

FI1001-2 - Introducción a la Física

Newtoniana

Profesor: Andrés Escala

Otoño 2014

## Clase Auxiliar 1

Tema: Geometría y Cinemática en una dimensión

Auxiliares: Camilo Levenier, Diego Campanini & Gonzalo Pizarro 25 de marzo de 2014

P1 Considerando los problemas de describir la posición de una partícula que se mueve sobre un cilindro y sobre un casquete esférico como lo muestran las figuras 1 y 2 respectivamente:

(a) Demostrar que la descomposición del vector  $\rho$  en sus componentes x,y,z es:

 $x = \rho cos(\phi)$ 

 $y = \rho sin(\phi)$ 

z = z

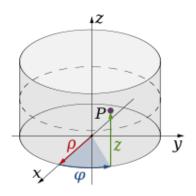



Figura 1: Coordenadas cilíndricas

(b)Demostrar que la descomposición del vector r en sus componentes x,y,z es la siguiente:

 $x = rsin(\theta)cos(\phi)$ 

 $y = rsin(\theta)sin(\phi)$ 

 $z = rcos(\theta)$ 

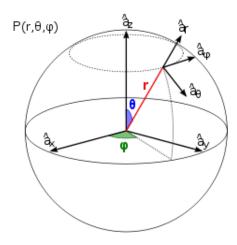



Figura 2: Coordenadas esféricas y vectores unitarios

- **P2** Un observador suelta una piedra en un pozo profundo. El sonido de la piedra al impactar el fondo del pozo se escucha después de un tiempo  $t_o$ . Determinar:
  - (a) La profundidad del pozo considerando que el retardo del sonido es despreciable.
  - (b) La profundidad del pozo considerando que la velocidad del sonido es  $v_s$
- **P3** Se deja caer una pelota desde una altura h. La pelota, cada vez que choca contra el suelo, rebota con una rapidez igual a aquella con la cual llegó al suelo multiplicada por  $\alpha$ , con  $\alpha$  perteneciente al intervalo (0,1). Encontrar:
  - (a)La altura que alcanza la pelota después del primer rebote.
  - (b)La altura que alcanza después del segundo rebote.
  - (c)La altura que alcanza después del k-ésimo rebote.
  - (d) La distancia total recorrida desde que se soltó la pelota hasta el k-ésimo rebote
  - (e)La distancia total recorrida por la pelota hasta que se detiene (considerar  $k \to \infty$  en la expresión anterior)

$$Hint: \sum_{k=m}^{n} r^k = \frac{r^{n+1} - r^m}{r - 1} \tag{1}$$