Universidad de Chile Facultad de Ciencias Físicas y Matemáticas Departamento de Ingeniería Matemática 2 de mayo de 2014

Auxiliar 7 MA3801

Profesor: Aris Daniilidis.

Auxiliares: Rodolfo Gutiérrez, Camila Romero, Felipe Subiabre.

- **P1.** El objetivo de este problema es mostrar que la propiedad de ser T₄ no necesariamente se hereda a sub-espacios ni pasa al producto. Para esto, siga los siguientes pasos:
 - (a) Muestre que si X es un espacio topológico T_4 e $Y \subseteq X$ es cerrado, entonces Y es T_4 .

Solución. Sean $F, G \subseteq Y$ cerrados disjuntos en Y. Por propiedad de la topología traza, se tiene que existen $\tilde{F}, \tilde{G} \subseteq X$ cerrados en X tales que

$$F = \tilde{F} \cap Y$$
$$G = \tilde{G} \cap Y$$

Como Y es cerrado en X, obtenemos que F y G se escriben como intersección de cerrados de X (F es la intersección de \tilde{F} e Y mientras que G es la intersección de \tilde{G} e Y, con \tilde{F} , \tilde{G} , $Y \subseteq X$ cerrados). Obtenemos que F y G son cerrados disjuntos en X.

Como X es T_4 , existen $\tilde{U}, \tilde{V} \subseteq X$ abiertos disjuntos en X tales que $F \subseteq \tilde{U}$ y $G \subseteq \tilde{V}$. Nuevamente por propiedad de la topología traza, se tiene que $U \doteq \tilde{U} \cap Y$ y $V \doteq \tilde{V} \cap Y$ son abiertos en Y. Como $F \subseteq \tilde{U}$ y $F \subseteq Y$, obtenemos que $F \subseteq U$. Además, como $G \subseteq \tilde{V}$ y $G \subseteq Y$, obtenemos que $G \subseteq V$. Se tiene que $G \subseteq V$ y $G \subseteq Y$ son disjuntos, pues $G \subseteq V$ es $G \subseteq Y$ es pueden separa por abiertos disjuntos, con lo que concluimos que $G \subseteq V$ es $G \subseteq Y$.

(b) Sea I un conjunto con $\operatorname{card}(I) > \aleph_0$. Se definen en \mathbb{N}^I los conjuntos

$$\begin{split} F &\doteq \{x \in \mathbb{N}^I \mid \operatorname{card}(x^{-1}(n)) \leq 1 \quad \forall n \neq 1\} \\ G &\doteq \{x \in \mathbb{N}^I \mid \operatorname{card}(x^{-1}(n)) \leq 1 \quad \forall n \neq 2\}. \end{split}$$

Muestre que F y G son cerrados en \mathbb{N}^I .

Solución. Recordemos que si $\{X_i\}_{i\in I}$ es una familia de espacios topológicos, entonces

$$\mathcal{B} = \left\{ \prod_{i \in J} A_i \times \prod_{i \in I \setminus J} X_i \ \middle| \ J \subseteq I \text{ finito y } A_i \subseteq X_i \text{ es abierto en } X_i \quad \forall i \in J \right\}$$

es una base de la topología. En el caso particular que estamos estudiando, se tiene que $X_i = \mathbb{N}$ para todo $i \in I$. Como \mathbb{N} es discreto (es decir, todos los síngleton son abiertos) se tiene que todo subconjunto de \mathbb{N} es abierto en \mathbb{N} , por lo que obtenemos

$$\mathcal{B} = \left\{ \prod_{i \in J} A_i \times \prod_{i \in I \setminus J} \mathbb{N} \mid J \subseteq I \text{ finito y } A_i \subseteq \mathbb{N} \quad \forall i \in J \right\}.$$

Escribiendo A_i como una unión de síngleton: $A_i = \bigcup_{n_i \in A_i} \{n_i\}$ y escribiendo $J = \{j_1, \dots, j_p\} \subseteq I$ vemos que

$$\prod_{i \in J} A_i \times \prod_{i \in I \backslash J} \mathbb{N} = \bigcup_{n_1 \in A_{j_1}} \bigcup_{n_2 \in A_{j_2}} \cdots \bigcup_{n_p \in A_{j_p}} \prod_{i \in \{j_1\}} \{n_1\} \times \prod_{i \in \{j_2\}} \{n_2\} \times \cdots \times \prod_{i \in \{j_p\}} \{n_p\} \times \prod_{i \in I \backslash J} \mathbb{N}$$

y por lo tanto

$$\prod_{i \in J} A_i \times \prod_{i \in I \setminus J} \mathbb{N} = \bigcup_{n_1 \in A_{j_1}} \bigcup_{n_2 \in A_{j_2}} \cdots \bigcup_{n_p \in A_{j_p}} ([n_1]_{j_1} \cap [n_2]_{j_2} \cap \cdots \cap [n_p]_{j_p}),$$

donde para $k \in I$ v $m \in \mathbb{N}$

$$[m]_k \doteq \prod_{i \in \{k\}} \{m\} \times \prod_{i \in I \setminus \{k\}} \mathbb{N} = \{x \in \mathbb{N}^I \mid x(k) = m\}.$$

Notamos entonces que otra base para la topología producto es

$$\mathcal{B}' \doteq \{ [n_1]_{j_1} \cap [n_2]_{j_2} \cap \dots \cap [n_p]_{j_p} \mid j_1, \dots, j_p \in I, n_1, \dots, n_p \in \mathbb{N}, p \in \mathbb{N} \}$$

$$= \{ \{ x \in \mathbb{N}^I \mid x(j_i) = n_i \quad \forall i = 1, \dots, p \} \mid j_1, \dots, j_p \in I, n_1, \dots, n_p \in \mathbb{N}, p \in \mathbb{N} \},$$

es decir, una base para la topología producto consiste en la colección de conjuntos que fijan una cantidad **finita** de coordenadas. En el resto del desarrollo, usaremos siempre la base \mathcal{B}' que es la base usual de la topología de un producto de espacios discretos.

Importante. El desarrollo anterior para obtener la base \mathcal{B}' sólo es válido cuando los factores del producto (es decir, los X_i) son discretos. En el caso, por ejemplo, de \mathbb{R}^I los conjuntos

$$[\alpha]_k = \{x \in \mathbb{R}^I \mid x(k) = \alpha\}$$

con $k \in I$ y $\alpha \in \mathbb{R}$ no son abiertos porque $\{\alpha\}$ no es abierto en \mathbb{R} . En este caso, se debe usar la base usual de la topología producto.

Veremos que $\mathbb{N}^I \setminus F$ es abierto en \mathbb{N}^I . La demostración de que $\mathbb{N}^I \setminus G$ es abierto en \mathbb{N}^I es análoga. Sea $z \in \mathbb{N}^I \setminus F$. Por definición, esto significa que existe $n \neq 1$ tal que $\operatorname{card}(z^{-1}(n)) > 1$, es decir, existe $n \neq 1$ e índices $i \neq j$ en I tales que z(i) = z(j) = n.

Sea $W \doteq [n]_i \cap [n]_j = \{x \in \mathbb{N}^I \mid z(i) = n, z(j) = n\}$. Notemos que $z \in W$, pues z(i) = z(j) = n. Además, si $y \in W$ tenemos que y(i) = y(j) = n, por lo que $\{i, j\} \subseteq y^{-1}(n)$ y así $\operatorname{card}(y^{-1}(n)) > 1$. Como $n \neq 1$, esto muestra que $y \in \mathbb{N}^I \setminus F$ y concluimos que $x \in W \subseteq \mathbb{N}^I \setminus F$. Por la discusión anterior, W es abierto en \mathbb{N}^I y así concluimos que $\mathbb{N}^I \setminus F$ es abierto.

- (c) Sean $U, V \subseteq \mathbb{N}^I$ abiertos tales que $F \subseteq U$, $G \subseteq V$. Construya inductivamente una secuencia $\{x_n\}_{n\in\mathbb{N}}\subseteq F$ y una secuencia estrictamente creciente de conjuntos finitos $\{J_n\}_{n\in\mathbb{N}\setminus\{1\}}\subseteq \mathcal{P}(I)$ con $J_n=\{i_1^n,\ldots,i_{s(n)}^n\}$ para todo $n\in\mathbb{N}\setminus\{1\}$ tales que
 - I) $i_k^n = i_k^m$ para todo $1 \le k \le s(n)$ y $m \ge n$;
 - II) $x_n(i_k^n)=k$ para todo $1\leq k\leq s(n)$ y $n\in\mathbb{N}$ y $x_n(j)=1$ para todo $j\in I\setminus J_n$ y
 - III) $[x_n]_{J_{n+1}} \subseteq U$ para todo $n \in \mathbb{N}$,

donde $[x]_J \doteq \{y \in \mathbb{N}^I \mid y(j) = x(j) \quad \forall j \in J\}$, y use este hecho para probar que $U \cap V \neq \emptyset$.

Solución. Construyamos las secuencias del enunciado. Comenzamos tomando $x_1 \in \mathbb{N}^I$ tal que $x_1(j) = 1$ para todo $j \in I$. Se tiene que $x_1 \in F$ pues $x_1^{-1}(k) = \emptyset$ para todo $k \neq 1$.

En el siguiente paso, tomemos $J_2 \subseteq I$ finito tal que $[x_1]_{J_2} \subseteq U$. Tal J_2 existe, pues $x_1 \in U$, U es abierto y los conjuntos que fijan finitas coordenadas constituyen una base de la topología producto. Sea s(2) el cardinal de J_2 y numeremos J_2 como $J_2 = \{i_1^2, i_2^2, i_3^2, \dots, i_{s(2)}^2\}$. Definamos $x_2 \in \mathbb{N}^I$ por $x_2(i_k^2) = k$ para todo $1 \le k \le s(2)$ y $x_2(j) = 1$ para todo $j \in I \setminus J_2$. Vemos que si

 $1 < k \le s(2)$ entonces $\operatorname{card}(x_2^{-1}(k)) = 1$, mientras que si k > s(2) entonces $\operatorname{card}(x_2^{-1}(k)) = 0$. Luego, $\operatorname{card}(x_2^{-1}(k)) \le 1$ para todo $k \ne 1$, por lo que $x_2 \in F$. Notemos que se cumplen las condiciones I), III) y III) en este paso.

Veamos ahora el caso general: si tenemos $x_n \in F$ y $J_n = \{i_1^n, \dots, i_{s(n)}^n\}$, tomamos J'_{n+1} finito de manera que $[x_n]_{J'_{n+1}} \subseteq U$. Tal J'_{n+1} existe, pues $x_n \in U$, U es abierto y los conjuntos que fijan finitas coordenadas constituyen una base de la topología producto. Tomemos ahora $i \in I \setminus (J_n \cup J'_{n+1})$, que existe pues $J_n \cup J'_{n+1}$ es finito e I es infinito. Definamos $J_{n+1} \doteq J_n \cup J'_{n+1} \cup \{i\}$ y notemos que $J_{n+1} \supseteq J_n$, pues $i \in J_{n+1} \setminus J_n$. Además,

$$x_n \in [x_n]_{J_{n+1}} \subseteq [x_n]_{J'_{n+1}} \subseteq U$$

ya que $y \in [x_n]_{J_{n+1}}$ si y sólo si $y(j) = x_n(j)$ para todo $j \in J_{n+1}$, lo que implica que $y(j) = x_n(j)$ para todo $j \in J'_{n+1}$ pues $J_{n+1} \supseteq J'_{n+1}$ y concluimos que $y \in [x_n]_{J'_{n+1}}$.

Numeremos ahora J_{n+1} de manera que la numeración coincida con la de J_n , es decir, escribamos $J_{n+1} = \{i_1^{n+1}, \ldots, i_{s(n+1)}^{n+1}\}$ con s(n+1) > s(n) e $i_k^{n+1} = i_k^n$ para todo $1 \le k \le s(n)$. Definamos $x_{n+1} \in \mathbb{N}^I$ por $x_{n+1}(i_k^{n+1}) = k$ para todo $1 \le k \le s(n+1)$ y $x_{n+1}(j) = 1$ para todo $j \in I \setminus J_{n+1}$. Notemos que $x_{n+1} \in F$, pues si $1 < k \le s(n+1)$ se tiene que $\operatorname{card}(x_{n+1}^{-1}(k)) = 1$ y si k > s(n+1) que $\operatorname{card}(x_{n+1}^{-1}(k)) = 0$. Luego, $\operatorname{card}(x_{n+1}^{-1}(k)) \le 1$ para todo $k \ne 1$. Se verifica fácilmente que se cumplen las condiciones I), II) y III) en este paso.

Sea $J = \bigcup_{n \in \mathbb{N}} J_n$, que es un conjunto infinito numerable. Definamos $g \in \mathbb{N}^I$ como sigue:

$$g(i_k^n) = k \text{ para todo } 1 \le k \le s(n) \text{ y todo } n \in \mathbb{N}$$
 (1)

$$q(j) = 2 \text{ para todo } j \in I \setminus J.$$
 (2)

Esta definición es consistente por la condición I). Además, si $k \neq 2$ entonces g(j) = k si y sólo si $j = i_k^n$ para algún $n \in \mathbb{N}$ y $1 \leq k \leq s(n)$. Como $i_k^n = i_k^m$ para todo $m \geq n$, concluimos que $g^{-1}(k) = \{j\}$, por lo que $\operatorname{card}(g^{-1}(k)) = 1$ para todo $k \neq 2$. Así, $g \in G$.

Como los conjuntos que fijan una cantidad finita de coordenadas constituyen una base de la topología de \mathbb{N}^I y $g\in G\subseteq V$, debe existir un conjunto finito $K\subseteq I$ tal que $g\in [g]_K\subseteq V$. Como K es finito, $K\cap J$ también lo es, por lo que debe existir $n\in\mathbb{N}$ tal que $K\cap J\subseteq J_{n-1}$ (escribimos $K\cap J=j_1,\ldots,j_p$. Como $J=\bigcap_{n\in\mathbb{N}}J_n$, existen $n_1,\ldots,n_p\in\mathbb{N}$ tales que $j_i\in J_i$ para todo $1\leq i\leq p$ y tomamos $n=\max\{n_1,\ldots,n_p\}$). Definamos $h\in\mathbb{N}^I$ como sigue:

$$g(i_k^{n-1}) = k \text{ para todo } 1 \le k \le s(n-1)$$
(3)

$$g(j) = 1 \text{ para todo } j \in J_n \setminus J_{n-1}$$
 (4)

$$g(j) = 2 \text{ para todo } j \in I \setminus J.$$
 (5)

y afirmamos que $h \in [x_{n-1}]_{J_n} \cap [g]_K \subseteq U \cap V$. En efecto,

- $h \in [x_{n-1}]_{J_n}$: esto ocurre si y sólo si $h(j) = x_{n-1}(j)$ para todo $j \in J_n$. Sea $j \in J_n$ y consideremos dos casos:
 - Si $j \in J_{n-1}$, entonces $j = i_k^{n-1}$ para algún $1 \le k \le s(n-1)$. Luego, de (3) obtenemos que $h(i_k^{n-1}) = k$ y de II) obtenemos que $x_{n-1}(i_k^{n-1}) = k$.
 - Si $j \in J_n \setminus J_{n-1}$, de (4) obtenemos que h(j) = 1 y de II) que $x_{n-1}(j) = 1$.

Concluimos entonces que $h \in [x_{n-1}]_{J_n}$.

■ $h \in [g]_K$: esto ocurre si y sólo si h(j) = g(j) para todo $j \in K$. Sea $j \in K$ y consideremos dos casos:

- Si $j \in K \cap J$, como elegimos n manera que $K \cap J \subseteq J_{n-1}$, tenemos que $j \in J_{n-1}$. Luego, $j = i_k^{n-1}$ para algún $1 \le k \le s(n-1)$. De (3) obtenemos que $h(i_k^{n-1}) = k$ y de (1) que $g(i_k^{n-1}) = k$.
- Si $j \in K \setminus (K \cap J)$, concluimos que $j \in I \setminus J$. Como $J_n \subseteq J$, en particular $j \in I \setminus J_{n-1}$ por lo que concluimos de (5) que h(j) = 1. Por último, de (2) obtenemos que g(j) = 1.

Finalmente encontramos $h \in U \cap V$, por lo que $U \cap V \neq \emptyset$.

(d) Usando la parte (a), muestre que \mathbb{R}^I no es T_4 .

Solución. Veamos primero que, en general, si $\{X_i\}_{i\in I}$ es una familia de espacios topológicos y $F_i\subseteq X_i$ es cerrado en X_i para todo $i\in I$, entonces $F=\prod_{i\in I}F_i$ es cerrado en $X=\prod_{i\in I}X_i$. En efecto, sea $x\in X\setminus F$. Por definición, esto significa que existe $i\in I$ tal que $x(i)\notin F_i$. Como F_i es cerrado en X_i , tenemos que $U_i=X\setminus F_i$ es abierto en X_i y que $x(i)\in U_i$. Así, $U=U_i\times\prod_{j\in I\setminus\{i\}}X_j$ es abierto en X (al ser un producto de un abierto de X_i con «todos los demás espacios») y se cumple que $x\in U$, pues $x(i)\in U_i$.

Veamos que $U \subseteq X \setminus F$. En efecto, si $y \in U$ entonces $y(i) \in U_i$, por lo que $y(i) \notin F_i$ y así $y \in X \setminus F$. Como U es abierto en X y $x \in U \subseteq X \setminus F$, concluimos que $X \setminus F$ es abierto en X y que, por consiguiente, F es cerrado en X.

Notemos ahora que \mathbb{N} es cerrado en \mathbb{R} , por lo que lo anterior implica que \mathbb{N}^I es cerrado en \mathbb{R}^I .

Probamos en la parte (c) que los cerrados disjuntos F y G no se pueden separar por abiertos disjuntos, lo que muestra que \mathbb{N}^I no es normal. Si \mathbb{R}^I fuese T_4 , por la parte (a) tendríamos que \mathbb{N}^I sería T_4 porque sería un sub-espacio cerrado de un espacio T_4 . Esto es claramente una contradicción.

(e) Usando que \mathbb{R} y (0,1) son homeomorfos, concluya que $[0,1]^I$ es T_4 , pero que $(0,1)^I$ no lo es. **Solución.** Veamos primero que si $\{X_i\}_{i\in I}$ e $\{Y_i\}_{i\in I}$ son familias de espacios topológicos tales que X_i es homeomorfo a Y_i para cada $i\in I$, entonces $X=\prod_{i\in I}X_i$ es homeomorfo a $Y=\prod_{i\in I}Y_i$. Sea $f_i\colon X_i\to Y_i$ un homeomorfismo entre X_i e Y_i (es decir, una función biyectiva, continua y cuya inversa es continua). Definamos

$$F \colon X \to Y$$

 $(x(i))_{i \in I} \mapsto (f_i(x(i)))_{i \in I}$

y veamos que F es un homeomorfismo de X en Y.

- Inyectividad: Si $x_1, x_2 \in X$ verifican $F(x_1) = F(x_2)$, entonces $f_i(x_1(i)) = f_i(x_2(i))$ para todo $i \in I$. Como f_i es inyectiva para cada $i \in I$, lo anterior implica que $x_1(i) = x_2(i)$ para todo $i \in I$, que significa que $x_1 = x_2$.
- Sobreyectividad: Sea $y \in Y$. Por la sobreyectividad de f_i , para cada $i \in I$ existe $x(i) \in X_i$ tal que $f_i(x(i)) = y(i)$. Tomando $x = (x(i))_{i \in I} \in X$ vemos que F(x) = y.
- Continuidad: Sea V un abierto básico en Y, es decir, $V = \prod_{i \in J} U_i \times \prod_{i \in I \setminus J} Y_i$ donde $V_i \subseteq Y_i$ es abierto en Y_i para todo $i \in J$, con $J \subseteq I$ finito. Veamos que $F^{-1}(V)$ es un abierto en X: en efecto,

$$\begin{split} F^{-1}(V) &= \{x \in X \mid F(x) \in V\} \\ &= \{x \in X \mid (f_i(x(i)))_{i \in I} \in V\} \\ &= \{x \in X \mid f_i(x(i)) \in V_i \quad \forall i \in J, f_i(x(i)) \in Y_i \quad \forall i \in I \setminus J\} \\ &= \{x \in X \mid f_i(x(i)) \in V_i \quad \forall i \in J\} \\ &= \{x \in X \mid x(i) \in f_i^{-1}(V_i) \quad \forall i \in J\} \\ &= \prod_{i \in J} f_i^{-1}(V_i) \times \prod_{i \in I \setminus J} X_i. \end{split}$$

Como V_i es abierto en Y_i y f_i es continua, se tiene que $f_i^{-1}(V_i)$ es un abierto en X_i . Luego, $F^{-1}(V)$ es un abierto en X (producto de finitos abiertos con «todos los demás espacios»). Concluimos así que F es continua.

■ Continuidad de la inversa: Notemos que $F^{-1}(y) = (f_i^{-1}(y))_{i \in I}$. Luego, como f_i^{-1} es continua para todo $i \in I$, F^{-1} es continua por el mismo argumento que prueba la continuidad de F (intercambiando los roles de X e Y).

Debido a lo anterior, tenemos que $(0,1)^I$ es homeomorfo a \mathbb{R}^I . Luego, $(0,1)^I$ no es T_4 , pues todas las propiedades topológicas se preservan mediante un homeomorfismo. Finalmente, $[0,1]^I$ es Hausdorff al ser producto de espacios Hausdorff y es compacto al ser producto de espacios compactos. Como todo espacio T_2 y compacto es normal, concluimos que $[0,1]^I$ es T_4 .

- **P2.** Considere el espacio topológico (Ω, τ) dado por $\Omega \doteq \{p \subseteq \mathcal{P}(\mathbb{N}) \mid p \text{ ultrafiltro de } \mathbb{N}\}\ y \ \tau$ es la topología generada por $\mathcal{B} \doteq \{U_A\}_{A \subset \mathbb{N}}$, donde $U_A \doteq \{p \in \Omega \mid A \in p\}$.
 - (a) Muestre que Ω es Hausdorff.

Solución. Sean $p, q \in \Omega$. Debemos encontrar abiertos disjuntos U_A , U_B en Ω tales que $p \in U_A$ y $q \in U_B$.

Notemos que como $p \neq q$ debe existir $A \in p \triangle q$ y podemos suponer sin pérdida de generalidad que $A \in p \setminus q$. Definamos $B = \mathbb{N} \setminus A$. Luego, como $A \in p$ tenemos que $p \in U_A$. Por otro lado, como $A \notin q$ y q es un ultrafiltro, necesariamente $B = \mathbb{N} \setminus A \in q$. Así, $q \in U_B = U_{\mathbb{N} \setminus A}$.

Para ver que $U_A \cap U_{\mathbb{N}\backslash A} = \emptyset$, basta notar que ningún filtro r puede contener a A y a $\mathbb{N} \backslash A$ simultáneamente, pues esto implicaría que $\emptyset = A \cap (\mathbb{N} \backslash A) \in r$ y sabemos que todo filtro tiene la PIF.

Nota. De hecho, se tiene que $U_{\mathbb{N}\backslash A} = \Omega \setminus U_A$, por lo que cada abierto de la base \mathcal{B} es también cerrado.

(b) Pruebe que \mathbb{N} es homeomorfo a al subconjunto de Ω dado por los ultrafiltros principales de \mathbb{N} . Así, podemos pensar que \mathbb{N} es un sub-espacio topológico de Ω .

Solución. Recordemos primero que un ultrafiltro principal es un ultrafiltro generado por un único elemento, es decir, un ultrafiltro de la forma $p_n = \{A \subseteq \mathbb{N} \mid n \in A\}$.

Para ver que \mathbb{N} y $\{p_n\}_{n\in\mathbb{N}}\subseteq\Omega$ son homeomorfos, basta probar que $\{p_n\}_{n\in\mathbb{N}}$ es discreto (es decir, que $\{p_n\}$ es abierto en $\{p_n\}_{n\in\mathbb{N}}$ para todo $n\in\mathbb{N}$). En efecto, si se tuviese esto podríamos definir $f\colon\mathbb{N}\to\{p_n\}_{n\in\mathbb{N}}$ por $f(n)=p_n$ que sería claramente biyectiva y tendríamos que sería continua y que su inversa sería continua porque todo conjunto en \mathbb{N} y todo conjunto en $\{p_n\}_{n\in\mathbb{N}}$ sería abierto.

Para ver que $\{p_n\}_{n\in\mathbb{N}}$ es discreto, debemos probar que existe $A_n\subseteq\mathbb{N}$ tal que $\{p_n\}_{n\in\mathbb{N}}\cap U_{A_n}=\{p_n\}$, ya que, por propiedad de la topología traza, todo abierto de $\{p_n\}_{n\in\mathbb{N}}$ se puede escribir como un abierto de Ω intersectado con $\{p_n\}_{n\in\mathbb{N}}$. Definamos $A_n=\{n\}$ para todo $n\in\mathbb{N}$. Así,

$$U_{A_n} = U_{\{n\}} = \{ p \in \Omega \mid \{n\} \in p \}.$$

Claramente $p_n \in U_{A_n}$, pues $n \in \{n\}$ y así $\{n\} \in p_n$. Si $m \neq n$, entonces $p_m \notin U_{A_n}$, pues si $\{n\} \in p_m$ tendríamos que $\emptyset = \{n\} \cap \{m\} \in p_m$, lo que contradice que p_m tiene la PIF. Así, $\{p_n\}_{n\in\mathbb{N}} \cap U_{A_n} = \{p_n\}$ para todo $n \in \mathbb{N}$, lo que prueba que $\{p_n\}_{n\in\mathbb{N}}$ es discreto.

Nota. Desde ahora en adelante indentificaremos \mathbb{N} con el conjunto $\{p_n\}_{n\in\mathbb{N}}$.

(c) Muestre que Ω es compacto y que \mathbb{N} es denso en Ω . Concluya que Ω es una compactificación de \mathbb{N} . Solución.

Probemos primero que las siguientes afirmaciones son equivalentes en cualquier espacio topológico (X, τ) , donde $\mathcal{U} \subseteq \tau$ es cualquier familia de abiertos:

- I) todo recubrimiento abierto $\{U_{\alpha}\}_{\alpha} \subseteq \mathcal{U}$ tiene un subrecubrimiento finito y
- II) toda familia de cerrados de la forma $\{X \setminus U_{\alpha}\}_{\alpha}$ con $U_{\alpha} \in \mathcal{U}$ para todo α que tiene la PIF tiene intersección no vacía.

En efecto, supongamos que no se tiene I), por lo que existe un recubrimiento $\{U_{\alpha}\}_{\alpha} \subseteq \mathcal{U}$ sin subrecubrimiento finito. Notemos que esto significa que para cualquier conjunto finito de índices $\alpha_1, \ldots, \alpha_k$:

$$\bigcup_{i=1}^{k} U_{\alpha_i} \neq X$$

y por lo tanto que

$$\bigcap_{i=1}^k X \setminus U_{\alpha_k} \neq \varnothing,$$

lo que muestra que la familia $\{X \setminus U_{\alpha}\}_{\alpha}$ tiene la PIF. Además, como $\{U_{\alpha}\}_{\alpha}$ es un recubrimiento de X:

$$\bigcup_{\alpha} U_{\alpha} = X$$

obtenemos que

$$\bigcap_{\alpha} X \setminus U_{\alpha} = \varnothing,$$

lo que muestra que no se tiene II).

Recíprocamente, si no se tiene II) entonces existe una familia de cerrados $\{X \setminus U_{\alpha}\}_{\alpha}$ con $U_{\alpha} \in \mathcal{U}$ para todo α que tiene la PIF, pero que tiene intersección vacía. Como $\{X \setminus U_{\alpha}\}_{\alpha}$ tiene intersección vacía:

$$\bigcap_{\alpha} X \setminus U_{\alpha} = \emptyset$$

obtenemos que

$$\bigcup_{\alpha} U_{\alpha} = X,$$

lo que muestra que la familia $\{U_{\alpha}\}_{\alpha} \subseteq \mathcal{U}$ es un recubrimiento de X. Además, como $\{X \setminus U_{\alpha}\}_{\alpha}$ tiene la PIF, tenemos que para cualquier conjunto finito de índices $\alpha_1, \ldots, \alpha_k$:

$$\bigcap_{i=1}^k X \setminus U_{\alpha_k} \neq \emptyset,$$

lo que implica que

$$\bigcup_{i=1}^{k} U_{\alpha_i} \neq X,$$

de donde concluimos que no se tiene I).

Tomando, en particular, $\mathcal{U} = \mathcal{S}$ con $\mathcal{S} \subseteq \tau$ una sub-base de la topología, el lema de Alexander nos permite deducir que las siguientes afirmaciones son equivalentes:

- I) X es compacto y
- II) toda familia de cerrados de la forma $\{X \setminus U_{\alpha}\}_{\alpha}$ con $U_{\alpha} \in \mathcal{S}$ para todo α que tiene la PIF tiene intersección no vacía.

Obtenemos así una versión dual del lema de Alexander para cerrados que son complemento de elementos de la sub-base.

Usaremos esta versión del lema de Alexander para demostrar que Ω es compacto. Sabemos que \mathcal{B} es una base de τ , por lo que además es una sub-base. Además, como $\Omega \setminus U_A = U_{\mathbb{N} \setminus A} \in \mathcal{B}$, vemos que

$$\{\Omega \setminus U_A \mid A \in \mathcal{B}\} = \{U_{\mathbb{N} \setminus A} \mid A \in \mathcal{B}\} = \mathcal{B}$$

por lo que probaremos que si $\{U_A\}_{A\in\mathcal{A}}\subseteq\mathcal{B}$ tiene la PIF, entonces $\{U_A\}_{A\in\mathcal{A}}$ tiene intersección no vacía.

Notemos primero que si $A_1, \ldots, A_k \subseteq \mathbb{N}$ entonces

$$\bigcap_{i=1}^{k} U_{A_i} = \bigcap_{i=1}^{k} \{ p \in \Omega \mid A_i \in p \}
= \{ p \in \Omega \mid A_i \in p \quad \forall i = 1, \dots, k \}
= \left\{ p \in \Omega \mid \bigcap_{i=1}^{k} A_i \in p \right\}$$

donde la última igualdad sale del hecho que los filtros son cerrados para las intersecciones finitas (lo que muestra (2)) y del hecho que si un filtro contiene a un conjunto también contiene a todos los conjuntos más grandes (lo que muestra (2)).

Concluimos que $\bigcap_{i=1}^k U_{A_i} = U_{\bigcap_{i=1}^k A_i}$. Luego, si $A_1, \ldots, A_k \in \mathcal{A}$, como $\{U_A\}_{A \in \mathcal{A}}$ tiene la PIF,

$$\emptyset \neq \bigcap_{i=1}^{k} U_{A_i} = U_{\bigcap_{i=1}^{k} A_i}$$

por lo que $\bigcap_{i=1}^k A_i \neq \emptyset$ (si $\bigcap_{i=1}^k A_i = \emptyset$, tendríamos que existiría $p \in U_{\bigcap_{i=1}^k A_i} = U_\emptyset$, lo que significaría que $\emptyset \in p$, que contradice que p es un filtro). Concluimos que \mathcal{A} tiene la PIF.

Como toda familia que tiene la PIF puede ser extendida a un ultrafiltro, existe un ultrafiltro $p \subseteq \mathcal{P}(\mathbb{N})$ con $\mathcal{A} \subseteq p$. Esto significa que $A \in p$ para todo $A \in \mathcal{A}$, lo que muestra que $p \in U_A$ para todo $A \in \mathcal{A}$, es decir, $p \in \bigcap_{A \in \mathcal{A}} U_A$. Concluimos así que Ω es compacto.

Veamos ahora que \mathbb{N} es denso en Ω . Para esto, basta probar que cualquier abierto no vacío U_A de \mathcal{B} intersecta a \mathbb{N} , es decir, que para todo $A \subseteq \mathbb{N}$ no vacío existe $n \in \mathbb{N}$ con $p_n \in U_A$.

En efecto, sea $n \in A$. De la definición de p_n , vemos que $A \in p_n$ por lo que $p_n \in U_A$. Concluimos así que \mathbb{N} es denso en Ω .

Nota. Se puede probar que card $(\Omega) = 2^c$. Luego, Ω es muchísimo más grande que \mathbb{N} .

De hecho, se tiene que $\Omega \subseteq \mathcal{P}(\mathbb{N})$ y así obtenemos la desigualdad $\operatorname{card}(\Omega) \leq \operatorname{card}(\mathcal{P}(\mathcal{P}(\mathbb{N}))) = 2^c$. Probar que $\operatorname{card}(\Omega) \geq 2^c$ es mucho más complicado. Una demostración sin muchos detalles se encuentra en el punto 4 del enlace embebido en este texto.

P3. Sea X un espacio topológico que verifica que existe $d \in \mathbb{N}$ tal que para todo $x \in X$ existen $U_x \subseteq X$, $V_x \subseteq \mathbb{R}^d$ abierto y $\varphi_x \colon U_x \to V_x$ con φ_x un homeomorfismo. Muestre que X es T_1 .

Solución. Sean $x, y \in X$. Por hipótesis, existen $U_x, U_y \subseteq X$ tales que $x \in U_x, y \in U_y$ y U_x es homeomorfo a un abierto $V_x \subseteq \mathbb{R}^d$, mientras que U_y es homeomorfo a un abierto $V_y \subseteq \mathbb{R}^d$, mediante homeomorfismos $\varphi_x \colon U_x \to V_x$ y $\varphi_y \colon U_y \to V_y$ respectivamente.

Si $y \notin U_x$ y $x \notin U_y$, concluimos. Luego, podemos suponer que $x, y \in U_x$. Así, como φ_x es inyectiva obtenemos que $\varphi_x(x)$ y $\varphi_x(y)$ son puntos distintos de $V_x \subseteq \mathbb{R}^d$. Como V_x es T_1 (todo sub-espacio de

un espacio T_1 es T_1), existen abiertos $W_x', W_y' \subseteq V_x$ tales que $\varphi_x(x) \in W_x', \varphi_x(y) \notin W_x', \varphi_x(y) \in W_y'$ y $\varphi_x(y) \notin W_x'$. Tomemos ahora $W_x = \varphi_x^{-1}(W_x')$ y $W_y = \varphi_x^{-1}(W_y')$ que son abiertos en X porque φ_x es un homeomorfismo.

De la definición de W_x y W_y deducimos que $x \in W_x$, $y \in W_y$. Además, como φ_x^{-1} es inyectiva, concluimos que $y \notin W_x$ y que $x \notin W_y$. Esto muestra que X es T_1 .

Nota. La propiedad del enunciado no permite concluir que el espacio es Hausdorff y ésta es la razón por la cual se exige en la definición de variedad topológica. En efecto, existen espacios con la propiedad del enunciado que no son T₂. A continuación veremos un ejemplo:

Consideremos sea $X=(\mathbb{R}\setminus\{0\})\cup\{a,b\}$ dotado de la topología generada por la base

$$\mathcal{B} = \{ (x - \varepsilon, x + \varepsilon) \mid x \in \mathbb{R} \setminus \{0\}, 0 < \varepsilon < |x| \}$$

$$\cup \{ ((-\varepsilon, \varepsilon) \setminus \{0\}) \cup \{a\} \mid \varepsilon > 0 \}$$

$$\cup \{ ((-\varepsilon, \varepsilon) \setminus \{0\}) \cup \{b\} \mid \varepsilon > 0 \},$$

es decir, los abiertos de X son los mismos que los de \mathbb{R} si no contienen a 0, y si lo contienen se reemplaza por a, b o ambos. Notemos que $\mathbb{R}_a \doteq (\mathbb{R} \setminus \{0\}) \cup \{a\}$ y $\mathbb{R}_b \doteq (\mathbb{R} \setminus \{0\}) \cup \{b\}$ son homeomorfos a \mathbb{R} , por lo que X verifica la propiedad del enunciado. Por otro lado, de la definición de \mathcal{B} se desprende que es imposible encontrar abiertos disjuntos $U, V \subseteq X$ tales que $a \in U$ y $b \in V$.

P4. Se quiere probar que todo espacio métrico (X, d) es paracompacto. Para esto, considere un recubrimiento abierto $\mathcal{U} = \{U_{\alpha}\}_{\alpha}$ indexado por ordinales y defina para cada $n \in \mathbb{N}$

$$V_{\alpha,n} \doteq \bigcup_{(\alpha,n,x)\in\mathcal{A}} B(x,2^{-n})$$

donde $(\alpha, n, x) \in \mathcal{A}$ si y sólo si

- I) α es el menor ordinal tal que $x \in U_{\alpha}$;
- II) $x \notin V_{\beta,k}$ para todo β y k < n y
- III) $B(x, 3 \cdot 2^{-n}) \subseteq U_{\alpha}$

y pruebe que $\mathcal{V} \doteq \{V_{\alpha,n}\}_{\alpha,n}$ es un refinamiento localmente finito de $\{U_{\alpha}\}_{\alpha}$.

Solución. Veamos primero que $\{V_{\alpha,n}\}_{\alpha,n}$ es un refinamiento de $\{U_{\alpha}\}_{\alpha}$, es decir, veamos que para todo α y $n \in \mathbb{N}$ existe β tal que $V_{\alpha,n} \subseteq U_{\beta}$ y que $\{V_{\alpha,n}\}_{\alpha,n}$ es un recubrimiento de X.

En efecto,

$$V_{\alpha,n} = \bigcup_{(\alpha,n,x)\in\mathcal{A}} B(x,2^{-n}) \subseteq \bigcup_{(\alpha,n,x)\in\mathcal{A}} B(x,3\cdot 2^{-n}).$$

Del punto III) vemos que si $(\alpha, n, x) \in \mathcal{A}$ entonces $B(x, 3 \cdot 2^{-n}) \subseteq U_{\alpha}$, por lo que $V_{\alpha, n} \subseteq U_{\alpha}$.

Por otro lado, sea $x \in X$ y α el menor ordinal tal que $x \in U_{\alpha}$, que existe porque la familia $\{U_{\alpha}\}_{\alpha}$ es un recubrimiento. Como U_{α} es abierto, existe $n \in \mathbb{N}$ tal que $B(x, 3 \cdot 2^{-n}) \subseteq U_{\alpha}$. Luego, (α, n, x) cumple las condiciones I) y III). Consideramos dos casos:

- Si además se cumple II), concluimos que $(\alpha, n, x) \in \mathcal{A}$, por lo que $B(x, 2^{-n})$ participa de la unión en la definición de $V_{\alpha,n}$ y así $B(x, 2^{-n}) \subseteq V_{\alpha,n}$ y obtenemos que $x \in V_{\alpha,n}$.
- Si no se cumple II), significa que existe un ordinal β y un natural k < n tal que $x \in V_{\beta,k}$.

En cualquiera de los dos casos, vemos que x es recubierto por \mathcal{V} .

Veamos ahora que si $\alpha < \beta$, $n \in \mathbb{N}$ y $a \in V_{\alpha,n}$, $b \in V_{\beta,n}$, entonces $d(a,b) > 2^{-n}$.

De la definición de $V_{\alpha,n}$ concluimos que $a \in B(x,2^{-n})$, con $(\alpha,n,x) \in \mathcal{A}$. De III) obtenemos que $a \in B(x,3\cdot 2^{-n}) \subseteq U_{\alpha}$. Por otra parte, de la definición de $V_{\beta,n}$ concluimos que $b \in B(y,2^{-n})$, con $(\beta,n,y) \in \mathcal{A}$. De I) obtenemos que $y \notin U_{\beta} \setminus U_{\alpha}$, pues $\alpha < \beta$. Esto muestra que $y \notin B(x,3\cdot 2^{-n})$, por lo que $d(x,y) \geq 3\cdot 2^{-n}$. De la desigualdad triangular:

$$d(x,y) \le d(x,a) + d(a,b) + d(b,y) \implies d(a,b) \ge d(x,y) - d(x,a) - d(b,y).$$

Como $d(x,y) \ge 3 \cdot 2^{-n}$, $d(x,a) < 2^{-n}$ y $d(b,y) < 2^{-n}$ (las dos últimas desigualdades salen de que $a \in B(x,2^{-n})$ y $b \in B(y,2^{-n})$), concluimos que $d(a,b) > 2^{-n}$.

Usando lo anterior, veamos finalmente que \mathcal{V} es localmente finito. Sea $a \in X$ y tomemos un ordinal β y $k \in \mathbb{N}$ tales que $a \in V_{\beta,k}$. Como $V_{\beta,k}$ es abierto, existe $j \in \mathbb{N}$ tal que $B(a,2^{-j}) \subseteq V_{\beta,k}$. Sea $N = \max\{k, j\} + 1$.

Veamos que si $n \geq N$, entonces $B(a, 2^{-N}) \cap V_{\alpha,n} = \emptyset$ para todo ordinal α . En efecto sea $n \geq N$. Si α y $x \in X$ verifican $(\alpha, n, x) \in \mathcal{A}$ entonces, por II), $x \notin V_{\beta,k}$ y como $B(a, 2^{-j}) \subseteq V_{\beta,k}$ concluimos que $x \notin B(a, 2^{-j})$, lo que implica que $d(x, a) \geq 2^{-j}$. Como $n \geq N > j$, lo anterior nos asegura que

$$B(a,2^{-N}) \cap B(x,2^{-n}) = \varnothing$$

y así

$$B(a,2^{-N})\cap V_{\alpha,n}=B(a,2^{-N})\cap \bigcup_{(\alpha,n,x)\in\mathcal{A}}B(x,2^{-n})=\bigcup_{(\alpha,n,x)\in\mathcal{A}}(B(a,2^{-N})\cap B(x,2^{-n})=\varnothing.$$

Concluimos que $B(a,2^{-N})$ sólo puede intersectar a $V_{\alpha,n}$ si n < N. Sea entonces n < N. Notemos que sólo puede existir un ordinal α tal que $B(a,2^{-N}) \cap V_{\alpha,n} \neq \emptyset$, pues, si existiesen $\alpha < \beta$ tales que $B(a,2^{-N}) \cap V_{\alpha,n} \neq \emptyset$ y $B(x,2^{-N}) \cap V_{\beta,n} \neq \emptyset$, podríamos encontrar $x \in B(a,2^{-N}) \cap V_{\alpha,n}$ e $y \in B(a,2^{-N}) \cap V_{\beta,n}$, lo que implicaría que $d(x,y) < 2^{-N}$. Esto contradice que $d(x,y) > 2^{-n}$, pues $n \le N$. Así, $B(a,2^{-N})$ intersecta a lo más N-1 elementos de \mathcal{V} , por lo que \mathcal{V} es localmente finito.

Finalmente, lo anterior muestra que V es un refinamiento localmente finito de U, por lo que X es paracompacto.