
Problema Control 2

Prof. C. Romero

13 de Mayo de 2014

 \P 1. En la figura se muestra una disposición de masas M_1, M_2 y M_3 en contacto con superficies sin roce.

- a) ξ Qué fuerza F hay que aplicar a M_1 de manera mantener a la masa M_3 a la misma altura?
- b) ¿ Qué valor tiene la aceleración del sistema justo después que se corta la cuerda?

Solución.

a) Para que M₃ permanezca a la misma altura es necesario que la aceleración de M₂ sea igual a la aceleración de M₁. La aceleración de M₃ en la dirección de la fuerza aplicada obligatoriamente es igual a la aceleración de M₁. Luego, las tres masas se mueven como un todo en la dirección horizontal:

$$F = (M_1 + M_2 + M_3) a (1)$$

Por otra parte, se cumple que:

$$T = M_2 a$$

$$T = M_3 g \quad \text{equilibrio en la dirección vertical}$$
 Entonces:
$$a = \frac{M_3 g}{M_2}$$
 (2)

Luego:

$$F = \frac{(M_1 + M_2 + M_3) M_3 g}{M_2} \tag{3}$$

b) Cuando la cuerda se corta, la aceleración de M_2 es nula. El cuerpo de masa M_3 tiene aceleración vertical g, hacia abajo y aceleración horizontal, igual a la aceleración horizontal de M_1 . La fuerza F sigue siendo la calculada en la parte a). Consecuentemente, la aceleración horizontal de las masas M_1 y M_3 es:

$$a = \frac{F}{M_1 + M_3} \tag{4}$$