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1. Introduction

Traffic congestion is one of the major liabilities of modern life. It is a price that
people pay for the various benefits derived from agglomeration of population and
economic activity. Because land is scarce and road capacity is expensive to
construct, it would be uneconomical to invest in so much capacity that travel were
congestion-free. Indeed, because demand for travel depends on the cost,
improvements in travel conditions induce people to take more trips, and it would
probably be impossible to eliminate congestion.

Transportation researchers have long struggled to find satisfactory ways of
describing and analyzing congestion, as evident from the large number of often
competing approaches and models that have been developed. Early researchers
hoped to develop models based on fluid dynamics that would not only be accurate,
but also universally applicable. However, unlike fluid flow, congestion is not a
purely physical phenomenon, but rather is the result of peoples’ trip-making
decisions and minute-by-minute driving behavior. One should therefore expect
the quantitative – if not also the qualitative – characteristics of congestion to vary
with automobile and road design, rules of the road, pace of life, and other factors.
Models calibrated in a developed country during the 1960s, for example, may not
fit well a developing country at the beginning of the 21st century.

Congestion in transportation is, of course, not limited to roads: it is also a
problem at airports and in the airways, at harbors, on railways, and for travelers on
bus and subway networks. For modeling purposes useful parallels can often be
drawn between traffic congestion and congestion at other facilities. But given
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space constraints, and in the interest of maintaining focus, attention is limited in
this chapter to road-traffic congestion. Broadly speaking, traffic congestion occurs
when the cost of travel is increased by the presence of other vehicles, either
because speeds fall or because greater attention is required to drive safely. Traffic
engineering is largely concerned with traffic congestion and safety, and it should
therefore be no surprise that traffic-flow theory will feature prominently in this
chapter.

Traffic congestion can be studied either at a microscopic level, where the
motion of individual vehicles is tracked, or at a macroscopic level, where vehicles
are treated as a fluid-like continuum. Queuing theory is a form of microscopic
analysis. But most of the literature on queuing is of limited relevance because it
focuses on steady-state conditions (which rarely prevail in traffic) and on
stochastic aspects of individual customer or traveler arrival and service times
(which are arguably of secondary importance, except at junctions, for traffic flows
heavy enough to cause congestion) (Hurdle, 1991). Queuing theory thus will not
be treated here. Car-following theory is another form of microscopic analysis that
will be mentioned. Macroscopic analysis will nevertheless occupy the bulk of
attention.

This chapter is organized as follows. Section 2 concerns the modeling of
homogeneous traffic flow and congestion on an isolated road under stationary
conditions. It also sets up the supply–demand framework used to characterize
equilibrium and optimal travel volumes. Section 3 provides an overview of
macroscopic and microscopic models of non-stationary traffic flow. It then
describes how trip timing can be modeled, and discusses the essence of dynamic
equilibrium. Section 4 reviews the principles of static and dynamic equilibrium on
a road network in a deterministic environment, and then identifies equilibrium
concepts that account for stochasticity in demand and capacity. Section 5
addresses conceptual and practical issues regarding congestion pricing and
investment on a network. Finally, Section 6 concludes.

2. Time-independent models

Time-independent models of traffic congestion serve as a stepping stone toward
the development and understanding of more complicated and realistic time-
dependent models. They may also provide a reasonable description of traffic
conditions that evolve only slowly. Such traffic is sometimes called “stationary”,
although a precise definition of “stationary” is rather difficult (Daganzo, 1997).

Traffic streams are described by three variables: density k (vehicles per lane per
kilometer), speed v (km/h), and flow q (vehicles per lane per hour). At the
macroscopic level these variables are defined under stationary conditions at each
point in space and time, and are related by the identity q = kv. Driver behavior
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creates a second functional relationship between the three variables that can be
shown by plotting any one variable against another. Figure 1(a) depicts a speed–
density curve, dubbed the fundamental diagram of traffic flow (Haight, 1963).
Although studied for decades (for a literature review see May (1990)),
understanding about the shape of this curve continues to evolve, as evidenced by
changes to the third edition of the venerable U.S. highway capacity manual
(Transportation Research Board, 1992). The precise shape on a given road
segment depends on various factors (Roess et al., 1998, Chapters 10 and 21).
These include the number and width of traffic lanes, grade, road curvature, speed
limit, location vis-à-vis entrance and exit ramps, weather, mix of vehicle types,
proportion of drivers who are familiar with the road, and idiosyncrasies of the
local driving population.

For safety reasons speed usually declines as density increases. Nevertheless, on
highways speeds tend to remain close to the free-flow speed vf, up to flows of
1000–1300 vehicles per lane per hour. At higher densities the speed–density curve
drops more rapidly, passing through the point (k0, v0) at which flow reaches a
maximum q0 = k0, v0, and reaching zero at the jam density kj, where speed and flow
are both zero. Speed–flow and flow–density curves corresponding to the speed–
density curve in Figure 1(a) are shown in Figure 1(b) and 1(c), respectively. Note
that any flow q¢ < q0 can be realized at either a low density and high speed (kL, vL),
or at a high density and low speed (kH, vH). Economists refer to the upper branch
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of the speed–flow curve as congested and to the lower branch as hypercongested. In
the engineering literature the upper branch is variously referred to as uncongested,
unrestricted, or free flow, and the lower branch as congested, restricted, or queued.
The term “queued” is apposite for the hypercongested branch in that queuing
usually occurs in this state (see Section 3). But congestion also occurs on the upper
branch whenever speed is below the free-flow speed. For this reason, the
economics terminology will be used here.

Following Walters (1961), the speed–flow curve can be used for economic
analysis by interpreting flow as the quantity of trips supplied by the road per unit
of time. A trip-cost curve can be generated of the form C(q) = c0 + αL/v(q),
where α is the unit cost of travel time, L is trip distance, v(q) is speed expressed in
terms of flow, and c0 denotes trip costs other than in-vehicle travel time, such as
monetized walk access time and fuel costs (if these costs do not depend on
congestion). The trip-cost curve (Figure 2) has a positively sloped portion
corresponding to the congested branch of the speed–flow curve, and a negatively
sloped backward-bending portion corresponding to the hypercongested branch. A
flow of q¢ can be realized at a cost CL on the positively sloped portion, as well as at a
higher cost CH on the negatively sloped portion. Because the same number of trips
is accomplished, the latter outcome is inefficient.

If flow is also interpreted to be the quantity of trips “demanded” per unit of
time, then a demand curve p(q) can be combined with C(q) to obtain a supply–
demand diagram. Candidate equilibria occur where p(q) and C(q) intersect. In
Figure 2 there are three intersection points x, y and z, with flow congested at x and
hypercongested at y and z. There has been a heated debate in the literature (for
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reviews and recent contributions to this debate see Chu and Small (1997), Verhoef
(1999), and McDonald et al. (1999)) about whether hypercongested equilibria are
stable, and also whether it makes sense to define the supply and demand for trips
in terms of flow. The emerging view seems to be that hypercongestion is a
transient phenomenon that can be properly studied only with dynamic models
(see Section 3).

For economic analysis (e.g., Button, 1992), it is common to ignore the
hypercongested branch of the speed–flow curve and to specify a functional form
for C(q) on the congested branch directly, rather than beginning with a speed–
density function and then deriving C(q). Given C(q), the socially optimal usage of
the road and the congestion toll that supports it can be derived, as shown in
Figure 3. As in Figure 2, the unregulated equilibrium flow qE occurs at point E, the
intersection of C(q) and p(q). Now, since “external benefits” of road use are not
likely to be significant (benefits are normally either purely internal or pecuniary in
nature), p(q) specifies both the private and the marginal social benefit of travel.
Total social benefits can thus be measured by the area under p(q). Analogously,
C(q) measures the cost to the traveler of taking a trip. If external travel costs other
than congestion, such as air pollution or accidents, are ignored, then C(q)
measures the average social cost of a trip. The total social cost of q trips is then
TC(q) = C(q) q, and the marginal social cost of an additional trip is
MSC(q) = f TC(q)/f q = C(q) + q ∂C(q)/∂q.

The socially optimal number of trips q* occurs in Figure 3 at point F where
MSC(q) and p(q) intersect. The optimum can be supported as an equilibrium if
travelers are forced to pay a total price of p* = MSC(q*). Because the price of a
trip is the sum of the individual’s physical travel cost and the toll p = C(q) + τ, the
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requisite toll is τ* = MSC(q*) – C(q*) = q* ∂C(q*)/∂q, where q* ∂C(q*)/∂q is the
marginal congestion cost imposed by a traveler on others. This toll is known as a
Pigouvian tax, after its spiritual father Pigou (1920).

Imposition of the toll raises social surplus by an amount equal to the shaded
area FGE in Figure 3. Nevertheless, travelers end up worse off if the toll revenues
are not used to benefit them. The q* individuals who continue to drive each suffer
a loss per trip of p* – pE, resulting in a collective loss equal to area HIFJ, and the
qE – q* individuals who are priced off the road, either because they switch to
another mode or give up traveling, suffer a collective loss equal to area JFE. These
losses are the root of the long-standing opposition to congestion tolling in road
transport. Transportation analysts and planners are now trying to devise ways of
spending toll revenues so as to improve the acceptability of pricing (Small, 1992b).

3. Time-dependent models

Time-dependent or dynamic traffic models allow for changes in flow over time as
well as over space. The most widely used dynamic macroscopic model is the
hydrodynamic model developed by Lighthill and Whitham (1955) and Richards
(1956) (the LWR model) (for a review see Daganzo (1997)). The essential
assumption of the LWR model is that the relationship in stationary traffic between
speed and density, shown in Figure 1, also holds under non-stationary conditions.
The model is completed by imposing the condition that vehicles are neither
created nor destroyed along the road. If x denotes location and t time, and if the
requisite derivatives exist, this results in a partial differential equation, ∂q(t, x)/
∂x + ∂k(t, x)/∂t = 0, known as the conservation equation. In cases where q and k
are discontinuous, and therefore not differentiable, a discrete version of the
conservation equation still applies, as shown in the following example.

To illustrate how the LWR model behaves, suppose that traffic on a roadway is
initially in a congested stationary state A with density kA, speed vA, and flow qA, as
shown in Figure 4(a). Inflow at the entrance then falls abruptly from qA to qB,
moving traffic to a new state B at another point on the same flow–density curve.
State B will propagate downstream as a shock wave with some speed wAB. Vehicles
upstream in state B catch up to the shock wave at a speed vB – wAB, and thus leave
state B at a flow rate (vB – wAB)kB. Given conservation of vehicles, this must match
the rate at which they enter state A: (vA – wAB)kB. Equating the two rates, and
recalling that qi = kivi, i = A, B, one obtains wAB = (qA – qB)/(kA –kB). This wave
speed corresponds to the slope of a line joining states A and B on the flow–density
curve in Figure 4(a). The wave speed is slower than the speed of vehicles in either
state, vA and vB.

The trajectories of representative individual vehicles in this thought experiment
are shown by arrows in the time–space diagram (Figure 4(b)). Prior to the change
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in inflow, vehicles are moving to the north-east at speed vA. If the time and
location axes are scaled appropriately, vehicle trajectories have the same slope as
vehicle speeds in Figure 4(a). At time t0 the inflow falls to qB, and the trajectories
of incoming vehicles increase in slope to vB. As vehicles reach the shock wave,
shown by the thicker line extending north-east from point (t0, 0), they slow down to
vA. Because vehicles slow down instantaneously, their trajectories are kinked
where they cross the shock wave. Thus, throughout the time–space diagram
vehicles are either traveling at speed vA in traffic of density kA, or at speed vB in
traffic of density kB. Intermediate densities and speeds never develop in this
particular thought experiment. Note, finally, that the horizontal spacing between
vehicle trajectories is greater in state B than in state A because qB < qA.

A discrete version of the conservation equation can be derived by referring to
the small rectangle with length ∆t and height ∆x, shown by dashed lines in Figure
4(b). The number of vehicles entering the rectangle from side eg(qB ∆t) and side
ef(kA ∆x) must equal the number exiting from side fh(qA ∆t) and side gh(kB ∆x).
This gives (qB – qA)∆t + (kA – kB)∆x, or ∆q/∆x + ∆k/∆t = 0, where ∆q … qB – qA

and ∆k … kA – kB because the density changes from kB to kA when moving
downstream across the wave boundary.
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The shock wave in this example is a forward-recovery shock wave because it signals
a reduction in density that propagates downstream. If the transition were in the
opposite direction, from B to A, a forward-forming shock wave would result,
conveying an increase in density downstream with a speed wBA = (qB – qA)/(kB – kA)
that is the same as wAB. In contrast to the situation depicted in Figure 4(b), vehicles
would have the higher speed vB to the north-west of the shock wave, and the lower
speed vA to the south-east. Vehicles would accelerate upon crossing the shock wave
in response to the reduction in density from kA to kB.

Finally, consider a transition from state C in Figure 4(a) to state B. Because a
line (not shown) joining B and C on the flow–density curve has a negative slope, a
backward-forming shock wave would result that propagates upstream of the
roadway entrance. Several other types of shock wave are also possible (see May,
1990, Section 7.4 and Chapter 11).

Shock-wave analysis is useful for studying discrete changes in traffic conditions
such as temporary capacity reductions. But the accuracy of shock-wave analysis is
limited by the assumption of the LWR model that a given speed–density
relationship holds exactly at each point in time and space, regardless of what
conditions drivers may have recently encountered, or what conditions they may
anticipate by looking ahead. Moreover, the LWR model assumes that vehicles
can adjust speed instantaneously; i.e., with (physically impossible) infinite
acceleration or deceleration, as manifest in Figure 4(b) by the kinks in vehicle
trajectories at the shock-wave boundary. The LWR model also does not account
for differences between drivers in desired speed that create incentives to pass.
And the model cannot explain instabilities in traffic flow such as stop-and-go
conditions (Daganzo, 1997, Section 4.4.6).

A further drawback of the LWR model is that deriving a solution, either using
shock-wave diagrams or analytically using the speed–density relationship and
conservation equation, is tedious on inhomogeneous roadways or when inflow
varies continuously over time. For the sake of tractability, various simplifications
of the model have been formulated, three of which are mentioned below.

One simplification, widely used for analyzing bottlenecks and called the
bottleneck model here, is to assume that the congested branch of the speed–flow
curve at the bottleneck is horizontal up to maximum flow or capacity s. If the
incoming flow exceeds s, traffic flows through the bottleneck at rate s, and the
excess flow accumulates in the form of a queue propagating upstream as a
backward-forming shock wave. Some recent empirical evidence (e.g., Cassidy and
Bertini, 1999) indicates that discharge rates from bottlenecks fall after queue
formation and then partially recover. The constant-flow assumption nevertheless
appears to serve as a reasonable approximation to observed behavior.

An example of queue evolution in the bottleneck model is shown in Figure 5.
Curve D(t) denotes the cumulative number of vehicles that have passed or
departed the bottleneck since some initial reference time. Curve A(t) denotes the
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number of vehicles that have arrived at the tail of the queue upstream. (This
terminology is not universal; some of the literature refers to the curve here
labelled A(t) as cumulative departures from the origin, and to the curve here
labelled D(t) as arrivals at the destination.) Prior to time t0 the arrival flow is less
than s, so that no queue forms and D(t) and A(t) coincide. Between t0 and te a
queue exists. The vertical distance Q(t) between A(t) and D(t) measures the
number of vehicles in the queue at time t. The horizontal distance Q(t)/s measures
time spent queuing by a vehicle that arrives at time t. Total queuing time for all
vehicles is simply the area between A(t) and D(t).

Cumulative-count diagrams such as Figure 5 are commonly used to predict
queues caused by scheduled maintenance or accidents. They can trace the growth
and decay of several queues in sequence, and can deal with situations in which the
capacity of the bottleneck changes, or depends on the length of the queue, so that,
unlike in Figure 5, D(t) is non-linear. Such diagrams can describe the impact of a
“moving bottleneck” such as a slowly moving truck (Gazis and Herman, 1992).

One frequently overlooked fact is that queues are not dimensionless points, but
rather occupy (sometimes kilometers of) road space, and relatedly that vehicles in
the queue are not stationary but moving slowly forward. Vehicles arriving at the
location of the tail of a queue would take time to reach the bottleneck, even with
no queue present. Individual-vehicle delay is thus less than Q(t)/s, and total delay
is less than the area between A(t) and D(t). Because travel costs are generally
assumed to depend on delay, rather than queuing time per se, failure to account for
the physical length of queues can lead to an overestimate of travel-time losses.
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Accounting for the length of queues is also important if queues can spill back and
block upstream junctions, or entry and exit ramps. Still, for some purposes it is
unnecessary to keep track of the physical length of queues, and models of
networks (see Section 4) sometimes work with so-called vertical queues.

A second variant of the LWR model, hinted at by Walters (1961, p. 679) and
adopted by Henderson (1977), embodies the assumption that on uniform
roadways a vehicle travels at a constant speed determined by the speed–density
curve and the density prevailing when the vehicle enters. This means that shock
waves travel at the same speed as vehicles and therefore never influence other
vehicles. We call this here the no-propagation model. One problem with this model
is that a vehicle departing under low-density conditions may catch up with and
overtake a vehicle that departed earlier when the density was higher. Yet
overtaking is not allowed in the original LWR model, has no behavioral
foundation if drivers and vehicles are identical, and is likely to be impossible
anyway when congestion is heavy.

A third variant of the LWR model, here called the instantaneous propagation
model, was adopted by Agnew (1977) and Mahmassani and Herman (1984). It
entails the assumption that density (and hence speed) remains uniform along the
roadway. An increase in input flow, for example, is immediately absorbed by an
equal increase in density everywhere along the road. This implies that shock waves
propagate with infinite speed, and relatedly that vehicles can be affected by traffic
behind them, contrary to what is assumed in other traffic-flow models. While the
instantaneous propagation model is unrealistic, it has been adopted for individual
links or road segments in some network models (see Section 4). Instantaneous
propagation may be descriptive of congestible facilities such as computers, where
there is no spatial analog of distance and where speed or time of service does not
depend on order of entry into the system.

We now turn our attention briefly to microscopic models that treat vehicles as
discrete entities, rather than elements of a continuum. Microscopic models are
used to describe traffic behavior on lightly traveled roads where passing and lane
changing are possible. Such models predict that, consistent with what is observed,
the congested branch of the speed–flow curve is horizontal at zero flow. This is
because in very light traffic a vehicle can almost always pass another vehicle
without delay, while if it is delayed it is usually due to a conflict with just one other
vehicle (see Daganzo, 1997, Section 4.2.3).

Microscopic models are also useful for tracking the progress of vehicles along
heavily congested roads, through signalized or non-signalized intersections, and
on networks. For example, May et al. (1999) use a microsimulation computer
model to generate aggregate speed–flow relationships for an area. Such
relationships can be combined with demand curves to predict traffic volumes,
either as stationary equilibria or on a temporally disaggregated basis, as in Chu
and Small (1997).
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A widely used class of microscopic models are car-following models, which were
developed in the 1950s and 1960s. Such models usually describe the motion of
vehicle n + 1 (the “follower”) in a traffic stream as a function of the motion of
vehicle n (the “leader”) immediately ahead. A relatively general formulation (see
May, 1990, Section 6.2) is given by the differential equation:

(1)

where x denotes location, one dot a first derivative, two dots a second derivative,
∆t a reaction-time lag, and c, l and m are non-negative parameters. The left-hand
side of eq. (1) is the response of the follower in terms of lagged acceleration. The
right-hand side is the stimulus, which is an increasing function of the follower’s
speed, a decreasing function of the distance to the leader, and proportional to the
difference in the two vehicles’ speeds. Eq. (1) describes stable behavior if a small
perturbation in the speed of one vehicle in the stream is attenuated as it
propagates along the chain of vehicles that follow, so that safe headways between
vehicles are maintained. Stability turns out to prevail if the product c ∆t is not too
large; i.e., if responses are rapid (small ∆t) but gentle (small c).

Under stationary traffic conditions, car-following models imply a relationship
between density (the inverse of vehicle spacing) and speed that can be described
by the LWR or other macroscopic model. But car-following models are more
realistic in recognizing that vehicles accelerate or decelerate at finite rates, and
drivers react with time lags. Such models can also specify the response of a vehicle
to the motion of vehicles two or more positions ahead in the traffic stream, in
recognition of the fact that drivers may look at traffic conditions well downstream
to give themselves more time to react. Under rapidly changing traffic conditions,
where the LWR model may fail to perform adequately, a car-following model with
the same stationary behavior can be used instead.

Both macroscopic and microscopic models are being used to address various
traffic-flow and congestion phenomena that await definitive treatments. Phase
transitions are one alleged phenomenon whereby free-flowing traffic can
spontaneously break down for no obvious reasons and persist in a self-maintained
congested state for long periods (Kerner and Rehborn, 1997). Such behavior –
which is disputed (Daganzo et al., 1999) – poses a challenge to traffic managers
seeking to maintain smoothly flowing traffic.

Hypercongestion is another phenomenon that has attracted attention since the
work by Walters (1961). Hypercongestion routinely occurs on non-uniform
roadways. As described above, it occurs in queues upstream of a saturated
bottleneck. One question under debate is whether hypercongestion is possible on
a uniform roadway that has no intermediate entrances and is not initially
hypercongested. As Newell (1988) observes, it cannot happen in the LWR model.
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To see this heuristically, note first that inflow at the entrance cannot exceed the
maximum flow q0 (see Figure 1) so that hypercongestion cannot develop from
upstream. Now consider a platoon of vehicles traveling at flow q0 and
corresponding density k0. In order for these vehicles to experience
hypercongestion they must encounter a shock wave from higher density traffic
downstream. But this cannot happen because there is no hypercongestion on the
road initially.

Another question is how to model hypercongestion on a realistic city network.
Chu and Small (1997) address this using two versions of a model of a spatially
homogeneous urban commuting corridor. The first version adopts the
instantaneous propagation model and assumes a constant and exogenous inflow
of vehicles. Hypercongestion develops when the inflow exceeds the capacity of the
corridor for long enough. While an inflow exceeding capacity is impossible on
an isolated road according to the LWR model, it is possible if, as Chu and
Small assume, there are intermediate entrances along the route. The second
version of their model features endogenous inflow (discussed below). Again,
hypercongestion can occur.

Low speeds and flows, characteristic of hypercongestion, are indeed common in
urban areas. This is attributable in part to conflicting traffic flows at intersections,
and in part to the fact that road network capacity is limited near city centres.
Hypercongestion during the morning rush hour may also be aggravated by
reductions in road capacity as on-street parking spots become occupied, or as
queues develop of vehicles waiting to enter off-street parking lots.

The discussion of time-dependent models thus far has focused on the behavior
of vehicles once in a traffic stream, while neglecting the determinants of inflow
(i.e., travel demand). In Section 2 demand was described by a demand curve that
accounts for the dependence of demand on the cost of travel, but not on when
travel takes place. Yet it is evident from the diurnal, weekly, and seasonal
fluctuations in traffic volumes that people do care about when they travel. Indeed,
if traffic were spread uniformly over time, congestion would not be a serious
problem.

Since time of travel does matter, it is necessary to model how easily trips can be
substituted forward or backward in time. One extreme, but common, assumption
is that trips are not intertemporally substitutable, so that the demand for trips at a
given time depends only on the cost of making a trip at that instant. A more
general approach, pioneered by Vickrey (1969), is to assume that each individual
has a preferred time t* to complete a trip, and incurs a schedule-delay cost for
arriving either earlier or later. It is often assumed that this cost is linear, increasing
by some amount β for each additional minute early (before t*), and by some
amount γ for each extra minute late. Small’s (1982) empirical estimates for
morning commuting trips satisfy β < α < γ, where (as in Section 2) α is the unit
cost of travel time.
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Given a schedule-delay-cost function, it is straightforward to solve for the
equilibrium timing of trips along a single roadway connecting a single origin and
destination. The LWR model, as well as the bottleneck, no-propagation and
instantaneous-propagation versions of it, have all been used in the literature to
describe traffic flow on the roadway. Equilibrium in the bottleneck model version
is readily depicted using an augmented version of Figure 5, shown in Figure 6. The
new element is the curve W(t*), which specifies the cumulative distribution of t* in
the population. To fix ideas, consider morning commute trips, so that t* is desired
arrival time at work. As drawn, the distribution of t* extends from t0

* to te
* , and has a

“mass point” at t1 (perhaps because a company has a large shift of workers that
starts at this time). To simplify, it is assumed that commuters have the same values
of α, β and γ, and demand is price inelastic: N individuals commute, one per
vehicle, regardless of the trip cost. Free-flow travel times before and after passing
the bottleneck are set to zero, and the queue is assumed to be vertical, as defined
above (i.e., zero length).

In this setting, commuters have only one decision to make: at what t to join the
queue behind the bottleneck. A Nash equilibrium is defined by the condition that
no individual can reduce their trip cost by changing thier t, taking as given the
travel-time choices of everyone else. An algebraic derivation of the equilibrium is
given in Arnott et al. (1998); only a heuristic explanation will be given here. Trip
cost is composed of schedule-delay cost, queuing-time cost, and any fixed costs
independent of t. The queue upstream of the bottleneck must therefore evolve
at such a rate that the sum of queuing-time cost and schedule-delay cost is
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Figure 6. Equilibrium trip timing and queue evolution in the bottleneck model.
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independent of t. This results in a piecewise queuing pattern, as shown in Figure 6,
because schedule-delay costs are assumed linear. The four unknown times
{t0, tn, t**, te} are determined by four equations. One equation simply states that the
rush hour is long enough for everyone to get to work: s(te – t0) = N. A second
equation defines t** as that time at which the number of individuals who want to
have arrived at work equals the number who have actually done so:
W(t**) = s(t** – t0). The third and fourth equations obtain from the condition that
the individual who departs at time tn and arrives at work on time at t** incurs the
same trip cost departing at tn as they would if they departed early at t0, or late at te:
β(t** – t0) = α(t** – tn) = γ(te – t**).

As in Figure 5, total queuing time in this equilibrium is given by the area EFG
between A(t) and D(t). Total time early is area EHJ, and total time late is area
GHK. Because aggregate schedule-delay costs are the same order of magnitude as
total queuing-time costs (if everyone has the same t* they turn out to be equal) it is
important to account for schedule delay in determining total travel costs. It is
straightforward to compute an equilibrium travel-cost function C(N) conditional
on N. If demand is price elastic, N can then be solved as in Section 2, with the
condition p(N) = C(N), where p(N) is the inverse demand curve.

If individuals differ not only with respect to t*, but also α, β and γ, the geometry
of equilibrium becomes more complicated but an analytical solution is still
possible. Suppose there are G groups of homogeneous individuals. Given the
number of individuals Ng in group g (g = 1, …, G), one can derive parametric
equilibrium travel-cost functions of the form Cg(N1, N2, …, NG). Then, given the
demand curves pg(Ng), the equilibrium values of Ng can be solved using the G
equations pg(Ng) = Cg(N1, N2, …, NG), g = 1, …, G.

4. Modeling congestion on a network

Although attention has been limited so far to isolated road segments, most trips
occur on a road network. A network can be represented as a set of origin–
destination (OD) pairs, a set of routes connecting each OD pair, and a set of
directed links for each route, where links may be shared by more than one route.

A conceptual framework for solving stationary equilibrium traffic flows on a
network was developed by Wardrop (1952). Wardrop’s first principle states that in
equilibrium, the costs of trips for a given OD pair must be equal on all used routes
(i.e., routes that receive positive flow), and no lower on unused routes. If demand
is price elastic, then in addition the marginal benefit of a trip for an OD pair must
equal the trip cost if any trips are made, and be no bigger than the cost if no trips
are made. In a Wardrop equilibrium no individual has incentive to change either
his route or his decision whether to travel. A Wardrop equilibrium is, therefore, a
Nash equilibrium. If no tolls are levied on the network, then the equilibrium is said
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to be a user equilibrium or user optimum. Beckmann et al. (1956) showed that a
user equilibrium can be formulated and solved as an equivalent optimization
problem.

Because of unpriced congestion externalities, user equilibrium is generally
inefficient, both in terms of the number of trips taken between each OD pair, and
the allocation of demand over routes. Efficient usage occurs at a system optimum,
which is defined by the same conditions as a user equilibrium, but with the
marginal social cost of using each route in place of the average (user) cost, where
the marginal social cost of a route is the sum of the marginal costs on each link
comprising the route. Thus, marginal costs must be equal on all used routes
between a given OD pair, and no lower on unused routes (Wardrop’s second
principle). This assures that total travel costs are minimized for the trips taken on
the network. If demand is price elastic, then in addition the marginal benefit of a
trip for an OD pair must equal the marginal social cost if any trips are made, and
be no bigger if no trips are made.

The system optimum can be decentralized as a user equilibrium by imposing
tolls on each link. If the travel cost on each link depends on flow on the link, but
not on flows on other links (this rules out interactions at junctions, or between
opposing traffic flows on undivided highways), then the tolls take the same form as
in the one-link setting described in Section 2 (Dafermos and Sparrow, 1971).
Thus, if Cl is the link cost function on link l and ql

* is the optimal flow, then the
optimal toll on link l is ql

* ∂Cl(ql
*)/∂ql.

Characterizing network equilibrium with non-stationary traffic flows, and
then solving for the equilibrium, is more difficult both conceptually and
computationally than with stationary flows. Questions arise about how to model
congestion on individual links, and how to maintain first-in, first-out discipline if
passing is not permitted. Dynamic traffic assignment is concerned with solving for
user equilibrium routing while treating departure times as given. Finding a
dynamic network user equilibrium requires also solving for departure times.
Both problems have their system-optimal counterparts. Various dynamic
generalizations of Wardrop’s first and second principles have been proposed. For
simple networks where routes share no links, an equilibrium can be found by first
solving for the travel cost functions as described at the end of Section 3, and then
applying Wardrop’s principles for stationary traffic. In more complex cases,
sophisticated programming methods are required. Progress has recently
been made through the use of variational inequalities (Ran and Boyce, 1996;
Nagurney, 1999).

Wardrop’s equilibrium principles are based on the implicit assumption that
drivers know the travel costs on each route and at each time exactly. To allow for
less than perfect information, Daganzo and Sheffi (1977) introduced an
equilibrium concept for stationary traffic called stochastic user equilibrium (SUE).
In this framework, travelers have idiosyncratic perceptions of travel times on each
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route, and seek to minimize their expected or perceived travel costs. SUE has
been extended to dynamic networks by adding idiosyncratic perceptions of travel
costs as a function of departure time.

SUE incorporates random behavior at the individual level, but embodies an
implicit law of large numbers assumption because aggregate flows on each route
and at any time are deterministic. Hazelton (1998) has introduced randomness in
aggregate flows by treating vehicles as discrete and finite in number. This allows
for day-to-day variations in flow, and may be useful for modeling driver learning.

In SUE, randomness originates from driver perception errors, rather than from
aggregate demand or from the network itself. In practice, demand can fluctuate
unpredictably because of special events, and capacity can be affected by weather,
road work, and accidents. One way to allow for this type of randomness is to
suppose that drivers choose routes, possibly with guidance from a motorist
information system (see Section 6), on the basis of current travel times without
attempting to predict how these times will evolve during the rest of their trips (Wie
and Tobin, 1998). Another approach, termed stochastic network stochastic user
equilibrium by Emmerink and colleagues (see Emmerink, 1998, Chapter 4),
assumes that drivers minimize expected trip costs while conditioning their
expectations on all information available to them.

5. Road pricing and investment

The principles of congestion pricing for stationary traffic and identical vehicles
were introduced in Sections 2 and 4. These principles were extended by Dafermos
(1973) to treat heterogeneous vehicles that differ in size, operating characteristics,
or other aspects of behavior. Traffic engineers adjust for the greater impact of
heavy vehicles on traffic by computing passenger-car equivalents, and tolls could
be based on these. Alternatively, heavy vehicles can be modeled as causing
reductions in road capacity. Charging on the basis of speed, with higher tolls for
slower vehicles, has been studied by Verhoef et al. (1998). Surcharges might also
be imposed on poor or careless drivers who tend to create greater congestion and
are more prone to accidents. But unless charges can be levied non-anonymously,
perhaps via automatic vehicle identification systems, tolling on the basis of driving
behavior is impractical because it is too costly to observe.

Varying tolls over time has become practical through advances in electronic toll
collection technology. Time variation can range from peak/off-peak tolls with a
single step to continuous time variation. The optimal continuously time-varying
toll in the bottleneck model can be readily deduced by inspection of Figure 6.
Because the capacity of the bottleneck is independent of queue length, queuing is
pure dead-weight loss. Queuing can be eliminated by imposing a toll at each
instant equal to the cost of queuing time that would have obtained in the no-toll
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user equilibrium. The toll is zero at the beginning of the travel period t0 rises
linearly to a maximum at t**, and decreases linearly to zero again at te. Because the
toll exactly offsets queuing-time cost, private costs of drivers are unchanged.
Aggregate schedule-delay costs are also unchanged because, with a fixed
bottleneck capacity, both the timing and the duration of the travel period are the
same.

This invariance of private-travel costs and schedule-delay costs to the tolling
regime is specific to the bottleneck model. In the LWR model and its no-
propagation and instantaneous-propagation variants, flow varies with speed.
The optimal time-varying toll causes departures to spread out, which reduces
travel-time costs by raising travel speeds (though not to free-flow levels), but
increases total schedule-delay costs by a partially offsetting amount. Chu (1992)
demonstrated these results using a modified version of the no-propagation model
in which the speed of a vehicle is determined by the density prevailing when it exits
the road. He also shows that, unlike with the no-propagation model, overtaking
does not occur in either the no-toll or optimally tolled equilibria of the
reformulated model.

Research is underway on how to derive and implement system-optimal time-
varying tolls on a network. Among the challenges that have to be addressed are
how to calculate the marginal social cost of a trip, how to make the driver pay this
cost using link-based tolls or path-based tolls, and how to apprise individuals
about tolls sufficiently far in advance to influence their travel decisions. Another
complication is that Pigouvian tolls are efficient only in a first-best world with
efficient pricing throughout the economy. This requires not only that congestion
pricing be applied network-wide by time of day, type of vehicle, etc., but also that
environmental and other externalities be internalized, that other modes of travel
be efficiently priced, and so on. In practice, first-best conditions are not satisfied
even approximately. For one thing, infrastructure costs and political constraints
are likely to rule out tolling except on major roads.

Transportation economists have devoted considerable attention over the years
to second-best pricing of transit in the face of unpriced automobile congestion.
More recently, there has been some work on optimal second-best pricing on
simple traffic networks with stationary traffic flows. Verhoef et al. (1996)
considered a single OD pair connected by two congestible routes, one of which
was untolled. They showed how the second-best toll on the tolled route differed
from the first-best toll, and showed that it may be negative in order to discourage
usage of the untolled route. Glazer and Niskanen (1992) consider the relationship
between the price of parking and traffic congestion, and discuss how first-best
parking fees should be modified when traffic congestion is not priced. Much
remains to be understood about second-best tolling on large-scale networks with
non-stationary traffic.
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Although economically appealing, road pricing remains politically
controversial, and awaits widespread implementation. Building roads has been
the traditional response to growing congestion. But construction of new roads is
increasingly constrained by shortages of public funds and land space, and by
environmental concerns. It is apparent that a combination of demand restraint,
improvements in existing roads, and selective construction of new ones, will be
required in the future. In deciding how much to invest in roads, it is important to
recognize that optimal capacity depends generally on how demand is regulated,
and specifically on the tolling regime (Small, 1992a, Sections 4.1 and 4.4). To see
this, consider a stationary traffic setting and suppose that capacity is increased,
which shifts the travel-cost curve (C(q) in Figure 3) to the right. Absent tolling,
equilibrium will be established at the new intersection of C(q) with the demand
curve. If demand is highly elastic, travel volume will increase until the cost of a trip
is only slightly below its previous level, and the investment will yield little benefit.
The increase in volume comes from so-called latent demand: trips attracted from
other routes or modes, or new trips that were deterred by congestion. With tolling,
however, the increase in volume is restrained, and the investment may yield an
appreciable welfare gain. By contrast, if demand is relatively (but not completely)
inelastic then latent demand is less of a force. Because more trips are taken
without tolling, the investment is likely to yield a greater benefit without than with
tolling.

In the case of non-stationary traffic, the analysis is complicated by the fact that
imposition of a time-varying toll reduces travel costs for any given capacity. But
the effect of demand elasticity on the relative returns from investment with and
without tolling remains qualitatively the same.

Given the increasing popularity of the user pay principle, it is natural to ask: to
what extent do optimal congestion tolls pay for optimal capacity? Mohring and
Harwitz (1962) showed using a static model that congestible facilities (of which
roads are one instance) are exactly self-financing if three conditions hold:

(1) capacity is adjustable in continuous increments,
(2) capacity can be expanded at constant marginal cost, and
(3) trip costs are homogeneous of degree zero in usage and capacity (i.e.,

doubling N and s leaves costs unchanged).

Although the empirical evidence on (2) and (3) is equivocal, it appears that these
conditions hold at least approximately in a range of circumstances (Small, 1992a,
Sections 3.4 and 3.5; Hau, 1998). Condition (1) does not hold on a single road
because the number of lanes is discrete and lanes must be large enough to
accommodate vehicles. But capacity can still be varied by widening lanes, by
improving vertical and horizontal alignments, and by resurfacing. And at the scale
of a road network, capacity may be almost perfectly divisible. Furthermore, the
self-financing theorem extends to dynamic models (Arnott et al., 1993), and in
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present-value terms when adjustment costs and depreciation are allowed (Arnott
and Kraus, 1995).

The self-financing theorem concerns optimal highway investment in a first-best
world. Just as care must be taken in setting tolls when travel is not optimally priced
on all of the road network, so must investment decisions be made with caution.
This is illustrated dramatically by the famous “Braess paradox” (Braess, 1968),
whereby adding a link to an untolled network can actually increase total travel
costs. Various other paradoxes can also arise with unpriced (or underpriced)
congestion (see Arnott and Small, 1994).

6. Conclusions

As this review should make clear, there is no single best way to model traffic flow
and congestion. The level of detail at which driver behavior should be modeled
depends on the objectives of the analysis. For the purpose of studying land use, for
example, a model of stationary traffic flow may be adequate, and this requires only
a relationship between speed and density. Non-stationary traffic phenomena, such
as the rush hour, hypercongestion and passing, are more complex and may call for
a microscopic rather than macroscopic approach. As is true of most scientific
endeavors, there is a trade-off in modeling between realism and tractability. With
today’s computers it is possible to simulate the minute-by-minute progress of
many thousands of vehicles on a large-scale network. Still, the complexities of
simulation models and the sheer volume of output they can generate may obscure
basic insight. A role thus remains for simple models that are amenable to
analytical and/or graphical solution.

Many policies have been adopted to combat congestion, both on the supply side
(e.g., building new roads, restriping lanes) and in managing demand (e.g. priority
lanes, metering highway entrance ramps, parking restrictions and license plate
rules). Attention has been limited in this review to congestion pricing, in part
because of its close links with the fundamental diagram of traffic flow and with
network equilibrium conditions. In his discussion of congestion, Walters (1987)
came out strongly in favor of congestion pricing, but was pessimistic about its
prospects for implementation. Thanks to continuing technological advances and
shifts in political attitudes, the perspective at the end of the 21st century seems
rather more sanguine, as evidenced by the assessments of various authors (see,
e.g., Button and Verhoef, 1998).

Intelligent transportation systems (ITS) are another technology that holds
promise for alleviating congestion. ITS include: advanced traffic management
systems, which optimize traffic signals and freeway ramp controls; advanced
vehicle control systems, which allow closely spaced platoons of vehicles to operate
at high speeds; and motorist information systems, which provide real-time
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information and advice to individuals about travel conditions. ITS can help people
to avoid heavily congested routes, to reschedule trips, and to choose between
travel modes. But to the extent that ITS do succeed in improving travel conditions,
they are likely to stimulate more travel because of latent demand. Congestion
pricing may therefore be a complement to, rather than a substitute for,
information technology. In any case, congestion and efforts to model and control
it will endure for the foreseeable future.
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