Universidad de Chile Facultad de Ciencias Físicas y Matemáticas Departamento de Ingeniería Matemática MA2001-2 Cálculo en Varias Variables 2 de Junio de 2014

Clase Auxiliar 11: Convexidad.

Profesor: Aris Daniilidis.

Auxiliares: Daniel Contreras, Juan Pablo Donoso, Diego Gramusset, Donato Vásquez.

Propiedades útiles: Sea $f: C \subset X \to \mathbb{R}$, con X e.v.n., f una función convexa y C un conjunto convexo.

- f es convexa si y solo si epi(f) es un conjunto convexo.
- f es convexa, entonces $S_{\alpha}(f)$ es un conjunto convexo para $\alpha \in \mathbb{R}$.
- $\{C_{\alpha}\}_{{\alpha}\in\Lambda}$ familia de conjunto convexos, entonces $\bigcap_{{\alpha}\in\Lambda} C_{\alpha}$ es convexo.
- Los conjuntos C° y \overline{C} son convexos.
- Sea Y e.v., y $g:Y\to X$ lineal afín. Consideremos ahora $f:X\to\mathbb{R}$ convexa. Entonces $f\circ g$ es convexa.
- **P1.** (a) Sean X, Y dos e.v. y sea $C \subset X$ un conjunto convexo. Consideremos una aplicación afín $A: X \to Y$, esto es, que tiene la forma:

$$A(x) = f(x) + y_0$$

con $f: X \to Y$ una función lineal y $y_0 \in Y$. Entonces A(C) es convexo en Y.

- (b) Deduzca de lo anterior que, dados conjuntos convexos $S_1, S_2 \subset X$ y $\alpha \in \mathbb{R}$, $S_1 + S_2$ y αS_2 son conjuntos convexos.
- (c) Demuestre que, dado $C \subset X$ un conjunto convexo con interior no vacío, y los puntos $y \in C^{\circ}$ y $x \in C$, entonces $tx + (1-t)y \in C^{\circ}$, para $t \in (0,1)$. Deduzca de esto que $\overline{C} = \overline{C^{\circ}}$
- **P2.** (a) Sea X un e.v.n. Demuestre que $C \subset X$ es convexo si y solo si C contiene al conjunto de combinaciones convexas de elementos de C, esto es:

$$co(C) \doteq \left\{ \sum_{i=1}^k \alpha_i x_i : \sum_{i=1}^k \alpha_i = 1, x_i \in C, \alpha_i \ge 0, i = 1, \dots, k, \ k \in \mathbb{N} \right\} \subset C$$

(b) Sea $C \subset X$ convexo y $f: C \to \mathbb{R}$ una función convexa. Demuestre que, para $x = \sum_{i=1}^k \alpha_i x_i \in co(C)$ se tiene que:

$$f\left(\sum_{i=1}^{k} \alpha_i x_i\right) \le \sum_{i=1}^{k} \alpha_i f(x_i)$$

Esto último se le conoce como desigualdad de Jensen para sumatorias.

P3. Sea X e.v.n., y $A \subset X$ un conjunto cerrado de X no vacío. Recordamos la definición de la función distancia al conjunto A:

$$d_A(x) = \inf_{a \in A} ||x - a||$$

- (a) Demuestre que si A es convexo, entonces $d_A(\cdot)$ es convexa.
- (b) Recíprocamente, demuestre que si $d_A(\cdot)$ es convexa, entonces A es convexa.