
LINEAR PROGRAMMING

GEORGE B. DANTZIG
Department of Management Science and Engineering, Stanford University, Stanford, California 94305-4023

The Story About How It Began: Some legends, a little
about its historical significance, and comments about where
its many mathematical programming extensions may be
headed.

Linear programming can be viewed as part of a great
revolutionary development which has given mankind

the ability to state general goals and to lay out a path of
detailed decisions to take in order to “best” achieve its goals
when faced with practical situations of great complexity.
Our tools for doing this are ways to formulate real-world
problems in detailed mathematical terms (models), tech-
niques for solving the models (algorithms), and engines for
executing the steps of algorithms (computers and software).
This ability began in 1947, shortly after World War II,

and has been keeping pace ever since with the extraordinary
growth of computing power. So rapid has been the advance
in decision science that few remember the contributions of
the great pioneers that started it all. Some of their names
are von Neumann, Kantorovich, Leontief, and Koopmans.
The first two were famous mathematicians. The last three
received the Nobel Prize in economics.
In the years from the time when it was first proposed

in 1947 by the author (in connection with the planning
activities of the military), linear programming and its many
extensions have come into wide use. In academic circles
decision scientists (operations researchers and management
scientists), as well as numerical analysts, mathematicians,
and economists have written hundreds of books and an
uncountable number of articles on the subject.
Curiously, in spite of its wide applicability today to

everyday problems, it was unknown prior to 1947. This
is not quite correct; there were some isolated exceptions.
Fourier (of Fourier series fame) in 1823 and the well-
known Belgian mathematician de la Vallée Poussin in 1911
each wrote a paper about it, but that was about it. Their
work had as much influence on Post-1947 developments as
would finding in an Egyptian tomb an electronic computer
built in 3000 BC. Leonid Kantorovich’s remarkable 1939
monograph on the subject was also neglected for ideolog-
ical reasons in the USSR. It was resurrected two decades
later after the major developments had already taken place
in the West. An excellent paper by Hitchcock in 1941 on

the transportation problem was also overlooked until after
others in the late 1940’s and early 1950’s had independently
rediscovered its properties.
What seems to characterize the pre-1947 era was lack of

any interest in trying to optimize. T. Motzkin in his schol-
arly thesis written in 1936 cites only 42 papers on linear
inequality systems, none of which mentioned an objective
function.
The major influences of the pre-1947 era were Leon-

tief’s work on the Input-Output Model of the Economy
(1933), an important paper by von Neumann on Game The-
ory (1928), and another by him on steady economic growth
(1937).
My own contributions grew out of my World War II

experience in the Pentagon. During the war period (1941–
45), I had become an expert on programming-planning
methods using desk calculators. In 1946 I was Mathemat-
ical Advisor to the US Air Force Comptroller in the Pen-
tagon. I had just received my PhD (for research I had
done mostly before the war) and was looking for an aca-
demic position that would pay better than a low offer I
had received from Berkeley. In order to entice me to not
take another job, my Pentagon colleagues, D. Hitchcock
and M. Wood, challenged me to see what I could do to
mechanize the planning process. I was asked to find a way
to more rapidly compute a time-staged deployment, train-
ing and logistical supply program. In those days “mecha-
nizing” planning meant using analog devices or punch-card
equipment. There were no electronic computers.
Consistent with my training as a mathematician, I set

out to formulate a model. I was fascinated by the work of
Wassily Leontief who proposed in 1932 a large but simple
matrix structure which he called the Interindustry Input-
Output Model of the American Economy. It was simple in
concept and could be implemented in sufficient detail to
be useful for practical planning. I greatly admired Leontief
for having taken the three steps necessary to achieve a suc-
cessful application:
1. Formulating the inter-industry model.
2. Collecting the input data during the Great Depression.
3. Convincing policy makers to use the output.

Leontief received the Nobel Prize in 1976 for developing
the input-output model.
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For the purpose I had in mind, however, I saw that Leon-
tief’s model had to be generalized. His was a steady-state
model and what the Air Force wanted was a highly dynamic
model, one that could change over time. In Leontief’s
model there was a one-to-one correspondence between the
production processes and the items being produced by these
processes. What was needed was a model with alternative
activities. Finally it had to be computable. Once the model
was formulated, there had to be a practical way to com-
pute what quantities of these activities to engage in that
was consistent with their respective input-output character-
istics and with given resources. This would be no mean
task since the military application had to be large scale,
with thousands of items and activities.
The activity analysis model I formulated would be

described today as a time-staged, dynamic linear program
with a staircase matrix structure. Initially there was no
objective function; broad goals were never stated explic-
itly in those days because practical planners simply had no
way to implement such a concept. Noncomputability was
the chief reason, I believe, for the total lack of interest in
optimization prior to 1947.
A simple example may serve to illustrate the fundamen-

tal difficulty of finding a solution to a planning problem
once it is formulated. Consider the problem of assigning
70 men to 70 jobs. Suppose a value or benefit vij would
result if the ith man is assigned to the jth job. An activity
consists in assigning the ith man to the jth job. The restric-
tion are: (i) each man must be assigned a job (there are 70
such), and (ii) each job must be filled (also 70). The level
of an activity is either 1, meaning it will be used, or 0,
meaning it will not. Thus there are 2× 70 or 140 restric-
tions, 70× 70 or 4900 activities with 4900 corresponding
0-1 decision variables xij . Unfortunately there are 70! dif-
ferent possible solutions or ways to make the assignments
xij . The problem is to compare the 70! solutions with one
another and to select the one which results in the largest
sum of benefits from the assignments.
Now 70! is a big number, greater than 10100. Suppose we

had a computer capable of doing a million calculations per
second available at the time of the big bang fifteen billion
years ago. Would it have been able to look at all the 70!
combinations by the year 1990? The answer is no! Suppose
instead it could perform at nano-second speed and make
1 billion complete assignments per second? The answer is
still no. Even if the Earth were filled with such comput-
ers all working in parallel, the answer would still be neg-
ative. If, however, there were 1040 Earths circling the sun
each filled solid with nanosecond speed computers all pro-
grammed in parallel from the time of the big bang until the
Sun grows cold, then perhaps the answer might be, yes.
This easy-to-state example illustrates why up to 1947,

and for the most part even to this day, a great gulf exists
between man’s aspirations and his actions. Man may wish
to state his wants in complex situations in terms of a gen-
eral objective to be optimized but there are so many dif-
ferent ways to go about it, each with its advantages and

disadvantages, that it would be impossible to compare all
the cases and choose which among them would be the best.
Invariably, man in the past has turned to a leader whose
‘experience’ and ‘mature judgment’ would guide the way.
Those in charge like to do this by issuing a series of ground
rules (edicts) to be executed by those developing the plan.
This was the situation prior to 1946. In place of an

explicit goal or objective function, there were a large num-
ber of ad hoc ground rules issued by those in authority to
guide the selection. Without such rules, there would have
been, in most cases, an astronomical number of feasible
solutions to choose from. Incidentally, “Expert System”
software which is very much in vogue today makes use of
this ad hoc ground-rule approach.
All that I have related up to now about the early devel-

opment took place before the advent of the computer, more
precisely, before in late 1946 we were aware that the com-
puter was going to exist. But once we were aware, the com-
puter became vital to our mechanization of the planning
process. So vital was the computer, that our group arranged
(in the late 1940’s) that the Pentagon fund the development
of computers.
To digress for a moment, I would like to say a few words

about the electronic computer itself. To me, and I suppose
to all of us, one of the most startling developments of all
time has been the penetration of the computer into almost
every phase of human activity. Before a computer can be
intelligently used, a model must be formulated and good
algorithms developed. To build a model, however, requires
the axiomatization of a subject matter field. In time this
axiomatization gives rise to a whole new mathematical dis-
cipline which is then studied for its own sake. Thus, with
each new penetration of the computer, a new science is
born.
Von Neumann notes this tendency to axiomatize in his

paper on The General and Logical Theory of Automata. In
it he states that automata have been playing a continuously
increasing role in science. He goes on to say:

Automata have begun to invade certain parts of math-
ematics too, particularly but not exclusively mathemat-
ical physics or applied mathematics. The natural sys-
tems (e.g., central nervous system) are of enormous
complexity and it is clearly necessary first to subdivide
what they represent into several parts which to a cer-
tain extent are independent, elementary units. The prob-
lem then consists of understanding how these elements
are organized as a whole. It is the latter problem which
is likely to attract those who have the background and
tastes of the mathematician or a logician. With this atti-
tude, he will be inclined to forget the origins and then,
after the process of axiomatization is complete, concen-
trate on the mathematical aspects.

By mid-1947, I had formulated a model which satisfacto-
rily represented the technological relations usually encoun-
tered in practice. I decided that the ad hoc ground rules
had to be discarded and replaced by an explicit objective
function. I formulated the planning problem in mathemat-
ical terms using a set of axioms. The axioms concerned
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the relations between two kinds of sets: the first was the
set of items being produced or consumed and the second,
the set of activities or production processes in which these
items would be inputted or outputted in fixed proportions
providing these proportions are non-negative multiples of
each other. The resulting system to be solved was the min-
imization of a linear form subject to linear equations and
inequalities. The use (at the time it was proposed) of a lin-
ear form as the objective function to be extremized was a
novel feature of the model.
Now came the nontrivial question: Can one solve such

systems? At first I assumed the economists had worked
on this problem since it was the problem of allocation of
scarce resources. I visited T. C. Koopmans in June 1947 at
the Cowles Foundation (which at that time was at the Uni-
versity of Chicago) to learn what I could from the mathe-
matical economists. Koopmans became quite excited. Dur-
ing World War II, he had worked for the Allied Shipping
Board on a transportation model and so had the theoretical
as well as the practical planning background necessary to
appreciate what I was presenting. He saw immediately the
implications for general economic planning. From that time
on, Koopmans took the lead in bringing the potentialities of
linear programming models to the attention of other young
economists who were just starting their careers. Some of
their names were Kenneth Arrow, Paul Samuelson, Herbert
Simon, Robert Dorfman, Leonid Hurwricz, and Herbert
Scarf, to name but a few. Some thirty to forty years later
four of them received the Nobel Prize for their research.
Seeing that economists did not have a method of solu-

tion, I next decided to try my own luck at finding an
algorithm. I owe a great debt to Jerzy Neyman, the lead-
ing mathematical statistician of his day, who guided my
graduate work at Berkeley. My thesis was on two famous
unsolved problems in mathematical statistics which I mis-
takenly thought were a homework assignment and solved.
One of the results, published jointly with Abraham Wald,
was on the Neyman-Pearson Lemma. In today’s terminol-
ogy, this part of my thesis was on the existence of Lagrange
multipliers (or dual variables) for a semi-infinite linear pro-
gram whose variables were bounded between zero and one
and satisfied linear constraints expressed in the form of
Lebesgue integrals. There was also a linear objective to be
extremized.
Luckily the particular geometry used in my thesis was

the one associated with the columns of the matrix instead
of its rows. This column geometry gave me the insight
which led me to believe that the simplex method would be
a very efficient solution technique. I earlier had rejected
the method when I viewed it in the row geometry because
running around the outside edges seemed so unpromising.
I proposed the simplex method in the summer 1947. But

it took nearly a year before my colleagues and I in the
Pentagon realized just how powerful the method really was.
In the meantime, I decided to consult with the great, Johnny
von Neumann to see what he could suggest in the way
of solution techniques. He was considered by many as the

leading mathematician in the world. On October 3, 1947, 1
met him for the first time at the Institute Advanced Study
at Princeton.
John von Neumann made a strong impression on every-

one. People came to him for help with their problems
because of his great insight. In the initial stages of the
development of a new field like linear programming, atomic
physics, computers, or whatever, his advice proved invalu-
able. After these fields were developed in greater depth,
however, it became more difficult for him to make the same
spectacular contributions. I guess everyone has a finite
capacity, and Johnny was no exception.
I remember trying to describe to von Neumann (as

I would to an ordinary mortal) the Air Force problem.
I began with the formulation of the linear programming
model in terms of activities and items, etc. He did some-
thing which I believe was uncharacteristic of him. “Get to
the point,” he snapped at me impatiently. Having at times a
somewhat low kindling point, I said to myself, “OK, if he
wants a quickie, then that’s what he’ll get.” In under one
minute I slapped on the blackboard a geometric and alge-
braic version of the problem. Von Neumann stood up and
said, “Oh that!” Then, for the next hour and a half, he pro-
ceeded to give me a lecture on the mathematical theory of
linear programs.
At one point, seeing me sitting there with my eyes pop-

ping and my mouth open (after all I had searched the liter-
ature and found nothing), von Neumann said:

I don’t want you to think I am pulling all this out of my
sleeve on the spur of the moment like a magician. I have
recently completed a book with Oscar Morgenstern on
the theory of games. What I am doing is conjecturing
that the two problems are equivalent. The theory that I
am outlining is an analogue to the one we have devel-
oped for games.

Thus I learned about Farkas’ Lemma, and about Dual-
ity for the first time. Von Neumann promised to give my
computational problem some thought and to contact me in
a few weeks which he did. He proposed an iterative non-
linear scheme. Later Alan Hoffman and his group at the
Bureau of Standards (around 1952) tried it out on a num-
ber of test problems. They also compared it to the simplex
method and with some proposals of T. Motzkin. The sim-
plex method came out a clear winner.
As a result of another visit in June 1948, I met Albert

Tucker, who later became head of the Mathematics depart-
ment at Princeton. Soon Tucker and his students Harold
Kuhn and David Gale and others like Lloyd Shapley began
their historic work on game theory, nonlinear programming
and duality theory. The Princeton group became the focal
point among mathematicians doing research in these fields.
The early days were full of intense excitement. Scien-

tists, free at last from war time pressures, entered the post-
war period hungry for new areas of research. The com-
puter came on the scene at just the right time. Economists
and mathematicians were intrigued with the possibility that
the fundamental problem of optimal allocation of scarce
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resources could be numerically solved. Not too long after
my first meeting with Tucker there was a meeting of
the Econometric Society in Wisconsin attended by well-
known statisticians and mathematicians like Hotelling and
von Neumann, and economists like Koopmans. I was a
young unknown and I remember how frightened I was with
the idea of presenting for the first time to such a distin-
guished audience the concept of linear programming.
After my talk, the chairman called for discussion. For

a moment there was the usual dead silence; then a hand
was raised. It was Hotelling’s. I must hasten to explain
that Hotelling was fat. He used to love to swim in the
ocean and when he did, it is said that the level of the ocean
rose perceptibly. This huge whale of a man stood up in
the back of the room, his expressive fat face took on one
of those all-knowing smiles we all know so well. He said:
“But we all know the world is nonlinear.” Having uttered
this devastating criticism of my model, he majestically sat
down. And there I was, a virtual unknown, frantically trying
to compose a proper reply.
Suddenly another hand in the audience was raised. It was

von Neumann. “Mr. Chairman, Mr. Chairman,” he said,
“if the speaker doesn’t mind, I would like to reply for
him.” Naturally I agreed. Von Neumann said: “The speaker
titled his talk ‘linear programming’ and carefully stated his
axioms. If you have an application that satisfies the axioms,
well use it. If it does not, then don’t,” and he sat down.
In the final analysis, of course, Hotelling was right. The
world is highly nonlinear. Fortunately systems of linear
inequalities (as opposed to equalities) permit us to approx-
imate most of the kinds of nonlinear relations encountered
in practical planning.
In 1949, exactly two years from the time the Lin-

ear programming was first conceived, the first confer-
ence (sometimes referred to as the Zero Symposium) on
mathematical programming was held at the University of
Chicago. Tjalling Koopmans, the organizer, later titled the
proceedings of the conference, Activity Analysis of Produc-
tion and Allocation. Economists like Koopmans, Kenneth
Arrow, Paul Samuelson, Leonid Hurwitz, Robert Dorfman,
Nicholos Georgescu-Roegen, and Herbert Simon; math-
ematicians like Albert Tucker, Harold Kuhn, and David
Gale; and Air Force types like Marshall Wood, Murray
Geisler, and myself all made contributions.
The advent or rather the promise that the electronic com-

puter would exist soon, the exposure of theoretical mathe-
maticians and economists to real problems during the war,
the interest in mechanizing the planning process, and last
but not least the availability of money for such applied
research all converged during the period 1947–1949. The
time was ripe. The research accomplished in exactly two
years is, in my opinion, one of the remarkable events of
history. The proceedings of the conference remains to this
very day an important basic reference, a classic!
The simplex method turned out to be a powerful theoret-

ical tool for proving theorems as well as a powerful com-
putational tool. To prove theorems it is essential that the

algorithm include a way of avoiding degeneracy. Therefore,
much of the early research around 1950 by Alex Orden,
Philip Wolfe and myself at the Pentagon and by J. H.
Edmonson as a class exercise in 1951 and by A. Charnes in
1952 was concerned with what to do if a degenerate solu-
tion is encountered.
In the early 1950’s many areas which we collectively

call Mathematical Programming began to emerge. These
subfields grew rapidly with linear programming playing a
fundamental role in their development. A few words will
now be said about each of these.

Nonlinear Programming began around 1951 with the
famous Karush-Kuhn-Tucker Conditions which are related
to the Fritz-John Conditions (1948). In 1954, Ragnar Frisch
(who later received the first Nobel prize in economics) pro-
posed a nonlinear interior point method for solving lin-
ear programs. Earlier proposals such as those of von Neu-
mann and Motzkin can also be viewed as interior methods.
Later in the 1960’s, G. Zoutendijk, T. Rockafellar, P. Wolfe,
R. Cottle, Fiacco and McCormick, and others developed the
theory of nonlinear programming and extended the notions
of duality.

Commercial Applications were begun in 1952 by
Charnes, Cooper and Mellon with their (now classical)
optimal blending of petroleum products to make gasoline.
Applications quickly spread to other commercial areas and
soon eclipsed the military applications which started the
field.

Software—The Role of Orchard-Hays. In 1954,William
Orchard-Hays of the Rand Corporation, wrote the first
commercial-grade software for solving linear programs.
Many theoretical ideas such as ways to compact the inverse,
take advantage of sparsity, and guarantee numerical sta-
bility were first implemented in his codes. As a result
his software ideas dominated the field for many decades
and made commercial applications possible. The impor-
tance of Orchard-Hays’ contributions cannot be overstated
for it stimulated the entire development of the field and
transformed linear programming and its extensions from an
interesting mathematical theory into a powerful tool that
changed the way practical planning was done.

Network Flow Theory began to evolve in the early
1950’s. Flood, Ford and Fulkerson in 1954, Hoffman and
Kuhn in 1956 developed its connections to graph theory.
Recent research on combinatorial optimization benefited
from this early research.

Large-Scale Methods began in 1955 with my paper
“Upper Bounds, Block Triangular Systems, and Secondary
Constraints.” In 1959-60 Wolfe and I published our papers
on the Decomposition Principle. Its dual form was discov-
ered by Benders in 1962 and first applied to the solution
of mixed integer programs. It is now extensively used to
solve stochastic programs.
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Stochastic Programming began in 1955 with my paper
“Linear Programming under Uncertainty” (an approach
which has been greatly extended by R. J.-B. Wets in
the 1960’s and J. R. Birge in the 1980’s). Independently,
at almost the same time in 1955, E. M. L. Beale pro-
posed ways to solve stochastic programs. Important con-
tributions to this field have been made by A. Charnes
and W. W. Cooper in the late 1950’s using chance con-
straints, i.e., constraints which hold with a stated proba-
bility. Stochastic programming is one of the most promis-
ing fields for future research, one closely tied to large-
scale methods. One approach that the author, Peter Glynn
and Gerd Inflanger investigated (1990), combines Benders’
decomposition principle, with ideas based on importance
sampling and the use of parallel processors.

Integer Programming began in 1958 by R. E. Gomory.
Unlike the earlier work on the traveling salesman problem
by D. R. Fulkerson, S. M. Johnson and Dantzig, Gomory
showed how to systematically generate the ‘cutting’ planes.
Cuts are extra necessary conditions which when added to
an existing system of inequalities guarantee that the opti-
mization solution will solve in integers. Ellis Johnson of
IBM extended the ideas of Gomory. Egon Balas and many
others have developed clever elimination schemes for solv-
ing 0-1 covering problems. Branch-and-bound has turned
out to be one of the most successful ways to solve practi-
cal integer programs. The most efficient techniques appear
to be those which combine cutting planes with branch-and-
bound.

Complementary Pivot Theory was started around
1962–63 by Richard Cottle and Dantzig and greatly
extended by Cottle. It was an outgrowth of Wolfe’s method
for solving quadratic programs. In 1964 Lemke and How-
son applied the algorithm to bimatrix games. In 1965
Lemke extended the approach to other nonconvex pro-
grams. Lemke’s results represent a historic breakthrough
into the nonconvex domain. In the 1970’s, Scarf, Kuhn, and
Eaves extended this approach once again to the solving of
fixed point problems.

Computational Complexity. Many classes of computa-
tional problems, although they arise from different sources
and appear to have quite different mathematical statements
can be “reduced” to one another by a sequence of not-too-
costly computational steps. Those that can be so reduced
are said to belong to the same equivalence class. This
means that an algorithm that can solve one member of a
class can be modified to solve any other in the same equiv-
alence class. The computational complexity of an equiv-
alence class is a quantity which measures the amount of
computational effort required to solve the most difficult
problem belonging to the class, i.e., its worst case. A non-
polynomial algorithm would be one which requires in the
worst case a number of steps not less than some exponen-
tial expression like Lnm�n!�100n, where n and m refer to
the row and column dimensions of the problem and L to
the number of bits needed to store the input data.

Polynomial-Time Algorithms. For a long time it was not
known whether or not linear programs belonged to a non-
polynomial class called “hard” (such as the one the trav-
eling salesman problem belongs to) or to an “easy” poly-
nomial class (like the one that the shortest path problem
belongs to). In 1970, Victor Klee and George Minty created
an example that showed that the classical simplex algorithm
would require an exponential number of steps to solve a
worst-case linear program. In 1978, the Russian mathemati-
cian L. G. Khachian developed a polynomial-time algo-
rithm for solving linear programs. It is an interior method
using ellipsoids inscribed in the feasible region. He proved
that the computing time is guaranteed to be less that a poly-
nomial expression in the dimensions of the problem and
the number of digits of input data. Although polynomial,
the bound he established turned out to be too high for his
algorithm to be used to solve practical problems.
Karmarkar’s algorithm (1984) was an important

improvement on the theoretical result of Khachian that a
linear program can be solved in polynomial time. Moreover
his algorithm turned out to be one which could be used to
solve practical linear programs. At the present time (1990),
interior algorithms are in open competition with variants of
the simplex method. It appears likely that commercial soft-
ware for solving linear programs will eventually combine
pivot type moves used in the simplex methods with interior
type moves.

ORIGINS OF CERTAIN TERMS

Here are some stories about how various linear program-
ming terms arose. The military refer to their various plans
or proposed schedules of training, logistical supply and
deployment of combat units as a program. When I first ana-
lyzed the Air Force planning problem and saw that it could
be formulated as a system of linear inequalities, I called
my paper Programming in a Linear Structure. Note that the
term ‘program’ was used for linear programs long before
it was used as the set of instructions used by a computer.
In the early days, these instructions were called codes.
In the summer of 1948, Koopmans and I visited the

Rand Corporation. One day we took a stroll along the
Santa Monica beach. Koopmans said: “Why not shorten
‘Programming in a Linear Structure’ to ‘Linear Program-
ming’?” I replied: “That’s it! From now on that will be its
name.” Later that day I gave a talk at Rand, entitled “Linear
Programming”; years later Tucker shortened it to Linear
Program.
The term Mathematical Programming is due to Robert

Dorfman of Harvard, who felt as early as 1949 that the
term Linear Programming was too restrictive.
The term simplex method arose out of a discussion

with T. Motzkin who felt that the approach that I was
using, when viewed in the geometry of the columns,
was best described as a movement from one simplex
to a neighboring one. Mathematical programming is also
responsible for many terms which are now standard in
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mathematical literature, terms like Arg Min, Arg Max,
Lexico-Max, Lexico-Min. The term dual is an old math-
ematical term. But surprisingly the term primal is new
and was proposed by my father Tobias Dantzig around
1954 after William Orchard-Hays stated the need for a
word to call the original problem whose dual was such
and such.

SUMMARY OF MY OWN
EARLY CONTRIBUTIONS

If I were asked to summarize my early and perhaps my
most important contributions to linear programming, I
would say they are three:
(1) Recognizing (as a result of my wartime years as

a practical program planner) that most practical planning
relations could be reformulated as a system of linear
inequalities.
(2) Replacing the set of ground rules for selecting good

plans by an objective function. (Ground rules at best are
only a means for carrying out the objective, not the objec-
tive itself.)
(3) Inventing the simplex method which transformed the

rather unsophisticated linear-programming model of the
economy into a basic tool for practical planning of large
complex systems.
The tremendous power of the simplex method is a con-

stant surprise to me. To solve by brute force the assignment
problem (which I mentioned earlier) would require a solar
system full of nano-second electronic computers running
from the time of the big bang until the time the universe
grows cold to scan all the permutations in order to select
the one which is best. Yet it takes only a moment to find
the optimum solution using a personal computer and stan-
dard simplex or interior method software.
In retrospect it is interesting to note that the original

problem that started my research is still outstanding—
namely the problem of planning or scheduling dynami-
cally over time, particularly planning dynamically under
uncertainty. If such a problem could be successfully solved
it could (eventually through better planning) contribute to
the well-being and stability of the world.
By 1990, stochastic programming has become a very

exciting field of research and application with research

taking place in many countries. This active and difficult
field has already solved some important long term plan-
ning problems. I believe that progress depends on ideas
drawn from many fields. For example, our group at Stan-
ford is working on a solution method, which combines
the Nested Decomposition Principle, Importance Sampling,
and the use of parallel processors.
Prior to linear programming it was not practical to

explicitly state general goals and so objectives were often
confused with the ground rules for the solution. Ask a mil-
itary commander what the goal is and he would say, “The
goal is to win the war.” Upon being pressed to be more
explicit, a Navy man might say, “The way to win the war
is to build battleships,” or, if he is an Air Force general,
he might say, “The way to win is to build a great fleet of
bombers.” Thus the means to attain the objective becomes
the objective in itself, which in turn spawns new ground
rules as to how to go about attaining the means such as
how best to go about building bombers. These means in
turn become confused with goals.
From 1947 on, the notion of what is meant by a goal

has been adjusting to our increasing ability to solve com-
plex problems. As we near the end of the 20th Century,
planners are becoming more and more aware that it is pos-
sible to optimize a specific objective while, at the same
time, hedging against a great variety of unfavorable contin-
gencies which might happen and taking advantage of any
favorable opportunity that might arise.
The ability to state general objectives and then be able

to find optimal policy solutions to practical decision prob-
lems of great complexity is the revolutionary development
I spoke of earlier. We have come a long way to achieving
this goal but much work remains to be done, particularly in
the area of uncertainty. The final test will come when we
can solve the practical problems which originated the field
back in 1947.

This article originally appeared in History of Mathemati-
cal Programming: A Collection of Personal Reminiscences,
1991, J. K. Lenstra, A. H. G. Rinnooy Kan, and A. Schrij-
ver (eds.), Elsevier Science Publishers B.V., Amsterdam,
The Netherlands. Copyright is held by the author and is
reprinted here with his permission.


