MA1101-5. Introducción al Álgebra. Otoño 2014.

Profesor: José Soto

Auxiliares: Camilo Gómez Araya, Sélim Cornet.

Fecha: 3 de Julio 2014

Auxiliar Extra Examen II

P1

Sea $P \in \mathbb{C}[X]$.

- 1. Probar que P es sobreyectivo, si y soló si, $gr(P) \ge 1$. Hint: usar el teorema fundamental del álgebra.
- 2. En esta parte, probaremos que P es inyectivo, si y soló si, gr(P) = 1.
 - a) Demostrar que si gr(P) = 1, entonces P es inyectivo.
 - b) Probar que si gr(P) < 1, entonces P no es inyectivo.
 - c) Sea n > 1, sean $\lambda, a \in \mathbb{C}$, sea $Q \in \mathbb{C}[X]$ el polinomio definido por $Q(z) = \lambda (z a)^n$. Probar que existen $z_1, z_2 \in \mathbb{C}, z_1 \neq z_2$ tales que $Q(z_1) = Q(z_2) = \lambda$ y por lo tanto que Q no es inyectivo.. Hint: ocupar raíces de la unidad.
 - d) Concluir que si gr(P) > 1, entonces P no es inyectivo.

P2 (Examen, año 2010)

- 1. Sea $f: \mathbb{C} \to \mathbb{C}$ definida por $\forall z \in \mathbb{C}, f(z) = \overline{z}$. Probar que f es un isomorfismo entre $(\mathbb{C}, +, \cdot)$ y $(\mathbb{C}, +, \cdot)$.
- 2. Sea (G,*) un grupo, sea (H,*) un subgrupo de G. Dado $x \in G$, se define el conjunto $x*H = \{x*h, h \in H\}$.
 - a) Probar que para todo $x \in G, x * H = H \Leftrightarrow x \in H$.
 - b) Probar que para todo $y \in G \backslash H, (y * H) \cap H = \emptyset.$

P3 (Examen - año 2009)

Definimos en \mathbb{C} la relación \sim por:

$$z \sim x \Leftrightarrow (\exists n \in \mathbb{N}, n \leq \min(|z|, |w|) \land \max(|z|, |w|) < n+1)$$

- 1. Mostrar que \sim es una relación de equivalencia
- 2. Dibujar la clase de equivalencia del complejo 3-i en el plano complejo.
- 3. Demostrar que el conjunto cuociente \mathbb{C}/\sim es igual al conjunto $\{[ki]_{\sim}|k\in\mathbb{N}\}.$

P4 (Examen - año 2012)

1. Probar que:

$$\forall z \in \mathbb{C}, \left(z + \frac{1}{z} \in \mathbb{R} \Leftrightarrow (\operatorname{Im}(z) = 0 \lor |z| = 1)\right)$$

- 2. Determinar a, b reales de tal modo que 1 + i sea una solución de la ecuación $x^5 + ax^3 + b = 0$.
- 3. Resolver la ecuación $z^3 + i = 0$.

P5 (Examen - año 2013)

1. Calcular, para todo $n \in \mathbb{N}$, el valor de $\sum_{j=0}^{2n} \binom{2n}{j}$ y $\sum_{j=0}^{2n} (-1)^j \binom{2n}{j}$.

A partir de los resultados obtenidos, calcular $\sum_{k=0}^{2n} \binom{2n}{2k}$.

2. Sea $(a_n)_{n\in\mathbb{N}}$ una sucesión de números reales definida recursivamente por

$$a_0 = 1$$
 $\forall n \in \mathbb{N}, a_{n+1} = \frac{a_n}{n+1}$

- a) Probar que para todo $n \in \mathbb{N}, a_n \leq \frac{1}{2^{n-1}}$.
- b) Usar lo anterior para demostrar que $\sum_{k=0}^{n} a_k < 3$.

P6

Para todo $n \in \mathbb{N}$, se define el polinomio P_n por $P_n(x) = x^{2n} + x^n + 1$, y el polinomio Q por $Q(x) = x^2 + x + 1$. ¿Para qué valores de n se tiene que Q divide a P_n ?

P7

Se define en \mathbb{R}_+^* la relación $\mathcal R$ por:

$$x\mathcal{R}y \Leftrightarrow \exists n \in \mathbb{N}, y = x^n.$$

Probar que es una relación de orden. ¿Es orden total?