4 -5

Output for the sample input

0+-

+-+-0



F
Jumping monkey

You are a hunter chasing a monkey in the forest, trying to shoot it down with your all-powerful automatic
machine gun. The monkey is hiding somewhere behind the branches of one of the trees, out of your sight.
You can aim at one of the trees and shoot; your bullets are capable of going through the branches and killing
the monkey instantly if it happens to be in that tree. If it isn’t, the monkey takes advantage of the time
it takes you to reload and takes a leap into a neighbouring tree without you noticing. It never stays in the
same place after a shot. You would like to find out whether there is an strategy that allows you to capture
the monkey for sure, irrespective of its initial location and subsequent jumps. If so, you need to determine
the shortest sequence of shots guaranteeing this.

Figure 2

As an example, consider the situation in which there are only two neighboring trees in the forest (left
hand side of Figure 2). It is then possible to make sure you capture the monkey by shooting twice at the
same tree. Your first shot succeeds if the monkey happened to be there in the first place. Otherwise, the
monkey was behind the other tree and it will necessarily have moved when you shoot for the second time.

However, depending on the shape of the forest it may not possible for you to ensure victory. One example
of this is if there are three trees, all connected to one another (right hand side of Figure 2). No matter where
you aim at, there are always two possible locations for the monkey at any given moment. (Note that here
we are concerned with the worst-case scenario where the monkey may consistently guess your next target
tree).

Input

The input consists of several test cases, separated by single blank lines. Each test case begins with a line
containing two integers n and m (1  n  21); n is the number of trees in the forest, and m is the number
of adjacency relations between trees. Each of the following m lines contains two distinct integers between 0
and n � 1 (inclusive), the identifiers of the trees in an adjacent pair. The order of both trees within a pair
carries no meaning, and no pair appears more than once. You may further assume that no tree is adjacent
to itself, and there is always a path between any two trees in the forest.

The test cases will finish with a line containing only two zeros (also preceded with a blank line).

Output

Print a line for each test case. The line should contain the single word Impossible if the task is
impossible. Otherwise, it must contain the shortest sequence of shots with the required property, in the
format L: V1V2 . . . VL

, where L is the length of the sequence, and V1, V2, . . . , VL

are space-separated integers
containing the identifiers of the trees to shoot at in the right order. If several shortest sequences exist, print
the lexicographically smallest one. (A sequence is smaller than another in lexicographic order if the first
element on which they di↵er is smaller in the first one).

13



Sample Input

2 1

0 1

3 3

0 1

1 2

2 0

4 3

0 1

2 3

1 3

0 0

Sample Output

2: 0 0

Impossible

4: 1 3 3 1

14



Air traffic regulations in Nlogonia require that each city must register exactly one outbound flight to
another city. Passengers can use this flight only in the direction registered, that is, there may be a
flight registered from city X to city Y and no flight registered from city Y to city X. Thus, the number
of registered flights is equal to the number of cities. This rule, as one can imagine, makes air travel
somewhat complicated, but tradition and a strong ruling by the Queen makes any changes difficult.
Besides, some companies even make a profit from the problems caused by the rule.

The Association for Couple Matching (ACM) is setting up a new service to help customers find their
long lasting soulmates: the Internet Connecting Program for Couples (ICPC). The service consists of
computing the minimum total number of flights a couple needs to take to meet one another (perhaps
in a city where neither of them lives in). Assuming the couple’s starting cities are A and B, the agency
will try to find a city C such that C is reachable by air travel from both A and B, and the sum of the
number of flights needed to go from A to C and the number of flights needed to go from B to C is
minimized. Note that C may be equal to A or B or both.

You will be given the list of all available flights, and a list of queries consisting of pairs of cities
where the members of a couple live. For each query, you must compute the minimum total number of
flights that are needed for them to meet.

Input

Each test case is described using several lines. The first line contains an integer N representing the
number of cities (2 ≤ N ≤ 105). Cities are identified by different integers from 1 to N . The second
line contains N integers Fi, where Fi indicates that the registered outbound flight from city i is to city
Fi (1 ≤ Fi ≤ N , Fi = i for i = 1, 2, . . . , N). The third line contains an integer Q representing the
number of queries (1 ≤ Q ≤ 105). Each of the next Q lines describes a query with two integers A and
B indicating the couple’s starting cities (1 ≤ A,B ≤ N). Within each test case, if it is possible to
travel by air from city X to city Y , the maximum number of flights needed to do so is 104.

Output

For each test case output Q lines. In the i-th line write an integer with the answer to the i-th query.
If the corresponding couple can meet by air travel, write the minimum total number of flights that the
couple must take to meet one another; if it is impossible for the couple to meet by air travel, write the
number ‘-1’.

Sample Input

3
2 1 2
3
1 2
1 3
1 1
7
2 1 4 5 3 5 6
5
1 3
4 7
7 4
6 2
2 1

Sample Output

1
2
0
-1
3
3
-1
1

Mauricio Quezada
Joining Couples - ICPC Latin America Regional 2012





ICPC Latin American Regional – 2011 17

Problem J

Jupiter Attacks!
Problem code name: jupiter

Jupiter is invading! Major cities have been destroyed by Jovian spacecrafts and humanity is fighting
back. Nlogonia is spearheading the counter-o↵ensive, by hacking into the spacecrafts’ control system.

Unlike Earthling computers, in which usually a byte has 28 possible values, Jovian computers use
bytes with B possible values, {0, 1, . . . , B � 1}. Nlogonian software engineers have reverse-engineered
the firmware for the Jovian spacecrafts, and plan to sabotage it so that the ships eventually self-
destruct.

As a security measure, however, the Jovian spacecrafts run a supervisory program that periodically
checks the integrity of the firmware, by hashing portions of it and comparing the result against known
good values. To hash the portion of the firmware from the byte at position i to the byte at position
j, the supervisor uses the hash function

H(fi, . . . fj) =
j�iX

k=0

Bkfj�k (mod P )

where P is a prime number. For instance, if B = 20 and P = 139, while bytes 2 to 5 of the firmware
have the values f2 = 14, f3 = 2, f4 = 2, and f5 = 4, then

H(f2, . . . f5) = B0f5 +B1f4 +B2f3 +B3f2 (mod P )

= 200 ⇥ 4 + 201 ⇥ 2 + 202 ⇥ 2 + 203 ⇥ 14 (mod 139)

= 4 + 40 + 800 + 112000 (mod 139)

= 112844 (mod 139)

= 115

The Nlogonian cryptologists need to find a way to sabotage the firmware without tripping the
supervisor. As a first step, you have been assigned to write a program to simulate the interleaving
of two types of commands: editing bytes of the firmware by the Nlogonian software engineers, and
computing hashes of portions of the firmware by the Jovian supervisory program. At the beginning
of the simulation the value of every byte in the firmware is zero.

Input

Each test case is described using several lines. The first line contains four integers B, P , L and
N , where B is the number of possible values of a Jovian byte, P is the modulus of the Jovian hash
(2  B < P  109 and P prime), L is the length (number of Jovian bytes) of the spacecrafts’ firmware,
and N is the number of commands to simulate (1  L,N  105). At the beginning of the simulation
the value of every byte in the firmware is fi = 0 for 1  i  L. Each of the next N lines describes a
command to simulate. Each command description starts with an uppercase letter that is either ‘E’ or
‘H’, with the following meanings.

‘E’ ! The line describes an edit command. The letter is followed by two integers I and V indicating
that the byte at position I of the firmware (that is, fI) must receive the value V (1  I  L and
0  V  B � 1).

‘H’ ! The line describes a hash command. The letter is followed by two integers I and J indicating
that H(fI , . . . fJ) must be computed (1  I  J  L).

The last test case is followed by a line containing four zeros.



ICPC Latin American Regional – 2011 18

Output

For each test case output the results of the hash commands in the input. In the i-th line write an
integer representing the result of the i-th hash command. Print a line containing a single character
‘-’ (hyphen) after each test case.

Sample input

20 139 5 7

E 1 12

E 2 14

E 3 2

E 4 2

E 5 4

H 2 5

E 2 14

10 1000003 6 11

E 1 3

E 2 4

E 3 5

E 4 6

E 5 7

E 6 8

H 1 6

E 3 0

E 3 9

H 1 3

H 4 6

999999935 999999937 100000 7

E 100000 6

E 1 7

H 1 100000

E 50000 8

H 1 100000

H 25000 75000

H 23987 23987

0 0 0 0

Output for the sample input

115

-

345678

349

678

-

824973478

236724326

450867806

0

-



The fundamental theorem of arithmetic states that every integer greater than 1 can be uniquely rep-
resented as a product of one or more primes. While unique, several arrangements of the prime factors
may be possible. For example:

10 = 2 * 5 20 = 2 * 2 * 5
= 5 * 2 = 2 * 5 * 2

= 5 * 2 * 2

Let f(k) be the number of different arrangements of the prime factors of k. So f(10) = 2 and
f(20) = 3.

Given a positive number n, there always exists at least one number k such that f(k) = n. We want
to know the smallest such k.

Input

The input consists of at most 1000 test cases, each on a separate line. Each test case is a positive
integer n < 263.

Output

For each test case, display its number n and the smallest number k > 1 such that f(k) = n. The
numbers in the input are chosen such that k < 263.

Sample Input

1
2
3
105

Sample Output

1 2
2 6
3 12
105 720

Mauricio Quezada
F - Factors

Mauricio Quezada
ACM-ICPC 2013 World Finals



ICPC Latin American Regional – 2012 4

Problem C

Cellphone Typing
A research team is developing a new technology to save time when typing text messages in mobile
devices. They are working on a new model that has a complete keyboard, so users can type any single
letter by pressing the corresponding key. In this way, a user needs P keystrokes to type a word of
length P .

However, this is not fast enough. The team is going to put together a dictionary of the common
words that a user may type. The goal is to reduce the average number of keystrokes needed to type
words that are in the dictionary. During the typing of a word, whenever the following letter is uniquely
determined, the cellphone system will input it automatically, without the need for a keystroke. To be
more precise, the behavior of the cellphone system will be determined by the following rules:

1. The system never guesses the first letter of a word, so the first letter always has to be input
manually by pressing the corresponding key.

2. If a non-empty succession of letters c1c2 . . . cn has been input, and there is a letter c such that
every word in the dictionary which starts with c1c2 . . . cn also starts with c1c2 . . . cnc, then the
system inputs c automatically, without the need of a keystroke. Otherwise, the system waits for
the user.

For instance, if the dictionary is composed of the words “hello”, “hell”, “heaven” and “goodbye”,
and the user presses “h”, the system will input “e” automatically, because every word which starts
with “h” also starts with “he”. However, since there are words that start with “hel” and with “hea”,
the system now needs to wait for the user. If the user then presses “l”, obtaining the partial word
“hel”, the system will input a second “l” automatically. When it has “hell” as input, the system
cannot guess, because it is possible that the word is over, or it is also possible that the user may want
to press “o” to get “hello”. In this fashion, to type the word “hello” the user needs three keystrokes,
“hell” requires two, and “heaven” also requires two, because when the current input is “hea” the
system can automatically input the remainder of the word by repeatedly applying the second rule.
Similarly, the word “goodbye” needs just one keystroke, because after pressing the initial “g” the
system will automatically fill in the entire word. In this example, the average number of keystrokes
needed to type a word in the dictionary is then (3 + 2 + 2 + 1)/4 = 2.00.

Your task is, given a dictionary, to calculate the average number of keystrokes needed to type a
word in the dictionary with the new cellphone system.

Input

Each test case is described using several lines. The first line contains an integer N representing the
number of words in the dictionary (1  N  105). Each of the next N lines contains a non-empty
string of at most 80 lowercase letters from the English alphabet, representing a word in the dictionary.
Within each test case all words are di↵erent, and the sum of the lengths of all words is at most 106.

Output

For each test case output a line with a rational number representing the average number of keystrokes
needed to type a word in the dictionary. The result must be output as a rational number with exactly
two digits after the decimal point, rounded if necessary.



ICPC Latin American Regional – 2012 5

Sample input

4

hello

hell

heaven

goodbye

3

hi

he

h

7

structure

structures

ride

riders

stress

solstice

ridiculous

Output for the sample input

2.00

1.67

2.71


