MA1101-5. Introducción al Álgebra. Otoño 2014.

Profesor: José Soto

Auxiliares: Camilo Gómez Araya, Sélim Cornet.

Fecha: 7 de Mayo 2014

Auxiliar 8 - Sumatorias Múltiples y Cardinalidad

Recordatorio

Definiciones Básicas

Dados A, B conjuntos no vacíos, diremos que tienen el **mismo cardinal** si $\exists f : A \longrightarrow B$ que sea biyectiva. En tal caso, |A| = |B|.

Si f es inyectiva, tendremos que $|A| \leq |B|$. Una consecuencia directa de lo anterior es $A \subseteq B \implies |A| \leq |B|$. Diremos que un conjunto es numerable, si y sólo si, tiene el mismo cardinal que \mathbb{N} . En cambio, un conjunto A se dirá infinito si su cardinal no es finito $(|A| \geq |\mathbb{N}|)$.

\blacksquare Formas de probar que un conjunto A es numerable.

- 1. Encontrar una biyección entre A y \mathbb{N} .
- 2. Encontrar una invección entre A y \mathbb{N} , y demostrar que A es infinito.
- 3. Demostrar que A es unión numerable (o finita) de conjuntos numerables.
- 4. Demostrar que $A \subseteq \mathbb{N}$ y que A es infinito.
- 5. Demostrar que A es producto cartesiano **finito** de conjuntos numerables.

Observación: Notar que todo esto sigue siendo válido, si cambiamos \mathbb{N} por cualquier otro conjunto numerable conocido, vale decir, \mathbb{Z} , \mathbb{Q} , $\mathbb{N} \times \mathbb{N}$, etc

Unión de Conjuntos

Sea I un conjunto de índices cualquiera, y consideremos $\{A_i\}_{i\in I}$ una colección de conjuntos indexada por I. Entonces su unión queda definido de la siguiente manera:

$$x \in \bigcup_{i \in I} A_i \iff (\exists i \in I) x \in A_i$$

En particular, nos interesarán uniones en que el conjunto I sea numerable.

Problemas

Sumatorias Múltiples

I. (P1 (b) Control 4, Año 2010)

Demuestre, sin usar inducción, que: $\sum_{j=1}^n \sum_{i=1}^j \sum_{k=0}^i \binom{i}{k} \binom{j}{i} \frac{2^{2i}}{3^j} = \frac{3^n-1}{2} \left[3 - \frac{1}{3^n} \right].$

II. (Apunte) Calcule, sin usar inducción:
$$\sum_{j=1}^{n} \sum_{i=1}^{j} \sum_{k=0}^{i} \binom{i}{k} \frac{8^{k+1}}{3^{i}}.$$

Numerabilidad

P1. Dado un conjunto probar que es numerable

- a) (P2 (iii) Control 2, Año 1998) Sea $A = \{x \in \mathbb{R} \mid (\exists k \in \mathbb{Z}) (\exists i \in \mathbb{N}) | x = \frac{k}{3^i} \}$. Pruebe que A es numerable.
- b) (P2 (b) Control 4, Año 2010) Se define el conjunto C por: $C = \{(m, n) \in \mathbb{Q} \times \mathbb{Z} \mid (m + n) \in \mathbb{Z}\}$. Demuestre que C es numerable.

P2. Dado que un conjunto es numerable, probar que otro es numerable

- a) (P2 (i) Control 2, Año 2001)
 Para todo $n \in \mathbb{N}$ se tiene una función $f_n : \mathbb{R} \longrightarrow \mathbb{R}$. Además, $f_1 = \mathrm{Id}_{\mathbb{R}}$. Sea $A \subseteq \mathbb{R}$ y $B = \{f_n(a) \mid a \in A, n \in \mathbb{N}\}.$ Pruebe que A es infinito numerable, entonces B es infinito numerable.
- b) (P1 (iii) Control 2, Año 2006) Sea A un conjunto infinito y $f: A \longrightarrow \mathbb{N}$ una función tal que:

$$(\forall n \in \mathbb{N}), f^{-1}(\{n\})$$
; es finito o numerable.

Demuestre que A es infinito numerable.

P3. Producto cartesiano finito de conjuntos numerables

- a) (P2 (b) Control 4, Año 2012)
 Demuestre que el conjunto de todos los triángulos cuyos vértices son elementos de $\mathbb{Q} \times \mathbb{Q}$ es numerable.
- b) (P1 (b) Control 4, Año 2011) Considere el conjunto $A \neq \phi$ y defina

$$\mathcal{F} = \{f : \{1, 2, 3\} \longrightarrow A \mid f \text{ es función}\}.$$

- i. Demuestre que $|\mathcal{F}| = |A \times A \times A|$. Indicación: Para $f \in \mathcal{F}$ considere la tupla (f(1), f(2), f(3)).
- ii. Demuestre que si A es numerable, entonces \mathcal{F} también es numerable.
- c) (Generalización P1 (b) Control 4, Año 2011) Sean C, D conjuntos no vacíos tales que C es finito y D infinito numerable. Sea:

$$\mathcal{F}(C,D) = \{ f : C \longrightarrow D \mid f \text{ es función} \}$$

Muestre que $\mathcal{F}(C,D)$ es infinito numerable.

Indicación: Recuerde que si A_1, A_2, \ldots, A_n son conjuntos numerables, entonces $A = A_1 \times A_2 \times \ldots \times A_n$ es numerable.

Propuesto

P Sea A un subconjunto no vacío de \mathbb{N} y sea \leq el orden usual de \mathbb{N} . Una función $f: \mathbb{N} \longrightarrow A$ se dice monótona si para todo $i \leq j$, se tiene que $f(i) \leq f(j)$.

Sea $\mathcal{F}_{\{0,1\}} = \{f : \mathbb{N} \longrightarrow \{0,1\} \mid f \text{ es una función monótona}\}.$

Demuestre que $\mathcal{F}_{\{0,1\}}$ es un conjunto numerable.