Auxiliar 3

CC3102 TEORÍA DE LA COMPUTACIÓN PROFESOR: GONZALO NAVARRO AUXILIAR: PABLO MUÑOZ 13 DE AGOSTO DEL 2014

- P1. Responda veradero o falso. Justifique
 - a) Todo subconjunto de un lenguaje regular es regular.
 - b) Todo lenguaje regular tiene un subconjunto propio regular.
 - c) Si L es regular, también lo es $\{xy : x \in L, y \notin L\}$.
 - d) Si $\{L_i : i \in \mathbb{N}\}$ es una colección infinita de lenguajes regulares, entonces $\bigcup_i L_i$ es regular i Qué pasa con una unión fina?
- $\mathbf{P2}$. Pruebe que si L es regular, los siguientes lenguajes son regulares
 - $a) \ Pref(L) = \{x : \exists y, xy \in L\}$
 - b) $Max(L) = \{ w \in L : x \neq \varepsilon \Rightarrow wx \notin L \}$
 - c) $L \setminus L' = \{ w \in \Sigma^* : \exists x \in L', wx \in L \}$
- **P3.** Construya un automata que reconozca la intersección de dos lenguajes regulares dados, sin utilizar las propiedades de clausura vista en clases.
- P4. ¿Es posible decidir algorítmicamente si un lenguaje regular acepta una cantidad infinita de palabras?
- P5. Demuestre si los siguientes lenguajes son regulares o no:
 - $a) \ \{w \in \{1\}^* \ : \ |w| = 0 \ \text{m\'od} \ 7\}$
 - b) $\{w \in \{0,...,9\}^* : w \text{ es un numero divisible por } 7\}$
 - c) $\{a^{10^n} : n \in \mathbb{N}\}$
 - d) $\{ww^R : w \in \{a, b\}^*\}$
 - $e) \{ww : w \in \{a, b\}^*\}$
 - f) $\{w\bar{w}:w\in\{a,b\}^*\}$ donde \bar{w} es el string obtenido de w intercambiando a's por b's y vice versa.
- **P6.** Para $i \in \{0,...,2^n\}$, considere su notación binaria en n bits por $\langle i \rangle_2$. Muestre que para todo $n \in \mathbb{N}$ se puede codificar un string contador exponencial $\# \langle 0 \rangle_2 \# ... \# \langle 2^n \rangle_2 \#$ utilizando la intersección de $\mathcal{O}(1)$ expresiones regulares de tamaño $\mathcal{O}(p(n))$ para un polinomio $p(\cdot)$.