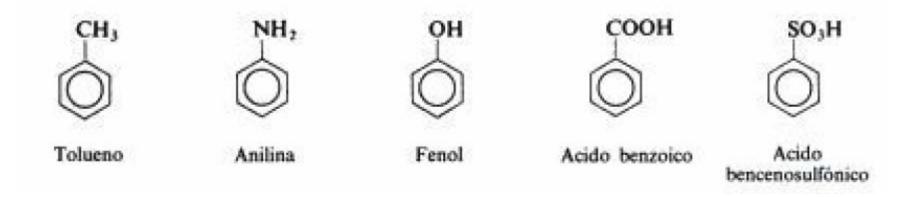


IQ3204 — Química Orgánica Semestre Otoño 2014

Clase Auxiliar N°4

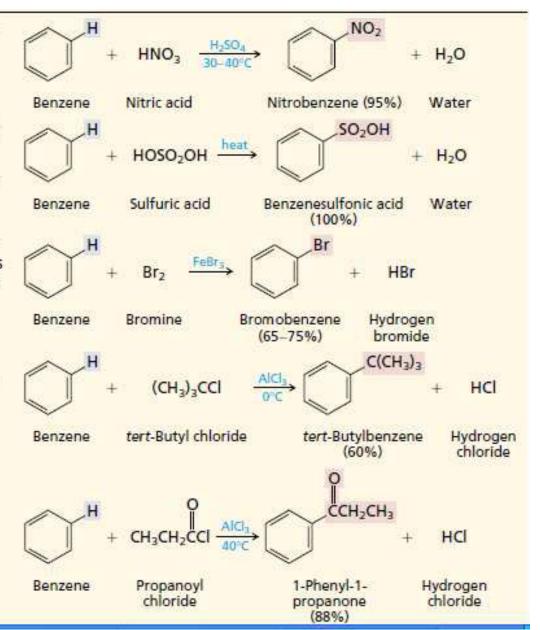

Anillo Bencénico Sustitución Electrofílica Aromática Ejercicios

Profesores: Raúl Quijada, Teresa Velilla

Profesor Auxiliar: Moisés Gómez

Sustituyentes en Anillo:

• Ciertos nombres IUPAC cambian con los sustituyentes.



Di-Sustiuciones:

- Sumado a lo que solíamos hacer antes, ahora no sólo identificaremos los sustituyentes.
- La posición relativa también variará el nombre del compuesto final.
- De este modo se obtienen las configuraciones orto-metapara:
- Se abrevian con los sufijos o-; m-; p-.

- Nitration Warming benzene with a mixture of nitric acid and sulfuric acid gives nitrobenzene. A nitro group (—NO₂) replaces one of the ring hydrogens.
- Sulfonation Treatment of benzene with hot concentrated sulfuric acid gives benzenesulfonic acid. A sulfonic acid group (—SO₂OH) replaces one of the ring hydrogens.
- 3. Halogenation Bromine reacts with benzene in the presence of iron(III) bromide as a catalyst to give bromobenzene. Chlorine reacts similarly in the presence of iron(III) chloride to give chlorobenzene.
- Friedel-Crafts alkylation Alkyl halides react with benzene in the presence of aluminum chloride to yield alkylbenzenes.
- Friedel–Crafts acylation An analogous reaction occurs when acyl halides react with benzene in the presence of aluminum chloride. The products are acylbenzenes.

Efectos de los Grupos Sustituyentes:

- Cualquier grupo unido al anillo, afectará la orientación y reactividad del complejo.
- Grupos que vuelven la estructura grupo-anillo más reactiva son "grupos activantes". Efecto contrario "desactivante" (rapidez de rxn.).
- Un grupo ya unido al anillo determina la orientación de la siguiente sustitución:
 - Directores orto-para.
 - Directores meta.

Reactividad y Orientación:

- Esto incumbe únicamente con velocidades relativas de reacción.
- La etapa lenta, determina rapidez de reacción (ataque).
- El carbocatión de formación más rápida es el más estable. Su estabilidad viene dada por la dispersión de carga (+).
- Un grupo afecta la estabilidad del carbocatión por su naturaleza electrónica.
 - Entregar electrones.
 - Recibir electrones.
- Grupos que liberan electrones, activan el anillo.
- Grupos que reciben electrones, lo desactivan.

Reactividad y Orientación:

Reactividad y Orientación:

- Caso particular:
 - Desactivadores directores orto-para
 - Halógenos, ya que crean una cuarte estructura resonante.

carga sobre carbono

con sustituyente

cada átomo tiene

octeto

Clasificación:

• Existen clasificaciones para los grupos sustituyentes.

Tabla 14.3 EFECTO DE GRUPOS EN LA SUSTITUCIÓN ELECTROFÍLICA AROMÁTICA

Activantes: directores orto-para	Desactivantes: directores meta
Activantes poderosos	-NO ₂ -N(CH ₃) ₃ * -CN -COOH (-COOR) -SO ₃ H -CHO, -COR
-NH ₂ (-NHR, -NR ₂) -OH	
Activantes moderados	
-OCH ₃ (-OC ₂ H ₅ , etc.) -NHCOCH ₃	
Activantes débiles	Desactivantes: directores orto-para
$-C_6H_5$ $-CH_3(-C_2H_5, etc.)$	-F, -Cl, -Br, -1

Teoría de la Orientación:

- En conocimiento de la tabla anterior es posible entender la siguiente teoría, con ejemplos.
- El grupo metilo es electrón donante.
- Este efecto lo siente el carbono más cercano.
- Analicemos los ataques:

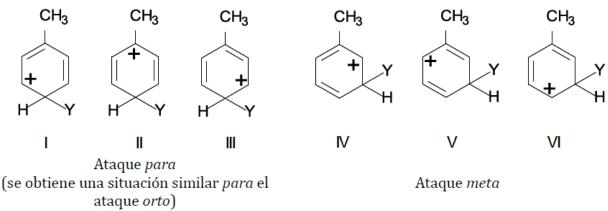
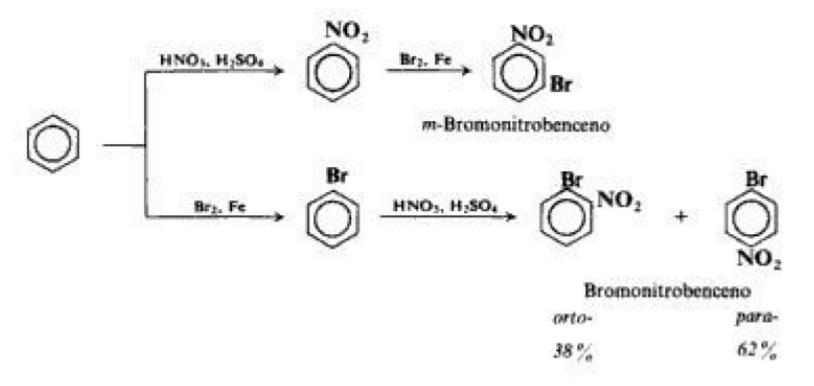
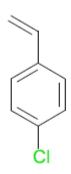


Figura 4. Ataque para y meta a Tolueno.


Teoría de la Orientación:

- En cambio, el grupo -NO2 es electrón atrayente.
- A él no le gusta que haya una carga positiva cerca, por ende es orientador meta..

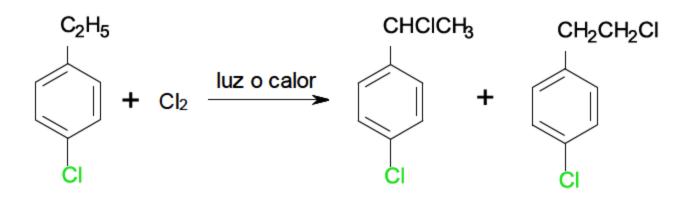
Ejemplos


Orientación y Síntesis:

- Claramente, dado lo visto, importará el orden de las etapas para obtener un producto final.
- Sintetice m-Bromonitrobenceno, p-Bromonitrobenceno y m-Bromonitrobenceno.

Ejemplos:

• A partir de benceno, sintetice p-cloroestireno:

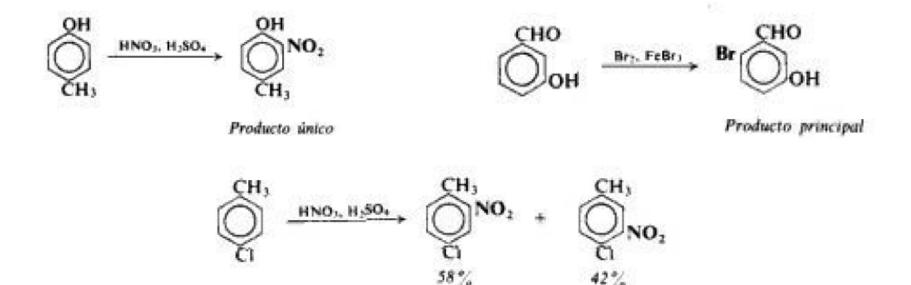

Paso 1: Alquilación de Friedel-Crafts

 $El\ R\ corresponde\ a\ C_2H_5$

Paso 2: "Ingreso" de Cl al anillo

De alguna forma hay que elegir el compuesto para.

Paso 3: "Ingreso" de Cl a la cadena alifática



Paso 4: Deshidrohalogenación

Orientación de bencenos di-sustituidos.

- En caso de que hayan 2 grupos ya instalados en el anillo:
 - Ganan activantes poderosos, sobre desactivantes.

$$-NH_2$$
, $-OH > -CH_3$, $-NHCOCH_3 > -C_6H_5$, $-CH_3 >$ directores $meta$

