MA1101-5. Introducción al Álgebra. Otoño 2014.

Profesor: José Soto

Auxiliares: Camilo Gómez Araya, Sélim Cornet.

Fecha: 16 de Mayo 2014

Auxiliar 9 - Cardinalidad, estructuras algebraicas

Recordatorio

Sea A un conjunto no vacío. Una ley de composición interna es una función $*: A \times A, (x, y) \mapsto x * y$. Al par (A, *) se le llama estructura algebraica. Dada una estructura algebraica (A, *), se dice que su ley es

- asociativa si $\forall x, y, z \in A, (x * y) * z = x * (y * z).$
- conmutativa si $\forall x, y \in A, x * y = y * x$.

Si $e \in A$, se dice que e es:

- elemento neutro para * si $\forall x \in A, x * e = e * x = x$.
- absorbente si $\forall x \in A, x * e = e * x = e$.
- idempotente si e * e = e.

Además

- Si * tiene un neutro $e \in A$, dados $x, y \in A$, diremos que y es el inverso de x por * si x * y = y * x = e.
- \blacksquare Si tenemos dos leyes $*, \triangle$ en A, se dice que \triangle distribuye con respeto a * si

$$\forall x, y, z \in A, [x \triangle (y * z) = (x \triangle y) * (x \triangle z)] \land [(y * z) \triangle x = (y \triangle x) * (y \triangle z)]$$

 $\mathbf{P1}$

Sea \mathcal{D} el conjunto de todas las rectas no verticales que pasan por el punto (0,1). Demostrar que \mathcal{D} es infinito no numerable.

P2

Definimos la estructura algebraica $(\mathbb{R},*)$ por $\forall x,y \in \mathbb{R}, x*y = x+y-xy$.

- 1. Demostrar que * es una ley de composición interna asociativa y conmutativa.
- 2. Demostrar que * tiene elemento neutro y encontrarlo.
- 3. ¿Existen elementos invertibles? ¿Idempotentes? ¿Absorbentes?

P3

Definimos la estructura algebraica $(\mathbb{N}, *)$ por $\forall n, k \in \mathbb{N}, n * k = nk$ (concatenación). Por ejemplo, 2 * 4 = 24, 37 * 12 = 3712. Estudiar asociatividad, conmutatividad, existencia de neutro, existencia de elementos absorbentes e idempotentes.

P4 (Control 5 - año 2008)

Sea (S,*) una estructura algebraica con neutro e y * una ley asociativa. Para $a \in S$ fijo, invertible para * y con inverso $a^{-1} \in S$ se define la operación \triangle en S por:

$$\forall x,y \in S, x \bigtriangleup y = x*a*y.$$

- 1. Demostrar que \triangle es asociativa, tiene neutro y calcularlo.
- 2. Caracterizar los elementos invertibles para \triangle . En particular, probar que a es invertible y calcular su inverso.

P5

Sea $\mathcal{F} = \{f : \mathbb{N} \to \mathbb{R}, f \text{ es función}\}$. Se define en \mathcal{F} la ley de composición interna * por

$$\forall n \in \mathbb{N}, (f * g)(n) = \sum_{k=0}^{n} f(k)g(n-k).$$

- 1. Demostrar que * es conmutativa.
- 2. Demostrar que * tiene elemento neutro y encontrarlo.
- 3. Demostrar que * distribuye con respeto a + (suma de funciones).

P6 (Teorema de Cantor - Propuesto)

Sea A un conjunto no vacío cualquiera.

- 1. Demostrar que $|A| \leq |\mathcal{P}(A)|$.
- 2. Demostrar que la desigualdad es estricta, es decir que no existe ninguna biyección entre A y $\mathcal{P}(A)$ (en particular, una consecuencia de esto será que $\mathcal{P}(\mathbb{N})$ es infinito no numerable).

 Hint : Por contradicción, suponer que exista una tal biyección F, y dado $x \in A$ fijo, considerar $D = \{x \in A, x \notin F(x)\}$.