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to our friends and to all GRASS developers, present and past



Foreword

GRASS GIS software was developed in response to the need for improved anal-
ysis of landscape “trade offs” in managing government lands and the emerging
potential of computer-based land analysis tools. During the last decades of the
20th century, government land managers in the U.S. (and across the world)
faced increasing requirements from legislation and stakeholder groups to ex-
amine and evaluate alternative actions. To fulfill these new requirements, land
managers needed new tools.

During this same era, computational capabilities wondrously improved.
Tasks requiring days and months with paper and acetate overlays could be
accomplished with this newly emerging geographic information technology
within minutes. But even in the mid-1980s, GIS technology involved significant
capital investment. Managers wanted to see results before they spent their
limited funds on new technologies.

The U.S. Army Construction Engineering Research Laboratory (CERL) in
Champaign, Illinois has the mission of developing and infusing new technolo-
gies for managing U.S. Department of Defense installations. These installa-
tions include millions of acres of lands needed for military training and testing.
Other uses included wildlife management, hunting and fishing and forestry,
grazing and agricultural production. Other priorities were added through leg-
islation – such as protecting endangered species and habitats, protecting cul-
tural sites, and limiting the on and off-post impacts of noise, ordnance, con-
taminants and sediments.

Military land managers were unable to cope with the challenge of exam-
ining proposed new actions (such as new weapon firing ranges or new vehicle
training routes) without improved methods to gather, integrate and visualize
their data and to examine alternative courses of action. Acquiring emerging
proprietary technologies and digital data wasn’t even a consideration – the
cost was too high and the expertise required to learn, operate and manage
the technology was beyond their resources.

Given this need, a group of then young researchers at CERL elected to
develop their own set of initial landscape analysis tools. Initially, this in-house
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software development effort was designed to “bridge the gap” as commercial
proprietary technology developed. The other costs involved in implementing
GIS (acquiring data and hardware, learning GIS skills and computer mainte-
nance skills) were so high; CERL decided that no-fee software could reduce
the technology hurdle involved in implementing GIS. This proved to be true
– and U.S. military installations were some of the first government managers
to become active users of this new technology.

Once our efforts began, software development took on a life of its own. The
Open Source code and Internet accessible software soon sparked the creative
energies of numerous other organizations and individuals, and many began to
use GRASS and contribute capabilities. At CERL, a small-scale skunk works
project became the biggest and hottest program in the lab. Dozens of persons
were employed developing new tools, building digital databases, assisting with
complex applications and fielding the technology across the Department of
Defense.

The needs we addressed drove the design criteria for GRASS. Because
of the requirement to analyze alternative actions and to evaluate impacts
of actions on continuous surfaces of differing elevations and vegetation and
soil types, GRASS development was focused on raster analysis tools. Also,
because of the need for digital and “real time” data, GRASS also incorporated
remotely sensed image integration and analysis tools. At the time, this focus
set GRASS apart from marketplace capabilities, which were primarily based
on vector data and tools and did not include image analysis.

To nurture a “growing” GRASS community, CERL and other organizations
established forums for sharing and contributing software. For several years, the
lab (and lab partners) also offered newsletters, developed formal interagency
partnerships (primarily with the U.S. Department of Agriculture and National
Park Service) and held annual software user meetings. During the early 1990s,
this GRASS community helped to initiate the Open GIS Foundation (now the
Open GIS Consortium) as an international organization focused on advancing
openness and interoperability for geospatial technologies.

But by the mid-1990s, many of the original military installation GIS users
were switching to proprietary marketplace GIS technologies. In the interven-
ing years, marketplace GIS vendors had added raster analysis tools, much like
those in GRASS. Installation managers had become dependent on GIS, and
were now willing to buy from the marketplace. Generally, the government is
expected to buy off the marketplace, unless there are no comparable market-
place options. Plus, installation managers wanted GIS software just like the
systems that were showing up in the offices of supporting contractors and
local and state government offices across-their-fence lines. As a result, CERL
managers decided they had achieved their purpose of “bridging the gap” in
introducing this new technology. CERL entered into agreements with GIS
vendors, and helped installations transition their data to proprietary systems.
Army research programs were directed to new challenges.
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Fortunately, in the years since CERL stopped active development and
support of GRASS, the Universities of Hannover (Germany), Baylor, Texas
(U.S.A.), and recently the ITC-irst – Centro per la Ricerca Scientifica e Tec-
nologica (Italy) have continued to coordinate the development of GRASS GIS,
performed by a team of developers from all over the world. Thanks to their ef-
forts, GRASS GIS keeps getting better, and valuable and reliable Open Source
GIS capabilities are still available through the Internet.

Those of us at CERL are grateful for these academic efforts. GRASS re-
mains an unique capability that continues to play an important role in educa-
tion and in the advancement of scientific understanding and resource manage-
ment. The analysis tools within GRASS and the access to source code provide
important benefits in our ability to understand and model geospatial phenom-
ena. Plus, developers of this Open Source GIS continue to pioneer and advance
capabilities that later emerge in the proprietary geospatial marketplace.

Thanks to the authors, this book should help sustain these important roles
for GRASS GIS for years to come.

USA CERL William D. Goran
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Geographical Resources Analysis Support System (GRASS) is one of the
largest Free Software Geographical Information System (GIS) projects re-
leased under the GNU General Public License (GPL). It combines powerful
raster, vector, and geospatial processing engines into a single integrated soft-
ware suite and includes tools for spatial analysis, modeling, image processing
and sophisticated visualization.

With this third edition of Open Source GIS: A GRASS GIS Approach, we
enter the new era of GRASS 6, the first release that includes substantial new
code developed by the International GRASS Development Team. It comes at
a time when dramatic growth in acceptance of the Open Source concept fuels
further development of Free and Open Source Software for Geoinformatics
(FOSS4G) and brings interoperability to a new level of efficiency. The major
FOSS4G projects, including GRASS, have become part of the OSGeo foun-
dation – an organization established in 2006 to ”support and promote the
collaborative development of open geospatial technologies and data.“ Follow-
ing the spirit of the foundation, GRASS is tightly integrated with the latest
GDAL/OGR and PROJ libraries supporting range of raster and vector for-
mats, as well as projections. GRASS toolkits for Quantum GIS (QGIS) and R
Project for Statistical Computing have been developed thanks to strong links
with these projects.

The third edition of Open Source GIS: A GRASS GIS Approach reflects
these new developments. The first chapter includes information about the
OSGeo foundation. Chapter three that introduces GRASS and the new sam-
ple data set, has added information about the new graphical user interfaces
that can be used with GRASS 6. The properties of GRASS raster and vec-
tor data are described in chapter four, which also includes extensive material
on importing data in various formats, and an introduction to new geocoding
tool. The raster chapter has been enhanced with new examples, more com-
prehensive topographic analysis and modeling, and introduction to voxel data
processing. The chapter on vector data has been completely rewritten to re-
flect introduction of a new vector data format and attribute support through
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database management system (DBMS) in GRASS 6. This chapter now in-
cludes new sections on attribute database management and SQL support,
vector networks analysis, linear reference systems, and lidar data applica-
tions. The site data chapter of earlier book editions was integrated within the
chapter six as vector point data processing section. The visualization chapter
reflects the changes in 2D display, nviz, and use of Paraview. Image processing
was reduced and updated, orthophoto chapter was eliminated to make space
for more new material. Application chapter was merged with raster analysis.
Equations and SQLite-ODBC connection guide were added into Appendix.
All chapters were enhanced with numerous practical examples using the first
release of a free, comprehensive, state-of-the-art geospatial data set. The ex-
amples are based on the GRASS 6.3 version from July 2007.

Finally, we briefly recall history of GRASS and this book: GRASS was
developed in 1982-1995 by the U.S. Army Corps of Engineers Construction
Engineering Research Laboratory (CERL) in Champaign, Illinois to support
land management at military installations. After CERL withdrew from further
GRASS development in 1995, the GRASS 4.2.1 release, published in 1998, was
coordinated by this book’s author at the Institute of Physical Geography and
Landscape Ecology, University of Hannover. The development of the GRASS
5.0 release started in 1999 when GRASS was released under GPL. Since 2001,
the “GRASS Development Team” has its headquarters at FBKITC-irst (Cen-
tro per la Ricerca Scientifica e Tecnologica), Trento, Italy. GRASS 5.0.0 was
officially released in 2002, accompanied by the first FOSS4G – GRASS users
conference held in September 2002 in Trento, Italy, and by the publication of
the first edition of this book.

The book has its own history. It started as “GRASS Recipes” written in
1995 for students at the Institute of Landscape Architecture, University of
Hannover. In 1996, the first continuous German text was written and later
published in “Geosynthesis” series at the Geographical Institute, University
of Hannover. The first english edition of the book, published in June 2002,
was the result of collaborative work of a number of translators and a new
coauthor. It was written for the GRASS 5.0pre3 release. The second edition,
published in 2004, was based on the GRASS 5.3 release and included updates
reflecting the system enhancements and the feedback from our readers. This
third edition is based on GRASS 6 and represents a fundamental update and
enhancement of the material.

The GRASS project’s Web site, providing access to the GRASS soft-
ware and documentation, can be reached at “GRASS Headquarters” at
http://grass.itc.it and a number of mirror sites. The material related
to this book can be accessed at http://grassbook.org.

Trento, Italy Markus Neteler
Raleigh, USA Helena Mitasova

August 2007

http://grass.itc.it
http://grassbook.org
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1

Open Source software and GIS

Over the past decade, Geographical Information Systems (GIS) have evolved
from a highly specialized niche to a technology that affects nearly every as-
pect of our lives, from finding driving directions to managing natural disas-
ters. While just a few years ago the use of GIS was restricted to a group of
researchers, planners and government workers, now almost everybody can cre-
ate customized maps or overlay GIS data. On the other hand, many complex
problems related to urban and regional planning, environmental protection,
or business management, require sophisticated tools and special expertise.
Therefore the current GIS technology spans a wide range of applications from
viewing maps and images on the web to spatial analysis, modeling and simu-
lations.

GIS is often described as integration of data, hardware, and software de-
signed for management, processing, analysis and visualization of georeferenced
data. The software component has a major impact on the capabilities to ef-
fectively solve a wide range of problems using geospatial data. To ensure the
continuous innovation and improvement of the GIS software, existence of di-
verse approaches to GIS software development is crucial. Besides the widely
used proprietary systems, an Open Source GIS plays an important role in
adaptation of GIS technology by stimulating new experimental approaches
and by providing access to GIS for the users who cannot or do not want to
use proprietary products.

1.1 Open Source concept

The idea of Open Source software has been around for almost as long as
software has been developed. The results of research and development at the
universities and government laboratories have been often made available in the
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form of Public Domain software packages. Richard M. Stallman first defined
the concept of Free Software in form of four freedoms:

0. freedom: The freedom to run the program, for any purpose.
1. freedom: The freedom to study how the program works, and adapt it to

your needs.
2. freedom: The freedom to redistribute copies.
3. freedom: The freedom to improve the program, and release your improve-

ments to the public, so that the whole community benefits.

Software following these four principles is called “Free Software”. In 1984,
Richard M. Stallman started to work on the GNU-Project and in 1985 he
created the “Free Software Foundation” to support the Free Software concept.
The license of the GNU-Project, the GNU General Public License not only
grants the four freedoms described above, but it also protects them. The user
of the software is also protected since these freedoms are guaranteed. Because
of this protection, the GPL has been the most widely used license for Free
Software. The basic idea behind free software is based on the assumption that
by allowing the programmers to read, redistribute, and modify the source
code, the software evolves: it gets improved, bugs are fixed and capabilities
expanded. The ubiquitous availability of the source code and the continuous,
often instantaneous peer-review of the code contribute significantly to this
process. You can learn more about the ideas behind the Open Source at the
Open Source1 and Free Software2 Web sites.

Full access to the source code is particularly important for GIS because the
underlying algorithms can be complex and can greatly influence the results
of spatial analysis and modeling. To fully understand system’s functionality,
which is not as obvious as it may be, for example, for a word processing
software, it is important to be able to review and verify the implementation
of a particular function. While an average user may not be able to trace bugs
within a complex source code, there is a number of specialists willing to test,
analyze and fix the code. The different backgrounds and expertise of these
developers and users contribute to the synergethic effects leading to faster
and more cost effective software development of a stable and robust product.

The Open Source Geospatial Foundation Over the past few years a
growing number of Open Source GIS, Web mapping, and GPS projects has
been established with different goals. Most of them are listed at the “FreeGIS
portal” Web site3. Smaller projects are usually based on individual developer’s
initiative, when the lack of available software for a specific application is solved
by his own development and the result is then made available to the public on

1 Open Source Web Site, http://www.opensource.org
2 Free Software pages,
http://www.gnu.org/philosophy/free-software-for-freedom.html

3 FreeGIS Web Portal, http://www.freegis.org

http://www.opensource.org
http://www.gnu.org/philosophy/free-software-for-freedom.html
http://www.freegis.org


1.2 GRASS as an Open Source GIS 3

the Internet. Depending on the level of required expertise, other programmers
may join the project and further develop, improve and extend these tools.
Some projects are finished quickly, others evolve over time. In general, the
Open Source development is very dynamic. The Open Source licenses and
the free access through the Internet enable the new contributors take over
an abandoned project and continue the development. The overall idea dif-
fers significantly from the strategies used in the proprietary GIS development
industries.

In February 2006, the Open Source Geospatial Foundation (OSGeo4) has
been created to support and promote worldwide use and collaborative devel-
opment of Open Source geospatial technologies and data. It includes GRASS
as one of its founding projects. Mature open source geospatial software that
undergoes rigorous review of its code and development structure becomes an
official OSGeo project. Web mapping systems, desktop applications, geospa-
tial libraries and a metadata catalog are represented. The foundation supports
outreach and advocacy activities that promote Open Source concepts and
provides financial, organizational and legal help to the broader Open Source
geospatial community. It also builds shared infrastructure for improving cross-
project collaboration. OSGeo has been a stimulating force for cooperative
developments of sister projects, leveraging each other efforts by developing
shared architecture components and expanding interoperability.

1.2 GRASS as an Open Source GIS

GRASS (Geographical Resources Analysis Support System) is a raster/vector
GIS combined with integrated image processing and data visualization subsys-
tems. It includes more than 350 modules for management, processing, analysis
and visualization of georeferenced data. As we have mentioned in the Pref-
ace, the key development in the recent GRASS history was the adoption of
GNU GPL (General Public License, see http://www.gnu.org) in 1999. By
this, GRASS embraces the Open Source philosophy, well known from the
GNU/Linux development model, which stimulated its wide acceptance (Ray-
mond, 1987 and Raymond, 1999, for a discussion see also Wheeler, 2003).
This license protects the GRASS developers against misuse of their code con-
tribution within proprietary projects which do not allow free access to their
source code. The GPL ensures that all code based on GPL’ed code must be
published again under GPL. The benefits of using other developers’ code fur-
ther increases the motivation to participate. For the GRASS users, the license
offers various advantages besides full access to the source code, especially the
low cost, access to the new features and capabilities developed between the
releases and possibility to provide releases more often than it is common for
proprietary products. Finally, full access to the source code is also an invest-
ment protection for the future. In case that the project is withdrawn by the
4 OSGeo Web Site, http://osgeo.org

http://www.gnu.org
http://osgeo.org
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Fig. 1.1. GRASS Development Model: Developers’ and users’ interaction with semi-
automated development tools over Internet

current developers, others may take over the development, while keeping free
access to the source code.

Unlike most proprietary GIS, GRASS provides complete access to its in-
ternal structure and algorithms. Advanced users who want to write their own
GIS modules may therefore learn from existing modules as well as by read-
ing the “GRASS Programmer’s Manual” (GRASS Development Team, 2006).
The documented GRASS GIS libraries with the Application Programming
Interface (API) make the new module development more efficient and allow
to integrate new functionality into GRASS. Applications can be also written
with shell or Python scripts to automate the GIS workflow (see Section 9).

The GRASS Development Model is similar to other Open Source projects
(Figure 1.1). The backbone of the project is the Internet which supports the
software distribution, user support, centralized management of the GRASS
development through CVS (Concurrent Versioning System, the source code
repository server), as well as a bugtracking system, several mailing lists, and
a Wiki collaborative help system. The GRASS Development Team is coordi-
nated from FBK-irst (formerly known as ITC-irst) – Centro per la Ricerca
Scientifica e Tecnologica, Trento (Italy) and includes developers from all over
the world. The dynamic and very open team continuously improves and ex-
tends the GRASS capabilities. Communication with other like-minded GIS
projects is achieved through the Open Source Geospatial Foundation.

GRASS is available via Internet and on CD-ROM as precompiled binary
versions for different UNIX, MacOS X and MS-Windows platforms along with
the complete C-source code. While GRASS is Free Software with protection of
the authors’ and users’ rights through the GPL, commercial services related
to GRASS can be offered and are welcome by both the developers and users
community.



1.4 How to read this book 5

1.3 The North Carolina sample data set

A new, modern sample GIS data set has been prepared for this edition. It
is available from the book related Web site.5 This data set is a comprehen-
sive collection of raster, vector and imagery data covering parts of North
Carolina (NC), USA. The data were prepared from public data sources pro-
vided by the North Carolina state and local government agencies and Global
Land Cover Facility (GLCF). Data are provided at three hierarchical levels
(Figure 1.2): entire NC with raster data at 500m resolution (boundary in geo-
graphic coordinates: 37N-33N,75W-85W); Southwest Wake county with raster
data at resolutions 30m-10m (boundary coordinates 35:48:34.6N-35:41:15.0N,
78:46:28.6W-78:36:29.9W), and a small watershed in rural area with data res-
olutions of 1m-3m. The data set includes section of the NC capital city Raleigh
and its surroundings. The coordinate system of the ready-to-use GRASS data
set is NC State Plane (Lambert Conformal Conic projection), metric units
and NAD83 geodetic datum. Additional data are provided in geographic co-
ordinates and NC State Plane, english units (feet) in various external formats.
More complete data description can be found at the GRASS book site.

Vector data include administrative boundaries, census data, zipcodes,
firestations, hospitals, roads and railroads, public schools and colleges, bus
routes, points of interest, precipitation, hydrography maps, geodetic points,
soils and geological maps. Raster data include elevation (NED 3arc-sec,
SRTM-V1 30m, lidar derived DEMs at 1m and 6m), slope, aspect, watershed
basins, geology, and landuse. The resolution of raster maps is 500m, 30m, 10m,
and 1m. Imagery data include 1m resolution orthophoto, several LANDSAT-
TM5/7 scenes and a MODIS daily Land Surface Temperature (LST) time
series. Also multiple-return lidar data are included. The examples throughout
this book are based on this data set. Furthermore, new derivative maps are
generated and explained.

1.4 How to read this book

This book focuses on the basic principles and functionality of GRASS. After
a brief introduction to GIS concepts, map projections and coordinate systems
are explained. GRASS is introduced in the third chapter using the North Car-
olina sample data set provided on the related Web site. The fourth chapter
describes the properties of GRASS raster and vector data and provides ex-
tensive information on import and export of a wide range of data formats.
Management, display, analysis and modeling using raster and vector data is
covered in the next two chapters, again using hands-on examples based on the
sample data set. Interactive visualization and map creation is covered in chap-
ter seven at a basic level needed to communicate the results of a GIS project

5 North Carolina sample data set download site,
http://www.grassbook.org, Section “Data 3rd Edition”

http://www.grassbook.org
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Fig. 1.2. North Carolina sample data set: state, county and field level of detail

effectively. An extensive chapter is devoted to the satellite image processing
and analysis as a special case of raster data application. The ninth chap-
ter provides an introduction to GRASS scripting and programming. Chapter
ten demonstrates the use of GRASS with other Open Source software. The
Appendix provides equations used in some of the modules. References to lit-
erature provide access to detailed information about the given topic.

We use the following conventions throughout the book. Commands which
you can type in are written in typewriter font, for example: r.mapcalc. Ter-
minology related to GRASS is written in capital letters, such as LOCATION,
MAPSET, DATABASE, and GRID RESOLUTION. Wherever [...] ap-
pears within the description of GRASS workflow, we have omitted some less
important screen output. Lines starting with # symbol indicate comments
that are not executed by the shell. Long lines representing UNIX or GRASS
commands are broken with <\> which means that the command continues on
the next line. This character is usually not necessary when typing, we often
used it here for formatting reasons. If you use <\>, be sure not to have blank
space after the <\> character. Otherwise the subsequent line(s) are ignored.
Text from the graphical user interface menus is written using a different font,
for example: Display. Because GRASS is updated fairly frequently, there may
be some differences between the command options and parameters in this
book and the latest release. It is therefore useful to verify the most recent
command usage in the related manual page.

You can download ready-to-use databases which we use throughout the
book as well as updates to this book from the related Web site at

http://www.grassbook.org

http://www.grassbook.org


2

GIS concepts

To use GIS effectively, it is important to understand the basic GIS terminol-
ogy and functionality. While each GIS software has slightly different naming
conventions, there are certain principles common to all systems. At first, we
briefly describe the GIS basics in general (for in depth information read Lon-
gley et al., 2005, Clarke, 2002, or Burrough and McDonnell, 1998) and then
we explain the principles of map projections and coordinate systems that are
used to georeference the data.

2.1 General GIS principles

Data in a GIS database provide a simplified, digital representation of Earth
features for a given region. Georeferenced data can be organized within GIS
using different criteria, for example, as thematic layers or spatial objects. Each
thematic layer can be stored using an appropriate data model depending on
the source of data and their potential use.

2.1.1 Geospatial data models

Georeferenced data include a spatial (geometrical or graphical) component
describing the location or spatial distribution of geographic phenomenon and
an attribute component used to describe its properties. The spatial component
can be represented using one of the two basic approaches (Figure 2.1):

• field representation, where each regularly distributed point or an area el-
ement (pixel) in the space has an assigned value (a number or no-data),
leading to the raster data model ;

• geometrical objects representation, where geographic features are defined
as lines, points, and areas given by their coordinates, leading to the vector
data model.
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Fig. 2.1. Data models in GIS – raster and vector data with attribute table:
Raster data: rows and columns of values representing spatial phenomenon;
Vector data: representation by points, lines and areas;
Attributes: descriptive data stored in a database table

Depending on scale, representation of a geographic feature can change; for
example, a river can be handled as a line at small scale or as a continuous 3D
field (body of water) at large scale. Similarly, a city can be represented as a
point or as an area. Note that we use the terms small and large scale in the
cartographic sense, for example, 1:1million is small scale, 1:1000 is large scale.

To effectively use GIS, it is useful to understand the basic properties and
applications of each data model (in older GIS literature, the raster and vector
data models have been often referred to as raster and vector data formats).

Raster data model Raster is a regular matrix of values (Figure 2.1). If the
values are assigned to grid points, the raster usually represents a continuous
field (elevation, temperature, chemical concentration) and is sometimes called
lattice. If the values are assigned to grid cells (area units, pixels), it represents
an image (satellite image, scanned map, converted vector map). If the cell
values represent category numbers, one or more attributes can be assigned to
that cell using a database. For example, a soil type with category number 3
can have attributes describing its texture, acidity, color and other properties.
The grid cells are organized and accessed by rows and columns. The area
represented by a square grid cell is computed from the length of its side,
called resolution. Resolution controls the level of spatial detail captured by
the raster data. Most data are represented by a 2D raster, with the grid cell
(unit area) called a pixel ; volume data can be stored as a 3D raster with a unit
volume called a voxel (volume pixel). General d-dimensional raster formats
are used for spatio-temporal or multispectral data (e.g. HDF format1).

The raster data model is often used for physical and biological subsystems
of the geosphere such as elevation, temperature, water flow, or vegetation.
However, it can also be used for data usually represented by lines and polygons
such as roads or soil properties, especially for scanned maps. The raster data
model was designed with a focus on analysis, modeling and image processing.

1 HDF format and tools, http://www.hdfgroup.org/

http://www.hdfgroup.org/
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Its main advantage is its simplicity, both in terms of data management as
well as the algorithms for analysis and modeling, including map algebra. This
data model is not particularly efficient for networks and other types of data
heavily dependent on lines, such as property boundaries. GRASS has extensive
support for the raster data model.

Vector data model Vector data model is used to represent areas, lines
and points (Figure 2.1). We describe the vector data model using GRASS
terminology; in other systems, the definitions may be slightly different.

The vector data model is based on arc-node representation, consisting
of non-intersecting lines called arcs. An arc is stored as a series of points
given by (x, y) or (x, y, z) coordinate pairs or triplets (with height). The two
endpoints of an arc are called nodes. Points along a line are called vertices.
Two consecutive (x, y) or (x, y, z) pairs define an arc segment. The arcs form
higher level map features: lines (e.g., roads or streams) or areas (e.g., farms
or forest stands). Arcs that outline areas (polygons) are called area edges or
boundaries. A complete area description includes a centroid. In GRASS, 3D
polygons are called faces (they do not need a centroid but can be visualized).
A 3D volume is a closed set of faces including a 3D centroid (kernel). Not
all GIS software packages support 3D vector data types. Linear features or
polygon boundaries are drawn by straight lines connecting the points defining
the arc segments. To reduce the number of points needed to store complex
curves, some GIS include mathematically defined curve sections or splines
that are used to compute the points with the required density at the time of
drawing.

In addition to the coordinate information, the vector data model often
includes information about the data topology which describes the relative po-
sition of objects to each other (see Section 6.3.1 for more details on vector
data topology).

Each map feature is assigned a category number which is used to link
the geometric data with descriptive, attribute data (such as category labels
or multiple attributes stored in a database). For example, in a vector map
“roads”, a line can be assigned category number 2 with a text attribute “gravel
road” and a numerical attribute representing its width in map units.

Point features (e.g., a city or a bridge) or point samples of continuous fields
(e.g., elevation, precipitation), are represented as independent points given by
their coordinates. A value or a set of attributes (numerical or text) is assigned
to each point.

Vector data are most efficient for discrete features which can be described
by lines with simple geometry, such as roads, utility networks, property bound-
aries, building footprints, etc. Continuous spatial data can be represented by
vector data model using isolines, point clouds or various types of irregular
meshes; however, such representations usually lead to more complex algo-
rithms for analysis and modeling than the raster data model. GRASS 6 pro-
vides support for both the 2D and 3D multi-attribute vector model.
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line surface volumepoint area

Fig. 2.2. Data dimensions in a Geographical Information System (after Rase,
1998:19)

Attributes – GIS and databases Attributes are descriptive data provid-
ing information associated with the geometrical data. Attributes are usually
managed in external or internal GIS database management systems (DBMS).
The databases use the corresponding coordinates or identification numbers to
link the attributes to the geometrical data. Some systems, such as PostGIS2

or, with some limitations, MySQL also allow the user to store geometrical
data into the database.

For raster data, GRASS supports only a single attribute for each cell cat-
egory. For vector data, GRASS offers a generic SQL-DBMS abstraction layer
with two choices for internal databases (limited DBF file driver, and SQLite
driver) and several full featured interfaces to external databases (PostgreSQL,
MySQL, and ODBC interface to various DBMS). Multiple attributes can be
stored and managed for each vector object. One or several attribute tables
can be linked to a vector map.

Data model transformations The same phenomenon or feature can be
represented by different data models. GIS usually includes tools for transfor-
mation between the vector and raster data model. For example, elevation can
be measured as vector point data, then interpolated into a raster map which
is then used to derive contour lines as vector data. Note that transformations
between different data models are usually not lossless (there can be a loss or
distortion of information or spatial displacement due to the transformation).

Dimensions of geospatial data In general, Earth and its features are
located and evolve in 3D space and time. However, for most applications
a projection of geospatial data to a flat plane is sufficient; therefore two-
dimensional representation of geographical features (with data georeferenced
by their horizontal coordinates) is the most common. Elevation as a third
dimension is usually stored as a separate raster map representing a surface
within three-dimensional space (often referred to, not quite correctly, as a
2.5-dimensional representation, Figure 2.2). Elevation can be also added as a
z-coordinate or as an attribute to vector data. If there is more than a single

2 PostGIS DBMS, http://postgis.refractions.net

http://postgis.refractions.net
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z-value associated with a given horizontal location, the data represent a vol-
ume and are three-dimensional (e.g., chemical concentrations in groundwater,
or air temperature). Three-dimensional data can change in time, adding the
fourth dimension. GIS provides the most comprehensive support for 2D data.
GRASS 6 includes a 3D raster model for volume data and a 3D vector model
for multi-attribute vector data (see Brandon et al., 1999; Neteler, 2001; Blazek
et al., 2002); however, only a limited number of modules is available for true
volume data processing and analysis.

2.1.2 Organization of GIS data and system functionality

GIS can be implemented as a comprehensive, multipurpose system (e.g.
GRASS, ArcGIS), as a specialized, application oriented tool (e.g. GeoServer,
MapQuest), or as a subsystem of a larger software package supporting han-
dling of geospatial data needed in its applications (e.g., hydrologic modeling
system, geostatistical analysis software, or a real estate services Web site).
The multipurpose systems are often built from smaller components or mod-
ules which can be used independently in application oriented systems.

The multipurpose GIS usually stores the georeferenced data as thematic
maps. Each geographic feature or theme, such as streams, roads, vegetation,
or cities is stored in a separate map using the vector or raster data model.
The maps can then be combined to create different types of new maps as well
as perform analysis of spatial relations. GRASS and most of the proprietary
GIS products are based on this data organization.

A large volume of geospatial data is nowadays distributed through Internet
based GIS and Web Services. The data sets are stored on central server(s)
and users access the data as well as the display and analysis tools through
the Internet. Examples are the browser based interactive maps and virtual
globes (Google Earth, NASA WorldWind etc.), National Map of the U.S.3,
UMN/MapServer Gallery4. Almost every multipurpose GIS software includes
tools supporting development of Web-based applications. GRASS can be used
with UMN/MapServer, an Open Source project for developing Web-based GIS
applications which supports a variety of spatial requests like making maps,
scale-bars, and point, area and feature queries (see Chapter 10). Creation of
interactive maps, including MapServer, OpenEV, GDAL/OGR, and PostGIS
on the Internet, is described in Mitchell (2005) and Erle et al. (2005). The
availability of public programming interfaces by many Web mapping providers
inspires implementation of “mashups” that aggregate different (Web based)
services into new value-added applications.

Other projects such as JGrass/uDig5 are using JAVA to implement a
client/server model. A new approach is the implementation of OGC Web Pro-
cessing Service (WPS) in Python, the PyWPS software (see Section 9.3.2).
3 National Map of the U.S., http://nationalmap.gov
4 UMN/MapServer Gallery, http://mapserver.gis.umn.edu
5 JGrass/uDig (JAVA GRASS Client-Server) Web site, http://www.jgrass.org

http://nationalmap.gov
http://mapserver.gis.umn.edu
http://www.jgrass.org
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Internet GIS can be enhanced by interactive 3D viewing capabilities using
GeoVRML6 as well as by multimedia features adding photographs, video,
animations or sound to the georeferenced data.

While creating digital and hardcopy maps has been the core GIS function
over the past decade, the emphasis is shifting towards Web Services, spatial
analysis and modeling. GIS functionality is rapidly evolving and currently
covers a wide range of areas, for example:

• integration of geospatial data from various sources: projections and coor-
dinate transformations, format conversions, spatial interpolation, transfor-
mations between data models;

• visualization and communication of digital georeferenced data in form of
digital and paper maps, animations, virtual reality (computer cartogra-
phy);

• spatial analysis: spatial query, spatial overlay (combination of spatial data
to find locations with given properties), neighborhood operations, geo-
statistics and spatial statistics;

• image processing: satellite and airborne image processing, remote sensing
applications;

• network analysis and optimization;
• simulation of spatial processes: socioeconomic such as transportation, ur-

ban growth, population migration as well as physical and biological, such
as water and pollutant flow, ecosystem evolution, etc.

The most rapid and innovative development in geospatial technologies is cur-
rently linked to integration of geospatial information within various aspects
of Web capabilities and services such as:

• Geospatial Web and Semantic Web (content can be read and used by
software agents);

• Service Oriented Architecture (SOA) and Web Services – for example,
PyWPS, GeoServer, UMN/MapServer, deegree;

• Geotagging and GeoRSS: addition of geographical identification to various
media to support mapping and location-based search;

• Sensor Web: processing and serving real time georeferenced data acquired
by multiple sensors;

• Map tiling for projection on virtual globes – or example, OSGeo tiling
project;

• building communities that share geospatial data and develop geospatial
applications and mashups; using geospatial concepts within Web 2.0.

OSGeo foundation plays a major role in the development of these new tech-
nologies.

GIS functionality is used to solve spatial problems in almost every area of
our lives. Here are a few examples. In the area of socioeconomic applications,

6 GeoVRML Web site, http://www.geovrml.org

http://www.geovrml.org
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Simplified representation:
Ellipsoid

Projection on developable
           surface coordinate system

Planar map withGeoid

Fig. 2.3. Earth’s surface representation in map projections and coordinate systems

GIS can be used to find directions, locate a hospital within a given distance
from a school, find optimal locations for a new manufacturing facility, design
voter districts with given composition and number of voters, identify crime
hot spots in a city, select optimal evacuation routes, manage urban growth.
GIS plays an important role in conservation of natural resources, agriculture,
and management of natural disasters, such as identification and prevention
of soil erosion risk, forest resource management, ecosystem analysis and mod-
eling, planning of conservation measures, flood prediction and management,
pollutant modeling, and more.

2.2 Map projections and coordinate systems

The basic property of GIS, as opposed to other types of information systems, is
that the stored data are georeferenced. That means that the data have defined
location on Earth using coordinates within a georeferenced coordinate system.
The fact that Earth is an irregular, approximately spherical object makes the
definition of an appropriate coordinate system rather complex. The coordinate
system either has to be defined on a sphere or ellipsoid, leading to a system
of geographic coordinates or the sphere has to be projected on a surface that
can be developed into a plane where we can define the cartesian system of
coordinates (easting, northing and elevation; see Sections 2.2.2).

2.2.1 Map projection principles

When working with GRASS, the projection and coordinate system must be
defined whenever a new project (LOCATION in GRASS terminology) is cre-
ated. The map projection definition is stored in an internal file within the
given LOCATION. It is used whenever the data need to be projected into
a different projection or when calculations requiring information about the
Earth’s curvature are performed. Different parameters are needed to define
different projections and coordinate systems; therefore, it is important to un-
derstand the map projection terminology.
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Shape of Earth Shape of Earth is usually approximated by a mathemat-
ical model represented by an ellipsoid (also called a spheroid). A variety of
cartographic ellipsoids have been designed to provide the best-fit properties
for certain portions of the Earth’s surface, for example, Clarke 1866 for North
America, Bessel 1841 for several European countries, or the current WGS
1984 used worldwide. While the ellipsoid describes the shape of Earth by a
relatively simple mathematical function, the geoid, an equipotential surface of
the Earth’s gravity, undulates due to the spatially variable distribution of the
Earth’s mass, see Figure 2.3. For map projections, the ellipsoids are usually
sufficient for horizontal positioning; however, the geoid has to be used for high
accuracy elevation calculations.

Geodetic or map datum A set of constants specifying the coordinate sys-
tem used for calculating the coordinates of points on Earth is called a geodetic
datum. Horizontal datums define the origin and orientation of a coordinate
system used to calculate the horizontal coordinates (usually northing and
easting). Vertical datums define the coordinate system origin for calculating
the elevation coordinate, such as mean sea level. For maps to match, their
coordinates must be computed using the same datum. Different datums mean
a shift in the origin of the coordinate system, and that means a shift of the
entire map.

Map projection To transform the curved Earth surface into a plane (flat
sheet of paper or a computer screen), a map projection is used. Direct projec-
tion of a spherical object to a plane cannot be performed without distortion.
The most common approach is to project the spheroid onto a developable
surface, such as a cylinder or a cone that can be developed into a plane with-
out deformation (tearing or stretching), see Figure 2.3. A large number of
different projections have been designed with the aim to minimize the dis-
tortion and preserve certain properties (for a mathematical description refer
to Bugayevskiy and Snyder, 2000:20-22). The conformal projection preserves
angles (shapes for small areas) and is often used for navigation and national
grid systems. The equidistant projection preserves certain relative distances
and is used for measurement of length. The equivalent projection preserves
area and is used for measurement of areas. Each of the properties (angle, dis-
tance, area) is preserved at the expense of the others. The map projection
is usually selected depending on the application because there is no perfect
solution to the projection problem. Most coordinate systems used for land
surface mapping use conformal projections.

The developable surfaces can either touch the spheroid (tangent case) or
intersect it (secant case). The most commonly used surfaces are a cylinder
(cylidrical projection), a cone (conic projection), and a plane (azimuthal pro-
jection). The points or lines where the developable surface touches or intersects
the spheroid are called standard points and standard lines with zero distortion
(e.g. standard parallel for a tangent cone or two standard parallels for a secant
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cone). That means that the projected maps do not have uniform scale for the
entire area, and that the true map scale is preserved only along the standard
lines. To minimize distortions, some projections reduce the scale along the
standard parallel(s) or central meridian(s). This is expressed as a scale factor
smaller than 1.0 in the definition of such a projection.

Transverse projections use developable surfaces rotated by 90◦ so that
the standard (tangent) line is a meridian called central meridian instead of
a standard parallel. Oblique projections may use any rotation defined by az-
imuth where azimuth is an angle between a map’s central line of projection
and the meridian it intersects, measured clockwise from north. Snyder (1987)
provides an excellent manual on map projections with map examples for many
important projections.

Coordinate system To accurately identify a location on Earth, a coor-
dinate system is required. It is defined by its origin (e.g., prime meridian,
datum), coordinate axes (e.g. x, y, z), and units (angle: degree, gon, radiant;
length: meter, feet). The following general coordinate systems are commonly
used in GIS:

• geographic (global) coordinate system (latitude-longitude);
• planar (cartesian) georeferenced coordinate system (easting, northing, ele-

vation) which includes projection from an ellipsoid to a plane, with origin
and axes tied to the Earth surface;

• planar non-georeferenced coordinate system, such as image coordinate sys-
tem with origin and axes defined arbitrarily (e.g. image corner) without
defining its position on Earth.

Note that for planar georeferenced systems false easting and false northing
may be used. These are selected offset constants added to coordinates to
ensure that all values in the given area are positive.

For mapping purposes, each country has one or more national grid systems.
Information about national grid systems can be obtained from the national
cartographic institutes or from the ASPRS Web site7. A national grid system
is defined by a set of parameters such as ellipsoid, datum, projection, coor-
dinate system origin and axes, etc. Examples of worldwide and national grid
systems are UTM (Universal Transverse Mercator), Gauss-Krüger, Gauss-
Boaga, or State Plane. Information about the grid system used to georeference
digital geospatial data is a crucial component of the metadata and allows the
user to integrate and combine data obtained from different sources.

7 Information about national grid systems:
- ASPRS – Grids & Datums, http://www.asprs.org/resources/grids/
- European coordinate systems, http://www.mapref.org
- A comprehensive, general list of projection transformations is available at
http://www.remotesensing.org/geotiff/proj_list/

http://www.asprs.org/resources/grids/
http://www.mapref.org
http://www.remotesensing.org/geotiff/proj_list/
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2.2.2 Common coordinate systems and datums

Geographic coordinate system: latitude-longitude The most common
coordinate system used for global data is the spherical coordinate system
which determines the location of a point on the globe using latitude and
longitude. It is based on a grid of meridians and parallels, where meridians are
the longitude lines connecting the north and south poles and parallels are the
latitude lines which form circles around the Earth parallel with the equator.
The longitude of a point is then defined as an angle between its meridian and
the prime meridian (0◦, passing through the Royal Observatory in Greenwich,
near London, UK). The latitude of a point is defined as an angle between the
normal to the spheroid passing through the given point and the equator plane.
The longitude is measured 0-180◦ east from prime meridian and 0-180◦ west,
where 180◦ longitude is the international date line. Latitude is measured 0-90◦
north and 0-90◦ south from equator.

Geographic coordinates can be expressed in decimal degrees or sexages-
imal degrees. Decimal values of west (W) and south (S) are expressed as
negative numbers, north (N) and east (E) as positive numbers (e.g. Mur-
cia, Spain: -1.1333◦, 37.9833◦). Values given in sexagesimal system always
use positive numbers together with N, S, E, W (Murcia, Spain: 1:07:59.88W,
37:58:59.88N). It is not difficult to convert between these notations, see the
GRASS Wiki8.

Universal Transverse Mercator Grid System The Universal Trans-
verse Mercator (UTM) Grid System is used by many national mapping agen-
cies for topographic and thematic mapping, georeferencing of satellite imagery
and in numerous geographical data servers. It applies to almost the entire
globe (area between 84◦ N and 80◦ S). The pole areas are covered by the
Universal Polar Stereographic (UPS) Grid System, please refer to Robinson
et al. (1995).

UTM is based on a Transverse Mercator (conformal, cylindrical) projection
with strips (zones) running north-south rather than east-west as in the stan-
dard Mercator projection. UTM divides the globe into 60 zones with a width
of 6◦ longitude, numbered 1 to 60, starting at 180◦ longitude (west). Each of
these zones will then form the basis of a separate map projection to avoid un-
acceptable distortions and scale variations. Each zone is further divided into
strips of 8◦ latitude with letters assigned to from C to X northwards, omitting
the letters I and O, beginning at 80◦ south (Robinson et al., 1995:101). For
example, Trento (Italy; 11.133E, 46.067N) belongs to UTM zone 32, strip T.
A conversion script from latitude-longitude to UTM zone/strip is available
from the GRASS Wiki9.
8 GRASS Wiki, Converting degree notations,
http://grass.gdf-hannover.de/wiki/Convert_degree

9 Download section in the GRASS AddOns Web site,
http://grass.gdf-hannover.de/wiki/GRASS_AddOns

http://grass.gdf-hannover.de/wiki/Convert_degree
http://grass.gdf-hannover.de/wiki/GRASS_AddOns
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The origin of each zone (central meridian) is assigned an easting of
500,000m (false easting, Maling, 1992:358). For the northern hemisphere the
equator has northing set to zero, while for the southern hemisphere it has nor-
thing 10,000,000m (false northing). To minimize the distortion in each zone,
the scale along the central meridian is 0.9996, leading to a secant case of the
Transverse Mercator projection with two parallel lines of zero distortion. Note
that UTM is used with different ellipsoids, depending on the country and time
of mapping.

For GIS applications, it is important to realize that each UTM zone is a
different projection using a different system of coordinates. Combining maps
from different UTM zones into a single map using only one UTM zone (which
can be done relatively easily using GIS map projection modules) will result
in significant distortion in the location, distances and shapes of the objects
that originated in a different zone map and are outside the area of the given
zone. To overcome the problem, a different coordinate system should be used
and the data re-projected. For a quick reference, you can find the UTM zone
numbers in the Unit 013 “Coordinate System Overview” of the NCGIA Core
Curriculum in GIS.10

Lambert Conformal Conic Projection based systems The Lambert
Conformal Conic (LCC) projection is one of the most common projections
for middle latitudes. It uses a single secant cone, cutting the Earth along two
standard parallels or a tangent cone with a single standard parallel. When
working with LCC based coordinate systems, the following parameters have to
be provided: the standard parallel(s) (one or two), the longitude of the central
meridian, the latitude of projection origin (central parallel), false easting and,
sometimes, false northing (you may recall that false easting and northing are
shifts of the origin of the coordinate system from the central meridian and
parallel).

State Plane Coordinate System The State Plane Coordinate System
used by state mapping agencies in the USA is based on different projections
depending on the individual state shape and location, usually LCC or a Trans-
verse Mercator with parameters optimized for each state. Various combina-
tions of datums (NAD27, NAD83) and units (feet, meters) have been used, so
it is important to obtain all relevant coordinate system information (usually
stored in the metadata file) when working with the data georeferenced in the
State Plane Coordinate System. GIS projection modules often allow to define
the State Plane system by providing the name of the state and the county,
however, the parameters should always be checked, especially when working
with older data.

10 Unit 013 Coordinate System Overview in the NCGIA Core Curriculum
in GIS, http://www.ncgia.ucsb.edu/education/curricula/
giscc/units/u013/u013.html

http://www.ncgia.ucsb.edu/education/curricula/
giscc/units/u013/u013.html
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Fig. 2.4. Example for the Gauss-Krüger Grid System with two points A and B

Gauss-Krüger Grid System The Gauss-Krüger Grid System is used in
several European and other countries. It is based on the Transverse Mercator
Projection and the Bessel ellipsoid. The zones are 3◦ wide, leading to 120
strips. The zone number is divided by 3 according to longitude of central
meridian. Adjacent zones have a small overlapping area. The scale along the
central meridian (scale factor) is 1.0.

Figure 2.4 illustrates the coordinate system, the northing values are posi-
tive north from the equator, the easting values are measured from the central
meridian. To avoid negative values, a false easting of 500,000m is defined in
addition to the third of the longitude of the central meridian. For example,
the false easting for the 9◦ E central meridian is 3,500,000m (9/3 = 3, value
composed with 500,000m to 3,500,000m).

North American and European Datums In general, a large number of
georeferencing datums exists, here we focus on three examples. The North
American Datum 1983 (NAD83) is a geodetic reference system which uses
as its origin the Earth’s center of mass, whereas the old North American
Datum 1927 (NAD27) had a different origin, making it useful only in North
America. GPS receivers which are mostly based on the WGS84 datum (other
local datums can be selected in the GPS receiver’s menu) also use the Earth’s
center of mass as their system’s origin.

When using maps based on different datums, a datum transformation to
a common datum is required. For example, a change from NAD27 to NAD83
system leads to a shift for the entire map. Overlapping maps based on differ-
ent datums of the same region would not co-register properly without datum
transformation. In the continental United States, a few common assignments
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between datums and ellipsoids are in use: NAD27 datum with Clarke 1866 el-
lipsoid, NAD83 datum with GRS80 ellipsoid, and WGS84 datum with WGS84
ellipsoid.

It is important to know that the NAD27 and NAD83 datums are 2D hori-
zontal datums used for horizontal coordinates (easting and northing). Separate
vertical datums used with these systems are NGVD29 and NAVD88. GRASS
does not handle yet separate vertical datums, so these transformations need
to be done outside GRASS. WGS84 is a 3D datum (x, y and height).
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Getting started with GRASS

In this chapter, we begin working with GRASS. First, we explain the GRASS
software installation and the structure of its database. Then we use a sample
data set to perform basic GIS tasks. We also include a number of examples
illustrating how to start a GRASS project using different coordinate systems.

3.1 First steps

GRASS, as a multipurpose GIS, with data organized as raster and vector
maps, provides a wide range of tools to support most of the GIS function-
ality outlined in the previous sections. An overview is given in Table 3.1.
Detailed explanation of each module, often with a usage example, is given in
the GRASS users manual (see your GRASS installation or Web site1). The
latest GRASS 6.2 release has been designed as a 3D GIS with support for 3D
raster and 3D vector data (see Blazek et al., 2002; Neteler, 2001).

3.1.1 Download and install GRASS

GRASS software can be downloaded freely from the main GRASS Web site:
http://grass.itc.it

The main GRASS site is mirrored in several countries for faster access includ-
ing the GRASS USA mirror at http://grass.ibiblio.org.

You can find there the source code (portable version for all operating sys-
tems) as well as the latest ready-to-install binaries for GNU/Linux, MacOS X
and MS-Windows (optionally with the Cygwin tools). For some GNU/Linux
distributions, easy to install binary packages are also provided. MS-Windows
users may be interested in the Quantum GIS (QGIS2) package that includes

1 GRASS users manuals, http://grass.itc.it/gdp/manuals.php
2 QGIS Web site, http://qgis.org

http://grass.itc.it
http://grass.ibiblio.org
http://grass.itc.it/gdp/manuals.php
http://qgis.org
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functionality class functionality
geospatial data integration import and export of data in various formats

coordinate systems transformations and projections
transformations between raster and vector data
2D/3D spatial interpolation and approximation

2D/3D raster data processing 2D and 3D map algebra
surface and volume geometry analysis
topographic parameters and landforms
flow routing and watershed analysis
line of sight, insolation
cost surfaces, shortest path, buffers
landscape ecology measures
correlation, covariant analysis
expert system (Bayes logic)

2D/3D vector data processing multi-attribute vector data management
digitizing
overlay, point and line buffers
vector network analysis
spatial autocorrelation
summary statistics
multivariate spatial interpolation and approximation
Voronoi polygons, triangulation

image processing processing and analysis of multispectral satellite data
image rectification and orthophoto generation
principal and canonical component analysis
reclassification and edge detection
radiometric correction

visualization 2D display of raster and vector data with zoom and pan
3D visualization of surfaces and volumes with vector data
2D and 3D animations
hardcopy postscript maps

modeling and simulations hydrologic, erosion and pollutant transport, fire spread
temporal data support time stamp for raster and vector data

raster time series analysis
links to Open Source tools QGIS, R-stats, gstat, UMN/MapServer, Paraview

GPS tools, GDAL/OGR, PostgreSQL, MySQL

Table 3.1. GRASS functionality

a GRASS installation. GRASS is also available on CD-ROM from various
providers.3 There may be a fee for packaging the CD-ROM and for the cus-
tomized installation software.

The Web site also includes the “GDP – GRASS Documentation Project”4,
where you can find manual pages, tutorials, information about the externally
developed GRASS-modules and various articles. Support for developers and

3 List of GRASS CDs/DVDs, http://grass.itc.it/download/cdrom.php
4 GDP Web site, http://grass.itc.it/gdp/

http://grass.itc.it/download/cdrom.php
http://grass.itc.it/gdp/
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users is provided by several mailing lists, you can join them through the Web
interface (see the relevant links under “Support section” at the GRASS Web
site). Besides international mailing lists in English language, there are also
localized lists currently in Czech/Slovak, German, Italian, Japanese, Polish
and Spanish. The GRASS project has its Wiki based collaborative help sys-
tem5, where you can find (and submit) GRASS add-ons: scripts and modules
contributed by the community. You can participate in discussions about fu-
ture GRASS development and contribute your own tips and tricks for other
GRASS users. In addition to the GRASS Wiki site, you can download the
add-ons from a source code repository using the SVN client software:

svn co \
https://grasssvn.itc.it/svn/grassaddons/trunk/grassaddons \
grassaddons

You can add a relevant subdirectory to the above URL if you want to down-
load only a selected module. Please see the GRASS Wiki site for detailed
instructions.

GRASS binary installation The GRASS binaries are available for several
platforms (RPM, Debian and Gentoo packages as well as installation files for
MS-Windows and MacOS X) that can be downloaded from the GRASS server.
For GNU/Linux, download the install script grass-VERSION-install.sh and
the GRASS package grass-VERSION.tar.gz (the name depends on the plat-
form). The installation itself should be done as user “root”. It requires only
one step (check online for appropriate file names):

sh grass-VERSION-install.sh grass-VERSION.tar.gz

After successful installation, the package file grass-VERSION.tar.gz may be
deleted. Refer to the Chapter 9 for information on the GRASS source code,
the centralized source code server and code compilation.

3.1.2 Database and command structure

GRASS data are stored in a directory referred to as GISDBASE. This direc-
tory, often called grassdata/, must be created before you start working with
GRASS. You can create it using the mkdir command or a filemanager either
in your home directory or in a shared network directory (e.g. in a network
file system NSF) to make it accessible to colleagues. Within this directory,
the GRASS GIS data are organized by projects stored in subdirectories called
LOCATIONs (Figure 3.1). Each LOCATION is defined by its coordinate sys-
tem, map projection and geographical boundaries. The subdirectories and files
defining a LOCATION are created automatically when GRASS is started for
the first time with a new LOCATION (see Section 3.2 for more details). Each
5 GRASS Wiki site, http://grass.gdf-hannover.de/wiki/

http://grass.gdf-hannover.de/wiki/
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Fig. 3.1. Organization of GRASS data directory, LOCATIONs, MAPSETs, vector
and raster maps

LOCATION can have several MAPSETs (subdirectories of the LOCATION,
see Figure 3.1) that are used to subdivide the project into different topics, sub-
regions, or as workspaces for individual team members. Besides access to his
own MAPSET, each user can also read maps in other users’ MAPSETs, but
he can modify or remove only the maps in his own MAPSET. All MAPSETs
include a WIND file that stores the current boundary coordinate values and
the currently selected raster resolution.

When creating a new LOCATION, GRASS automatically creates a spe-
cial MAPSET called PERMANENT designed to store the core data for the
project, its default spatial extent in the DEFAULT_WIND file and coordinate
system definitions. Only the owner of the PERMANENT MAPSET can add,
modify or remove its data; however, these data can be accessed, analyzed,
and copied by other users into their own MAPSETs. The PERMANENT
MAPSET is therefore useful for providing other users working on the same
project with baseline geospatial data such as elevation, roads or streams while
keeping them write-protected. To import data into PERMANENT, just start
GRASS with the relevant LOCATION and the PERMANENT MAPSET.
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The internal organization and management of LOCATION, MAPSETs
and maps should be left to GRASS. Operations such as renaming or copying
raster and vector maps involve several internal files and should always be done
through GRASS commands (we discuss this in detail in Section 3.1.6). Non-
GRASS interventions are acceptable only in exceptional situations and when
one has a good understanding of GRASS’ internal structure.

GRASS modules are organized by name, based on their function class (dis-
play, general, imagery, raster, vector or database, etc.). The first letter refers
to the function class, followed by a dot and one or two other words, again
separated by dots, describing the specific task performed by the module. Ta-
ble 3.2 lists the most important function classes. For example, v.in.ogr is a
vector command for importing vector data in various formats, r.buffer calcu-
lates a buffer zone along raster lines and around raster areas, d.rast displays
a raster map, i.ortho.photo creates an orthophoto from a scanned/digital
aerial image.

Using GRASS on the command line The general syntax of a GRASS
command which is called to run a module is similar to UNIX commands:

module [-flag1[flag2...]] parameter1=map1[,map2,...]\
[parameter2=number...] [--o] [--q] [--v]

where module is the name of the command (see Table 3.2), optional flags
enable specific features, and parameter is a name of an input or output file,
a constant, name of a method, symbol etc. Note that there must be no space
when listing comma-separated names. By default, GRASS does not allow users
to overwrite maps with the same name to protect them, but overwriting can
be enabled by adding --o to the command line. The level of verbosity can
be changed by adding --q or --v. To learn the usage of a command (syntax,
flags and parameters), run the command with the help option. We show the
next commands only for illustration of the concept, a sample session follows
later in this chapter:

# ’help’ as parameter
d.rast help

The next command opens the first map display, called GRASS monitor “x0”:

# monitor name as parameter
d.mon x0

Flags can be specified at any position and combined with parameters:

d.vect -c map=soils

Do not use white space before or after the = character because the various
flags and parameters are white space separated. The first parameter generally
does not require the parameter name to be specified, so the previous command
can be simplified to:

d.vect -c soils
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prefix function class type of command
d.∗ display graphical output
db.∗ database database management
g.∗ general general file operations
i.∗ imagery image processing
m.∗ misc miscellaneous commands
ps.∗ postscript map creation in Postscript format
r.∗ raster 2D raster data processing
r3.∗ 3D raster 3D raster data processing
v.∗ vector 2D and 3D vector data processing

Table 3.2. GRASS module function classes

For additional parameter names, it is sufficient to type the initial(s) of the
parameter, just to distinguish it/them from other parameters of the command:

# full names of parameters
v.to.rast input=roadsmajor output=roadsmajor use=val
# abbreviated names of parameter
v.to.rast roadsmajor out=roadsmajor use=val

If you abbreviate too much and parameter names can no longer be distin-
guished, GRASS will issue an error message.

To read the module-related manual pages, run:

# look at help index
g.manual index
# look at a specific command
g.manual d.rast

This opens the selected manual page in the default HTML browser of the
system. Adding the -m flag, text manual page will be shown in the terminal
(but page links won’t work here; browse with <space>, leave with <q>):

g.manual -m d.rast

You can also find these manual pages and tutorials at the GRASS Web site.

3.1.3 Graphical User Interfaces for GRASS 6: QGIS and gis.m

One of the currently easiest approaches to learn GRASS is through Quantum
GIS (QGIS).6 QGIS is a user friendly geographic data viewer (Figure 3.2) with
a set of analytical capabilities that runs on GNU/Linux, Unix, MacOS X, and
MS-Windows. It supports vector, raster, and database formats and OGC Web
Services. QGIS is licensed under the GNU General Public License. It reads
all common GIS data formats through the GDAL/OGR libraries, includes a
digitizer as well as a GPS track import and export. Projection on the fly can
be enabled for easy integration of different data sources. GRASS plugin is
6 Quantum GIS Web site, http://qgis.org

http://qgis.org
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Fig. 3.2. QGIS as a graphical user interface for GRASS with toolbox

provided for reading GRASS raster and vector data directly and a toolbox
enables the user to run QGIS as a graphical user interface for GRASS as it
supports all important GRASS commands. The GRASS shell is also accessible.
QGIS binary packages usually include the latest GRASS version as the GIS
backbone, therefore no extra installation is needed.

GRASS also has its native “GIS manager” graphical user interface called
gis.m (Figure 3.3), we will refer to it where appropriate but we do not explain
its use in detail as it will be replaced in near future with a wxPython based
GUI. It is also possible to use a JAVA-based interface JGrass/uDig designed
for water resources and geomorphology applications.

3.1.4 Starting GRASS with the North Carolina data set

In the following sample session, we assume that you have a working knowl-
edge of running commands, creating directories, and managing files on your
computer system. You need to install the North Carolina (NC) sample data
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Fig. 3.3. GRASS built-in GIS manager gis.m

set that you can download from the GRASS Web site or get on CD-ROM.7
It is a comprehensive set of raster, vector and external data covering central
NC region, including a section of the NC capital city Raleigh. The coordinate
system is State Plane NAD83 with metric units. Data are provided at three
hierarchical levels: entire NC with raster data at 500m resolution; Southwest
Wake county with boundary coordinates 215000N-228500N, 630000E-645000E
and resolutions of raster maps ranging from 10m to 30m; and a small water-
shed in a rural area with data resolutions between 1m-3m; see Section 1.3 for
a more detailed description.

To start, you need to create your GIS data directory, for example,
in your home directory. For shared access you can also store it under
/usr/local/share/ or in another shared network directory. Depending on
your system set-up you may have to do the latter as a user “root” (or ask your
administrator to do it) and change the access permissions so that you can
read, write and execute within this directory. Since creating it in your home
directory is straightforward, we explain the more complex shared access – as
“root” user, run:

# find your group ID (gid)
id
# become root (needs password)
su

7 NC data set download,
http://www.grassbook.org (section “Data 3rd Edition”)

http://www.grassbook.org
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# create directory
mkdir -p /usr/local/share/grassdata
# change its ownership to login name and your group ID
chown yourname /usr/local/share/grassdata
chgrp yourgroup /usr/local/share/grassdata
# make it read-/write-/executable for you and the group
chmod ug+rwx /usr/local/share/grassdata

We run mkdir with the flag -p to create all the non-existing parent directories
and the desired subdirectory. Then we set the permissions to “read”, “write”
and “execute” for the user and the group (use your login name for yourname
and yourgroup (gid) in the example above).

Then move the downloaded file nc_spm_grassdata-VERSION.tar.gz into
this directory, change into it and unpack the file:

# replace VERSION with current package version number
mv nc_spm_grassdata_VERSION.tar.gz /usr/local/share/grassdata
cd /usr/local/share/grassdata
tar -xvzf nc_spm_grassdata-VERSION.tar.gz

The resulting list of files shows that the data are extracted into a new subdi-
rectory nc_spm, which is the name of your LOCATION. After unpacking, the
downloaded “tar.gz” package file can be deleted.

Starting GRASS You can now call GRASS in the terminal (or from the
menu system):

grass63

and you will see the start menu for selecting a LOCATION and a MAPSET in
your GIS data directory (Figure 3.4). Your home directory will be automati-
cally entered as a GIS data directory. Replace it with /home/user/grassdata/
or /usr/local/share/grassdata/ as appropriate. For LOCATION select
nc_spm; for MAPSET select user1. Then click on Enter GRASS, and you will
see the welcome message and the command line prompt in your window (the
version may vary):

GRASS 6.3.cvs (nc_spm):~ >

Now you are in GRASS and you can call GRASS modules as well as UNIX
programs. You can also use the gis.m GUI which opened when you entered
GRASS (Figure 3.3). If you don’t see it, just type:

gis.m

Most of the GRASS commands are integrated within this interface and you
can find a command for a specific task using the function menus. The interface
includes a brief description of the parameters and it also displays the command
line version of the module.
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Fig. 3.4. Graphical startup of GRASS

To list the available raster and vector maps, type:

g.list rast
g.list vect

You can learn more about each raster or vector map in terms of its minimum
and maximum coordinates, resolution, and number of classes using the *.info
commands, for example:

r.info elevation
v.info streams
v.info -c streams

The last command with -c flag prints types and names of attribute table
columns for a vector map.

3.1.5 GRASS data display and 3D visualization

To view raster and vector maps, we use the standard GRASS monitor “x0”
throughout the book. Alternatively, you can also use the built-in graphical
user interface gis.m, QGIS with GRASS plugin, JGrass or other software.
You can learn how to work with the most recent version of GUI using the on-
line help or any of the relevant on-line tutorials. We prefer to use the command
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Fig. 3.5. Shaded elevation raster map with overlayed vector streams, major roads
and overpasses

line interface (CLI) in the book. Besides the advantage of speed and indepen-
dence from changing graphical user interfaces, the GRASS shell maintains
the command history per mapset which lets you scroll back. Additionally, it
is auto-documenting the work that has been done.

To display a map on a unix-like system (GNU/Linux, MacOS X, etc.),
first open a GRASS monitor:

d.mon x0

The default size of the graphics monitor is relatively small, so you may want
to resize it to a bigger window using the mouse. MS-Windows users either
have to install a X-Server to use the GRASS monitors or they may use gis.m
to display maps.

To view the raster elevation map together with vector streams (drawn
as blue lines), major roads (drawn as black lines) and overpasses (drawn as
symbols) type (Figure 3.5):

# set the region to the raster map to be displayed
g.region rast=elevation -p
d.erase

# display elevation map as 2D color map and a shaded color map
d.rast elevation
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d.his h=elevation i=elevation_shade

# display vector line and point maps
d.vect streams col=blue
d.vect roadsmajor
d.vect overpasses icon=extra/bridge size=15 fcol=blue

To simultaneously view more than a single raster map (for example, to com-
pare patterns), it is possible to open up to seven GRASS monitors named x0
through x6 using the command d.mon. Use the parameter select to choose in
which monitor the map will be displayed, for example (nc_spm LOCATION):

g.region rast=aspect -p
d.mon x0
d.rast aspect
d.mon x1
d.rast geology_30m
d.barscale at=0,0
d.mon select=x0
d.vect roadsmajor col=yellow

This will display the aspect map in monitor x0, the geological map in monitor
x1, and overlay the roads map again in monitor x0. If you are planning to
use multiple monitors regularly, it is worth trying the module gis.m which
provides a graphical user interface for easily managing multiple monitors and
browse through multiple raster and vector maps interactively. To get a list of
the maps currently displayed in the GRASS monitor, use d.frame -l.

Zooming You can interactively zoom into a selected location within a map
displayed in the GRASS monitor using the command:

d.zoom
Buttons:
Left: 1. corner
Middle: Unzoom
Right: Quit

Use the left mouse button to define the first corner point, then move around
the mouse to open the zoom box and use the middle mouse button to set the
second zoom box corner. If the zoom level is acceptable, confirm it with right
mouse-click. The related mouse button menus are explained in the terminal
window. To zoom out with d.zoom, use the middle mouse button. The com-
mand requires an open and selected GRASS monitor with at least one map
displayed in it, otherwise the graphical user interface will appear and ask for
the map name.
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Fig. 3.6. Elevation surface and color raster map with overlayed vector streams,
major roads and overpasses shown in nviz

Region changes and redraw If you change the region coordinates or raster
resolution, run d.redraw to tell the GRASS monitor about it. It will fetch the
updated region settings and redraw the displayed map(s) accordingly.

Barscale and legends While we have already used the barscale above,
barscale and legends are explained in greater detail in the beginning of the
raster and the vector chapters. More sophisticated display methods and output
to other formats (PNG, PS etc.) are covered in Chapter 7.

Map queries Map queries are described in Section 5.1.3 for raster data and
Section 6.4.1 for vector data.

Viewing GRASS data in 3D space We can also load the maps into the
NVIZ viewer:

nviz elevation vect=streams,roadsmajor point=overpasses

Using the green puck, you can modify the view perspective (Figure 3.6). Most
sliders should be self-explanatory and are covered in greater detail in the
visualization chapter (refer to Section 7.3). In the Visualize ; Raster Surfaces
menu you can adjust the raster surface resolution (set fine to a low number
or 1 to render the surface at the highest resolution). To drape a new color
map over the surface select a new raster map from the Surface Attribute ;

color option, for example, landclass96 from the PERMANENT MAPSET
and use DRAW to render your elevation surface with the new color map. You
can select colors for the Visualize ; Vector Lines and a different (3D) symbol
for the Visualize ; Vector Points (select red color, icon size “200” and icon type
“diamond”). You can leave NVIZ through File ; Quit.

In the following chapters, you will see numerous examples of geospatial
data processing and analysis performed with the North Carolina sample data
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set; therefore, at this point, we will just show how to properly end the GRASS
session. Exit gis.m by clicking on File ; Exit. If there are still open monitors,
close them using the mouse, then exit GRASS by typing:

exit

It is recommended to close GRASS correctly to ensure that temporary files
are not left over. If you exit GRASS but forgot to close gis.m, you can do it
at any time later by simply closing the relevant windows using the menu or
mouse.

3.1.6 Project data management

When working with GRASS, it is important to understand that each raster or
vector map consists of several files which include the data, categories, header,
and other information. The general map management commands simplify list-
ing, copying, renaming and deleting maps: use them to maintain the consis-
tency in the GRASS GIS directory. It is not recommended to directly modify
the files in the LOCATION or MAPSET directories, unless you are experi-
enced with the system. The map management modules are also applicable to
other GRASS related files such as region definitions and imagery groups.

Although it is possible to use all combinations of characters for the GRASS
map names if the map name or expression is enclosed within quotes, it is safer
to follow the name conventions described below. First, it is important to avoid
spaces and special characters, such as a comma, dash, or exclamation mark
in GRASS map names. Since GRASS 6, dot is not allowed in the vector map
names to maintain compliance with the SQL standard. It is also useful to
include at least one letter in raster map names to avoid confusion with num-
bers being treated as values, especially when using the map algebra module
r.mapcalc.

We have already shown that we can use the command g.list to list avail-
able raster and vector maps. To list the maps with their titles, use -f flag.
If you have many MAPSETs and you want to see the maps stored only in a
selected one, use the mapset parameter, for example:

# start GRASS with NC data set
grass63

g.list -f vect
g.list -f vect mapset=PERMANENT

Remember, when a list exceeds the terminal screen, continue with <SPACE>,
go back with <b> and leave with <q>. In case you have many maps available,
you may want to list only their subset. You can use wildcards to invoke auto-
mated character or name replacement or, optionally, regular expressions. In
our example, we want to see all vector maps with the names starting with “s”:
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g.mlist vect pattern="s*"

To create a full copy of a map, use the g.copy module. You have to specify
the map type and add an old and a new map name, separated by comma (no
spaces are allowed between the names). As an example, you can copy the map
railroads from the PERMANENT MAPSET into your own MAPSET:

g.copy vect=railroads@PERMANENT,myrailroads

To rename a map, you can use g.rename and list the old name and the new
name, separated by comma:

g.rename vect=myrailroads,railnetwork

You should also use a GRASS command to remove maps. For example, to
remove one of the recently created map copies, type:

g.remove vect=railnetwork

Multiple maps can be removed by listing them separated by comma. If you
need to delete a series of maps, you may carefully (!) use the g.mremove mod-
ule. It allows the use of wildcards or regular expressions similar to g.mlist.
For example, you can generate several map copies and then delete them in
one step:

g.copy vect=railroads@PERMANENT,myrailroads1
g.copy vect=railroads@PERMANENT,myrailroads2
g.copy vect=railroads@PERMANENT,myrailroads3
g.list vect

# this only lists the delete candidates
g.mremove vect="myrail*"
# this really removes them
g.mremove vect="myrail*" -f

The module will collect the list of map names and ask for confirmation to
delete. You should double check the list for any map that you want to keep.
You won’t be able to undelete it.

Initially, you have access only to the MAPSET PERMANENT (read only,
unless you work in it) and your own MAPSET, in our case user1 (read
and write). If several MAPSETs exist for a given LOCATION, for exam-
ple, when working within a team, you have to add these other MAPSETs to
the MAPSET search path to be able to access them. You will have only read
access to MAPSETs belonging to other users. To list all MAPSETs available
for a given LOCATION and find out which are currently accessible, type:

g.mapsets -lp

You can add MAPSET user2 to the search path or re-arrange the search order
of MAPSETS for listing their maps as follows:
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g.mapsets addmapset=user2
g.mapsets mapset=PERMANENT,user1,user2
g.list rast

To modify data from another user’s MAPSET, copy them to your MAPSET
using g.copy. You can restrict others’ access to your own MAPSET using the
command g.access. MAPSETs to which access is restricted can still be listed
in another’s MAPSET search path; however, access to the data within these
MAPSETs will remain restricted.

To get information about the current LOCATION coordinate system pa-
rameters and units, the current MAPSET spatial extent (region) and GRASS
environmental variables type:

g.proj -p
g.proj -w
g.region -p
g.gisenv

You will learn more about these commands in the next section when we de-
scribe how to create a new LOCATION, and in the next chapter, Section 4.1.2
that illustrates various options available for region extent and resolution.
GRASS environmental variables are often used in scripts as you will learn
in Chapter 9.

LOCATION and MAPSET management The most efficient way to
copy a LOCATION or a complete GRASS GIS data directory is to package
the directories and then extract them in the destination directory. Care must
be taken, if vector attribute data are kept in an external SQL database. For
example, to package the nc_spm LOCATION, enter:

cd /usr/local/share/grassdata
tar -cvzf /tmp/mync_spm_location.tar.gz nc_spm/
mv mync_spm_location.tar.gz /some/target/directory/
cd /some/target/directory/
tar -xvzf /tmp/mync_spm_location.tar.gz

If the target directory is located on a different computer, you can transfer the
file mync_smp_location.tar.gz on an external memory drive (USB, DVD) or
through network to the destination machine and extract it there.

You can remove a LOCATION from the GIS data directory as follows:

cd /usr/local/share/grassdata
rm -r nc_spm

This will remove the entire nc_spm directory. If you want to avoid the delete
confirmation prompts for every file/subdirectory, add the flag -f to the rm
command. Of course you can also use a file manager. For MAPSETs, the
same applies – they can be simply removed or renamed using command line
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tools or a file manager. Note that this may affect MAPSET search paths
(managed with g.mapsets and g.access).

3.2 Starting GRASS with a new project

When starting a new project, you need to define a new LOCATION and its
projection and coordinate system. GRASS provides three options through its
start-up panel (Figure 3.4):

• use available georeferenced file,
• use European Petroleum Survey Group (EPSG8) code, or
• define projection and coordinate system parameters.

New project from a georeferenced file: North Carolina State Plane
NAD83 with units meters We will use the North Carolina (NC) geodetic
point data provided as a SHAPE file gdc.shp to illustrate the first, easiest case.
You can find the data within the geod_pts_spm.zip file in the subdirectory
ncexternal/ of the NC sample data set provided for this book. The data
include a gdc.prj text file with the projection and datum information: it is
State Plane NAD83 with units meters, the same as we use for our sample data
set. To create a new LOCATION, start

grass63 -gui

and select Georeferenced file under Define new location with in the start-up
panel. This opens a new panel where you provide:

• Name of new location, for example, mync_spm,
• Path to new location, the path to your GIS data directory,
• Path to georeferenced file, use the Browse button to define this path.

Then click on Define location ; OK. After creating this new LOCATION,
it will be selected automatically along with the PERMANENT mapset. To
create an additional mapset, type a new name, for example, mymapset into
the field under Create new mapset, select it in the list, click Enter GRASS and
you should be in your newly created project LOCATION. You can check your
projection using g.proj -p (or g.proj -w); it should be Lambert Conformal
Conic with NAD83 datum, units meters, that are used for the official State
Plane coordinate system in NC. Note that the default region (spatial extent)
has not been set and default values (all 1) are used. If you know the coordi-
nates of your project area you can use g.region to define the coordinates, for
example, for the LOCATION mync_spm we can define:

# use flag -s to save it as default region
g.region n=228500 s=215000 w=630000 e=645000 res=10 -p -s

8 Now called “OGP Surveying & Positioning Committee”, http://www.epsg.org/

http://www.epsg.org/
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If you do not know the coordinates, the easiest approach is to import a file
(for example, the geodetic points that we used to create the LOCATION
mync_spm) and set the region from this file as will be explained in the next
chapter.

After having created the new projected LOCATION, it is highly recom-
mended to run g.region -b. The command reprojects the current MAPSET
boundary values to latitude-longitude which helps you to verify that the pro-
jection definitions are correct. Note that the -b flag reprojects to the WGS84
ellipsoid.

New project from EPSG code: North Carolina State Plane NAD83
with units feet If you don’t have any standard (GDAL/OGR readable, see
Section 3.3.3) georeferenced file you can use the European Petroleum Survey
Group (EPSG) code, aimed at standardization of common projection defini-
tions. Projections and coordinate systems including geodetic datum can either
be manually defined or selected via EPSG code from predefined list entries.
The EPSG codes menu window provides a browse and search option for EPSG
codes. If you open the EPSG code browser in GRASS, you can search for
available North Carolina projections: you will find more than five (including
deprecated codes), so you will need to make a decision which one to use. Our
sample data set uses “NAD83(HARN) / North Carolina”, EPSG code 3358;
however, some of our data come in the same projection, but with units feet
(EPSG code 2264) and we will use the latter as an example. Again start
grass63 -gui, and select EPSG codes in the start-up panel (Figure 3.4).
This opens a new panel (Fig. 3.7) where you provide

• Name of new location, for example, change to mync_spf,
• Path to the EPSG-codes file, should appear automatically,
• EPSG code number of projection, the code of the projection.

Then type in the EPSG code into the last entry line, in our case 2264
(click on Browse to see/search the list of all EPSG codes, see Fig. 3.7). Then
click on Define location and OK. You should see the new LOCATION in the
list and you continue as in the previous example by creating your mapset.

For both of the above described options the spatial extent of the study area
– region – needs to be defined. As in the above example, we use g.region to
define the boundary coordinates for the LOCATION mync_spf:

g.region n=749680 s=705370 e=2116150 w=2066920 res=10 -p

# verify if resulting latitude-longitude coordinates match
g.region -b

New project from interactively defined values The third option is used
if Projection values are selected in the start-up panel (Figure 3.4). We will
illustrate the procedure in the next section by creating a new LOCATION
with geographic (lat/long) coordinate system.



3.2 Starting GRASS with a new project 39

Fig. 3.7. Definition of NC State Plane/Feet from EPSG code

--------------------------------------------------------------
GRASS 6.3.cvs

DATABASE: A directory (folder) on disk to contain all GRASS maps
and data.

LOCATION: This is the name of a geographic location. It is defined
by a co-ordinate system and a rectangular boundary.

MAPSET: Each GRASS session runs under a particular MAPSET. This
consists of a rectangular REGION and a set of maps.
Every LOCATION contains at least a MAPSET called
PERMANENT, which is readable by all sessions.

The REGION defaults to the entire area of the chosen LOCATION.
You may change it later with the command: g.region

- - - - - - - - - - - - - -- - - - - - - - - - - - - - - - - - -
LOCATION: mync_ll (enter list for a list of locations)
MAPSET: user1_________ (or mapsets within a location)
DATABASE: /usr/local/share/grassdata_____________

AFTER COMPLETING ALL ANSWERS, HIT <ESC><ENTER> TO CONTINUE
(OR <Ctrl-C> TO CANCEL)

--------------------------------------------------------------

Fig. 3.8. GRASS text-based startup screen for selection of LOCATION, MAPSET
and DATABASE
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3.2.1 Defining the coordinate system for a new project

To create a new LOCATION from projection values, first type grass63 -gui
and select Projection values in the start-up panel (Figure 3.4). This brings
up the old, text-based GRASS start-up interface screen (see Figure 3.8).
Alternatively, grass63 -text gets you directly to the text-based interface.

For LOCATION enter the name for your new project (in our case mync_ll),
for MAPSET you can enter user1, and for DATABASE (GIS data directory)
you should have /usr/local/share/grassdata (if it is not there, type it in).
Note that this is an old fashioned interface and when you want to change
something, you need to type over it (BACKSPACE will not erase it). Once
you have entered the new LOCATION, MAPSET, and DATABASE, you can
continue with <ESC><ENTER>. Because your LOCATION does not exist yet,
the following menu appears:

LOCATION <mync_ll> - doesn’t exist
Available locations:
----------------------
mync_spm mync_spf nc_spm
----------------------
Would you like to create location <mync_ll> ? (y/n)

Type <y> and you will get the following message:

To create a new LOCATION,you will need the following information:
1. The coordinate system for the database

x,y (for imagery and other unreferenced data)
Latitude-Longitude
UTM
Other Projection

2. The zone for the UTM database
and all the necessary parameters for projections other than
Latitude-Longitude, x,y, and UTM

3. The coordinates of the area to become the default region
and the grid resolution of this region

4. A short, one-line description or title for the location
Do you have all this information for location <mync_ll>? y

From the previous sections, you should understand what latitude-longitude
or UTM means and you should know, based on the data that you want to
work with (or from your supervisor, customer or instructor), what coordinate
system you are going to use (see Figure 3.9 for a general idea). You can type
again <y> and you will be asked to specify the new coordinate system:

A x,y
B Latitude-Longitude
C UTM
D Other Projection

Type the appropriate letter, in our example, it will be <B> for Latitude-
Longitude. We accept and continue with:
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Fig. 3.9. Definition of a xy LOCATION and a projected LOCATION

Please enter a one line description for location <mync_ll>
> North Carolina Latitude-Longitude WGS84
ok? (y/n) [y] y

The next step is the selection of the geodetic datum:

Do you wish to specify a geodetic datum for this location? y
Please specify datum name
Enter ’list’ for the list of available datums
or ’custom’ if you wish to enter custom parameters
Hit RETURN to cancel request
>

To see the list of available datums, enter list at this prompt, then select the
datum by typing its name:

>list
Short Name Long Name / Description
---
agd66 Australian_Geodetic_Datum_1966

(australian ellipsoid)
[...]

wgs84 World_Geodetic_System_1984
(wgs84 ellipsoid)

---
Please specify datum name
Enter ’list’ for the list of available datums
or ’custom’ if you wish to enter custom parameters
Hit RETURN to cancel request
>wgs84

For most geodetic datums you have to select the datum transformation pa-
rameters:
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Now select Datum Transformation Parameters
Enter ’list’ to see the list of available Parameter sets
Enter the corresponding number, or <RETURN> to cancel request
>list
Number Details
---
1 Used in Default wgs84 region

(PROJ.4 Params towgs84=0.000,0.000,0.000)
Default 3-Parameter Transformation

---
Now select Datum Transformation Parameters
Enter ’list’ to see the list of available Parameter sets
Enter the corresponding number, or <RETURN> to cancel request
>1

These are all required parameters for latitude-longitude. Next you will be
prompted to define your default region by defining the boundary coordinates
of the project area and the default raster resolution (here we use sexagesimal
degree notation and the spatial extent will cover entire state of NC):

DEFINE THE DEFAULT REGION

====== DEFAULT REGION =======
| NORTH EDGE: 37:00:00N_ |
| |

WEST EDGE | |EAST EDGE
85:00:00W_| |75:00:00W_

| SOUTH EDGE: 33:00:00N_ |
=============================

PROJECTION: 3 (Latitude-Longitude) ZONE: 0

GRID RESOLUTION
East-West: 0:00:30_____

North-South: 0:00:30_____

AFTER COMPLETING ALL ANSWERS, HIT <ESC><ENTER> TO CONTINUE
(OR <Ctrl-C> TO CANCEL)

The default raster resolution (GRID RESOLUTION) is arbitrary, be-
cause you can change it later based on the needs of your application.
For latitude-longitude LOCATIONs, you have to define the resolution in
degree:minutes:seconds (DMS) as well. You can leave this screen with
<ESC><ENTER> and then check the list of parameters that appears:

projection: 3 (Latitude-Longitude)
zone: 0
north: 37:00:00N
south: 33:00:00N
east: 75:00:00W
west: 85:00:00W
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e-w res: 0:00:30
n-s res: 0:00:30

total rows: 480
total cols: 1200
total cells: 576,000

Do you accept this region? (y/n) [y] > y
LOCATION <mync_ll> created!
Hit RETURN -->

If everything is correct, type <y> and <ENTER> and you will get back to the
startup screen. Type <ESC><ENTER> again and you will get the message that
your MAPSET does not exist yet (note that the MAPSET PERMANENT
was created automatically):

Mapset <<user1>> is not available

Mapsets in location <>
----------------------
(+)PERMANENT

note: you only have access to mapsets marked with (+)
----------------------
Would you like to create < user1 > as a new mapset? (y/n) y

Type <y> and your new LOCATION with your MAPSET are created and the
GRASS prompt appears. You are now working in GRASS. You can check the
definition of your LOCATION by running:

g.proj -p
g.region -pm

The second command prints the region information with the geodesic reso-
lution reported in meters. Now the LOCATION is ready, and you can start
importing data.

The dialog used for the LOCATION definitions will vary depending on
the coordinate system. For example, when defining a new LOCATION in the
UTM coordinate system (option <C> in the dialog) you will be asked for the
Datum name (usually “nad83” in USA), Datum transformation parameters
(you can select them based on the state, default is used for NC), and Zone
(based on state, NC is in zones 17 and 18).

Most states in USA use State Plane Coordinate System (you will find it
in the list for option <D>), and the dialog allows you to create its projection
parameters based on the state and county Federal Information Processing
Standards (FIPS) codes that are listed for each state and county in the dialog.
If you need to work in feet, make sure that you select US Survey Foot for a
project in USA.



44 3 Getting started with GRASS

--------------------------------------------------------
| North: rows (y) |
| (from image) |
| |
| West: 0 East: cols (x) |
| (from image) |
| |
| South: 0 |
--------------------------------------------------------
Resolution: East-West: 1

North-South: 1

Fig. 3.10. Definition of a region for xy LOCATION suitable for importing an image
or scanned map. Units are pixels

3.2.2 Non-georeferenced xy coordinate system

You can define a LOCATION in a general, non-georeferenced coordinate sys-
tem xy if you need to work with non-georeferenced data, or you do not know
the parameters of your coordinate system, or your coordinate system is not
supported by GRASS.

To define a new xy LOCATION, type grass63 -gui and select Projection
values in the start-up panel (Figure 3.4). Type in the new names for LOCA-
TION and MAPSET; for example, my_xy and user1 in the old, text-based
GRASS start-up interface screen (see Figure 3.8). Similarly to the procedure
described in Section 3.2 proceed to the question Please specify the coordinate
system for location my_xy. The coordinate system we need here is <A> “x,y”.
After entering a one line description, you reach the LOCATION region def-
inition screen. Now define the region size in x and y direction (columns and
rows). It should cover at least the size of the image or map that you want to
import. The xy LOCATION can be defined larger than needed because the
actual memory used depends only on the size of your imported file. When
working with imagery data, set the west and south values to 0 (zero) and
the north and east values to the number of rows and columns of the image
(or more, compare Figure 3.10). The GRID RESOLUTION can be set to 1,
because the units are pixels. After leaving this menu and accepting the defini-
tion, the new LOCATION is created. You can return to the GRASS startup
screen and leave it again to create the MAPSET and to enter GRASS.

3.3 Coordinate system transformations

Geospatial data for a given study area are often provided in different coordi-
nate systems (for example, a combination of data in the UTM, State Plane
and geographic coordinates is quite common in USA). It is therefore impor-
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tant to have the capability to transform data between different projections
and coordinate systems.

GRASS and its projection support through PROJ4 The projection
library needed for GRASS 6 is PROJ 4.5.0 or later which was originally devel-
oped by USGS (Evenden, 1995). This library is now maintained by volunteers9
and contains a stand-alone program cs2cs for the reprojection of coordinate
lists. PROJ4 supports datum transformations from version 4.4.5 onwards. The
general procedure for a transformation between two projections is internally
always performed through geographical coordinates:

Projection1 ; latitude-longitude ; Projection 2

The projection information for each GRASS LOCATION is stored in the
PERMANENT MAPSET in files PROJ_INFO and PROJ_UNITS. Depending on
the actual projection the following parameters may be included: proj (projec-
tion type), name (projection name), ellps (ellipsoid), a (ellipsoid: equatorial
radius), es (ellipsoid: eccentricity squared), zone (zone for the area), unfact
(conversion factor from meters to other units, e.g. feet), lat_0 (standard par-
allel), lon_0 (central meridian), k (scale factor), x_0 (false easting) and y_0
(false northing).

To simplify the definition of a projection, PROJ4 provides support for
the EPSG codes, aimed at standardization of common projection definitions.
Projections and coordinate systems including geodetic datum can either be
constructed or selected via EPSG code from predefined list of entries. As
mentioned in the previous section, the list of EPSG codes is usually installed
at /usr/local/share/proj/epsg.

Depending on the type of data, coordinate transformations can be done
in two ways:

• ASCII file coordinate lists can be transformed between any of the more
than 120 supported projections by running the external command cs2cs
provided by PROJ4 (or m.proj);

• raster and vector maps can be transformed between two existing LOCA-
TIONS with different coordinate systems using the commands r.proj and
v.proj.

As an alternative, the external commands gdalwarp (for raster data) and
ogr2ogr (for vector data) are available. For map reprojections, see Sec-
tion 3.3.3.

3.3.1 Coordinate lists

PROJ4 provides the command cs2cs for reprojection of point lists given by
coordinate pairs, such as map corners or points from a GPS survey. The
9 PROJ4 Web site, http://proj.maptools.org/

http://proj.maptools.org/
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GRASS command m.proj can be used as frontend to cs2cs. You have to define
the source and the target projections, then the coordinate pairs are queried
or read from an ASCII file, transformed, and written either to the screen
or redirected to an output file. You can also list the supported projections
using cs2cs -lp, an extended list with flag -P, ellipsoids cs2cs -le, prime
meridians cs2cs -lm, datums cs2cs -ld and units cs2cs -lu.

For example, to transform the corner points of the mync_ll LOCATION
from latitude-longitude/WGS84, to UTM/WGS84 zone 17 you can use (enter
in one line, you can find the required parameters in the epsg file):

cs2cs -v +proj=latlong +to +proj=utm +zone=17 +ellps=WGS84 \
+datum=WGS84 +units=m

This command prints out the projection parameters (due to the -v flag) and
then waits for input. Now you can type in the longitude and latitude coordi-
nate pairs, optionally with the related elevation; for example, the southwest
map corner of the mync_ll LOCATION delivers:

# type input, use CTRL-D to leave
78d00’00"W 35d00’00"N
# resulting UTM Zone 17 coordinates
773798.10 3877156.69 0.00

which represents the corresponding UTM coordinates in meters.
As a different example, you can transform the elevation map cor-

ner coordinates from NC State Plane/NAD83 (nc_spm LOCATION) to
LAEA/Sphere/no datum and store the resulting values in a file. To get the
elevation map coordinates, start GRASS with the nc_spm LOCATION, and
run:

r.info elevation
# only output map boundaries
r.info -g elevation

and store the reported values into a file nc_spm_NAD83.txt. The input file must
be written in plain ASCII format containing row-wise easting and northing:

630000 228500
645000 228500
645000 215000
630000 215000

Now you can convert the coordinates in the file to the standard raster map
projection of the National Atlas of the U.S.10, which is Lambert Azimuthal
Equal Area (LAEA) on a Sphere (see EPSG code 3358):

10 National Atlas of the U.S. download area,
http://nationalatlas.gov/atlasftp.html

http://nationalatlas.gov/atlasftp.html


3.3 Coordinate system transformations 47

# alternative
cat nc_spm_NAD83.txt | cs2cs -v +init=epsg:3358 \

+to +proj=laea +lat_0=35 +lon_0=-80 +x_0=0 +y_0=0 \
+ellps=sphere +units=m > ncLAEA.txt

The command line will reproject the coordinate pairs stored in file
nc_spm_NAD83.txt to coordinates in Lambert Azimuthal Equal Area on a
Sphere without geodetic datum and write the result to file ncLAEA.txt where
you will find information about the coordinate systems used and the resulting
coordinates:

110780.21 70423.01
125780.56 70573.67
125917.38 57072.47
110916.94 56921.96

Note that you can find the parameters for many projections already formatted
for the use with cs2cs command in the epsg file.

3.3.2 Projection of raster and vector maps

The projection of raster and vector maps between two different coordinate
systems requires two LOCATIONs: one LOCATION holding the source map
and input coordinate system information, and another LOCATION for read-
ing the target coordinate system information and storing the projected map.

While vector maps can be reprojected directly, raster maps require to
set region and resolution of the target location appropriately. The easiest
way is to generate a vector “box” map of the region of interest in the source
location using v.in.region. This vector area map is then reprojected into the
target location with v.proj and used to set the region in the target location.
Additionally, the target raster resolution is defined. The subsequent run of
r.proj reprojects the desired raster map.

To illustrate the procedure, we will project raster and vector maps down-
loaded from the USGS in the geographic coordinate system to the State Plane
system that we will use for most of our work. Our sample data set includes
LOCATION nc_ll with a 1/3 arcsecond (approx. 10m) resolution elevation
map. We reproject this elevation map from LOCATION nc_ll into the nc_stm
LOCATION defined with State Plane coordinate system in Section 3.2.1. For
this, we start GRASS with LOCATION nc_ll, set the current region to the
elevation map and generate the “box” vector map:

# in latitude-longitude LOCATION
g.region rast=elev_ned_03arcsec -p
v.in.region elev_ned_03arcsec_box

Then we restart GRASS (or start a parallel session) with nc_stm LOCATION
and “pull” the 1/3 arcsecond resolution elevation map from the source LO-
CATION nc_ll into your current LOCATION at 10m resolution as follows:
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# in State Plane metric LOCATION
v.proj elev_ned_03arcsec_box location=nc_ll mapset=PERMANENT
# set region to box vector map and update raster resolution
g.region vect=elev_ned_03arcsec_box res=10 -pa
r.proj in=elev_ned_03arcsec out=elev_ned_10m location=nc_ll \

mapset=PERMANENT method=cubic
d.mon x0
d.rast elev_ned_10m
# box vector map is no longer needed
g.remove vect=elev_ned_03arcsec_box

The projected map is saved with the same name as the input map if no output
name is defined. The resolution and region (map extent) of the projected map
is given by the current region settings in the target LOCATION nc_stm. You
can verify the settings with g.region -p and use this command to limit trans-
formations to subregions with desired resolution. Please refer to the manual
page of r.proj for the available interpolation methods used during the trans-
formation. Projections can introduce significant errors if the resolution and
method are not selected carefully, especially if there is a significant difference
between the resolution of the original and projected map.

Similarly, you can project vector maps:

# in State Plane metric LOCATION
v.proj in=roads location=nc_ll mapset=PERMANENT
d.vect roads

Creation of subregions is not supported for the vector data, therefore entire
map is always projected or it has to be clipped beforehand in the source
LOCATION.

3.3.3 Reprojecting with GDAL/OGR tools

Sometimes it is more convenient to reproject maps to a desired projection (or
coordinate system, ellipsoid, geodetic datum) before importing them into a
GRASS LOCATION. The free GDAL/OGR libraries11 provide a set of tools
to perform such map preprocessing. GDAL is a translator library for raster
geospatial data formats while OGR supports vector data. For GNU/Linux
and MS-Windows systems these libraries and tools are included in the “FW-
Tools”12 which are easy to install. However, the GDAL/OGR tools are usually
available once GRASS is installed since the GDAL/OGR libraries are a re-
quirement.

11 GDAL library, http://www.gdal.org/
OGR library, http://www.gdal.org/ogr/

12 FWTools Web site, http://fwtools.maptools.org/

http://www.gdal.org/
http://www.gdal.org/ogr/
http://fwtools.maptools.org/
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GDAL and raster data GDAL provides several tools for working with
raster data, such as gdalinfo for reports about the properties of the GDAL-
supported raster data set, gdal_translate for conversion between different
raster formats, including subsetting and resampling; and gdalwarp for image
reprojection. The general command structure is:

# list all supported formats
gdalinfo --formats

# show details of a selected format
gdalinfo --format gtiff

# show raster map information (metadata)
gdalinfo [flags] rastmap

# do raster map format conversion or projection assignment
gdal_translate [flags] [parameters] inrastmap outrastmap

# do raster map reprojection
gdalwarp [flags] [parameters] inrastmap outrastmap

The following example shows how to convert a free LANDSAT-TM7 scene
for the central North Carolina region, available from GLCF Maryland13, from
UTM/WGS84 to LCC/NAD83 to match the nc_spm LOCATION projection.
To reproject the image we run gdalwarp with the flags -tr xres yres to main-
tain original resolution and -te W N E S to cut out the region of interest. We
can make use of shell capabilities and launch the command within a GRASS
session (nc_spm LOCATION):

# get information about the image
gdalinfo p016r035_7t20020524_z17_nn30.tif

# set to region of interest
g.region n=228500 s=215000 w=630000 e=645000 res=14.25 -pa

# transfer region coordinates into shell as defined variables
eval ‘g.region -g‘
echo "$w $s $e $n"

# check current location projection
g.proj -wf

# reproject to current location projection set on the fly
# as -t_srs (target spatial reference system)
gdalwarp -t_srs "‘g.proj -wf‘" -te $w $s $e $n \

p016r035_7t20020524_z17_nn30.tif
p016r035_7t20020524_nc_spm_wake_nn30.tif

13 GLCF Maryland LANDSAT data for NC region,
ftp://ftp.glcf.umiacs.umd.edu/glcf/Landsat/WRS2/p016/r035/

ftp://ftp.glcf.umiacs.umd.edu/glcf/Landsat/WRS2/p016/r035/
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# verification
gdalinfo p016r035_7t20020524_nc_spm_wake_nn30.tif

The preprocessed LANDSAT-7 band is now ready for import into the nc_spm
LOCATION with r.in.gdal. Note that the available LANDSAT scenes from
GLCF Maryland are already included in the nc_spm LOCATION (MAPSETs
PERMANENT and landsat). If you only need to cut out the image without re-
projection or if you want to change the raster format, then use gdal_translate
instead.

OGR and vector data Vector maps can be reprojected and preprocessed
using the OGR library, with the SHAPE format as default output. The pro-
gram ogrinfo can be used to report vector map metadata and ogr2ogr to
perform vector map reprojections. The general command structure is:

# list all supported formats
ogrinfo --formats

# show vector map information (metadata)
ogrinfo [flags] [parameters] vectmap [layer [layer ...]]

# do vector map format conversion, projection assignment
# or reprojection
ogr2ogr [flags] [parameters] outvectmap invectmap [parameters]

In our OGR example, we use the North Carolina county boundaries map
from USGS provided in the SHAPE format in latitude-longitude coordinate
system (you will find it as 9.shp in the boundaries_nc_ll.tar file stored
ncexternal/ directory). We prepare it for import into the nc_spm LOCATION
which requires reprojection and spatial subsetting. To display the vector map
information run:

ogrinfo -summary 9.shp

The provided data include projection information in the 9.prj file; in case
this file was missing, you can add it using the ogr2ogr command with -a_srs
flag as we illustrate by the following example:

# create a copy ’testll.shp’ of map ’9.shp’
# and add projection file
ogr2ogr -a_srs ’+proj=latlong +ellps=wgs84 +datum=wgs84’ \

testll.shp 9.shp

# verification
ogrinfo -summary testll.shp
more 9.prj
more testll.prj

When the SHAPE file set includes the projection information (file with .prj
extension) we are ready to reproject to LCC/NAD83 coordinate system as
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required for the nc_spm LOCATION. We can simultaneously cut out the region
of interest, as an example we will create a subset with county boundaries in
the Central NC. For convenience, we use the EPSG code to select the output
projection parameters. Note that it is necessary to have the NAD datum shift
files installed (see the PROJ4 web page, section “Frequently Asked Questions”
(FAQ) for details or the GRASS-Wiki). The EPSG codes are available in an
ASCII table:

• GNU/Linux and MacOS X: /usr/share/proj/epsg or
/usr/local/share/proj/epsg,

• MS-Windows: depends on the installation of PROJ4.

Alternatively, the graphical GRASS startup screen provides an EPSG code
browser. We have already identified the EPSG code for the nc_spm LOCA-
TION as 3358 in Section 3.2 so we can perform the projection and subsetting
as follows:

# project from LatLong/Sphere to LCC/NAD83
# cut out region of interest (boundary coords. W S E N)
ogr2ogr -t_srs ’+init=epsg:3358’ \

-spat -79.55 35.00 -77.70 36.30 \
boundary_county_ctr 9.shp

# verification
ogrinfo -summary 9.shp boundary_county_ctr

The command will cut out the boundaries of three counties located within
the defined region, project the coordinates and store the SHAPE file set in
a subdirectory called boundary_county_ctr. It can then be directly imported
into the nc_spm LOCATION.
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GRASS data models and data exchange

GRASS stores the georeferenced data as raster and vector maps. In this chap-
ter, we explain the basic properties of GRASS data models and their man-
agement. You will also learn how to import and export data in various raster
and vector formats; this task has been greatly simplified by a growing list of
formats supported by the GDAL/OGR libraries which make GRASS an inter-
operable GIS which are used by the import and export modules of GRASS.
An overview of data import into GRASS is given in Figure 4.1, export is
shown in Figure 4.2.
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Fig. 4.1. Data import into GRASS
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4.1 Raster data

Raster data, stored in GRASS as a matrix of values, represent either a con-
tinuous field (surface), an image, or geometric objects (points, lines, areas)
corresponding to discrete fields (Figure 4.3). For surfaces, the values in the
matrix are assigned to the center points of grid cells. They represent actual
measured or computed values, such as elevation, slope, or temperature. For
discrete fields, the values are assigned to the entire cell area and represent
category numbers.

4.1.1 GRASS 2D and 3D raster data models

A raster map is stored in GRASS as a set of files organized as follows:

• map header which includes a projection code, coordinates representing the
spatial extent of the raster map, number of rows and columns, resolution,
and information about compression;

• generic matrix of values in a compressed, portable format which depends
on the raster data type (integer, floating point or 3D grid);

• optional category file which contains text or numeric labels assigned to the
raster map categories;

• optional color table;
• optional timestamp, range of values, quantization rules (for floating point

maps), and null (no-data) files;
• history file which contains metadata such as the data source, the command

that was used to generate the raster map, or other information provided
by the user;

• a raster map that is a reclassification of another map includes a reclassifi-
cation table instead of a full matrix of values.

All this information is stored in the related subdirectories in the
LOCATION_NAME/MAPSET directory. In the following sections, we describe
how these components are managed and queried.

Raster data can be stored in GRASS as a 2D integer, 2D floating point
(single or double precision), or as a 3D floating point matrix of values (single
or double precision). The internal raster format is architecture independent
and portable between 32bit and 64bit machines. As a result, a GRASS data di-
rectory can be accessed in a heterogeneous network file system (NFS) without
compatibility problems. Internally, the integer format is called CELL, sin-
gle precision floating point is called FCELL, double precision floating point is
DCELL, and 3D raster is called GRID3D. The choice of the integer or floating
point data depends on the application. Their use can be described in general
as follows:

Integer raster maps (CELL type) are used for rasterized geometric objects
(points, lines, areas) represented as discrete fields and for some image
data. Each raster cell is assigned an integer value called category number.
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Fig. 4.2. Data export from GRASS

Each of the categories may have a label (usually a character string but a
number can be used as well) describing the meaning or properties of these
categories, for example, a vegetation type.

Floating point raster maps (FCELL and DCELL types) are used for contin-
uous fields such as elevation or temperature surfaces. It is possible to
label these data by defining ranges of values which can be interpreted as
categories and assigning each range a label (text or number).

3D floating point raster maps are used for raster volumes stored as a voxel
(volume pixel) data model (FCELL and DCELL type) designed to support
representation of trivariate continuous fields.

Note that continuous field data can be represented in integer format, good
examples are some older digital elevation models. This is a limitation of the
data quality and such data should be treated as continuous field representa-
tions. We will point out the related, application specific issues later in this
chapter and in Chapter 5.

GRASS also allows you to create a new raster map by re-defining the
categories in the original raster map as described in Section 5.1.7. The re-
classified map internally does not contain raster data: it only provides a table
with reclassification rules and serves as a reference to the original raster map.
Although it behaves like a regular raster map from the user’s point of view, a
few GRASS modules may not work with reclassified maps; if that is the case,
the module will report an error and suggest that the user generates a true
copy of such a raster map (see Section 5.1.5).
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a                                                                           b

Fig. 4.3. Types of raster data: a) continuous field, b) discrete areas

4.1.2 Managing regions, raster map resolution and boundaries

GRASS differs from other GIS in the way it handles region (map extent) and
resolution. While each raster map has its own spatial extent and resolution
defined in its header, the operations with raster data are performed using the
“working” (or current) region and the resolution set by the command g.region.
If the current region is smaller than the spatial extent of the raster that is being
processed, the operation is applied only to the subset of the raster file defined
by the current region. If the resolution is different, the raster is automatically
resampled (see Section 5.3.3). This approach makes raster analysis, modeling
and export very convenient and efficient. Note that the GRID RESOLUTION
defined when setting up a LOCATION is the default region resolution and will
be used only if the current region is set to the default region.

We will use our sample data set to illustrate the handling of a region and
resolution. Start GRASS with LOCATION nc_spm, MAPSET user1 and you
can check the current region spatial extent and resolution as follows:

g.region -pec
# provides the following output
projection: 99 (Lambert Conformal Conic)
zone: 0
datum: nad83
ellipsoid: a=6378137 es=0.006694380022900787
north: 228500
south: 215000
west: 630000
east: 645000
nsres: 10
ewres: 10
rows: 1350
cols: 1500
cells: 2025000
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region north-south extent: 13500.000000
region east-west extent: 15000.000000
region center northing: 221750.000000
region center easting: 637500.000000

The reported values are in our case in meters, you can check the units using
g.proj -p. Running g.region with the flag -b allows you to print the current
region in geographic coordinates (longitude and latitude, referred to WGS84).
You can also use the command to change the resolution, for example to 15m,
and then save the current region settings as a region file myregion_15m for
future use as follows:

g.region res=15 save=myregion_15m -p

This is sometimes useful when working on different subregions within the
given LOCATION. The region can also be defined from an existing raster or
vector map, for example:

g.region rast=elevation -p

will adjust the current region according to the raster map elevation. There
are numerous additional options and their combinations for setting the region
spatial extent based on coordinate values, here we provide just two examples:

g.region n=228000 s=215500 w=632000 e=640000 -p
g.region n=s+500 e=w+500 -p

The first command sets the region by defining the coordinates for its northern,
southern, eastern and western edges, while the second example creates a small
500m × 500m subregion in the south-west corner of the current region.

If you want to reset to the default region (spatial extent coordinates and
raster resolution) of your LOCATION use the -d flag:

g.region -dp

You can change the definition of your default region to the current region using
g.region -s, but you need to run this command from the PERMANENT
MAPSET.

It may happen, that region boundaries lead to a modified, non-integer
raster resolution. If this is not desired, the -a flag can be used to align the
region to resolution. It adjusts all four boundaries to be even multiples of the
resolution by slightly enlarging the current region. To see the effect, compare:

g.region res=15 -dp
g.region res=15 -adp

To print the spatial extent of the 3D region use g.region -p3, you will see the
default settings representing a single layer that is 1 unit deep. To change the
3D extent to more realistic values (the vertical extent range from 0 to 200m,
with vertical resolution 1m and horizontal resolution 30m) type:
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g.region b=0 t=200 tbres=1 res3=30 -p3

Note that the output will show two horizontal resolutions and row/column
numbers (e.g., nsres: 10, nsres3: 30), the first resolution is used when
working with 2D rasters, the second (nres3) is for volumes. This allows you to
set different horizontal resolutions when working with both volumes and 2D
raster maps and to reduce the computational and memory requirements for
volume data. To print the current bounding box in latitude-longitude/WGS84
datum, run:

g.region -bg

This is useful to verify the current projection definition.

4.1.3 Import of georeferenced raster data

When importing raster data, we need to distinguish three general raster format
types:

• ASCII raster formats, which can have integer or floating point values, both
negative and positive (e.g., ASCII-GRID, GRASS-ASCII etc.);

• Binary image formats, with positive integer values (e.g., JPG, PPM, PNG
etc.);

• Binary raster formats: with integer and floating point, negative and posi-
tive values; single and multiple bands, single and multiple resolutions (such
as ERDAS IMG, HDF, GeoTIFF etc.).

Note that not all formats handle negative and floating point values. When
obtaining data, make sure to get information about the coordinate system
(projection, datum, etc.). Many formats include this information in support
files that are used by the importing modules. All the external data that we
use in this chapter to illustrate data import are available in the subdirectory
ncexternal/ of the sample data set provided for this book at the GRASS
book web site (http://www.grassbook.org).

More than 40 different raster formats can be imported with r.in.gdal
command. It uses the GDAL library (see Section 3.3.3) which is required to
run GRASS and is included in the GRASS binary releases. The formats are
detected automatically and the coordinate system information, if available, is
compared with the current LOCATION. The supported formats include the
most common georeferenced formats such as GeoTIFF, ArcGRID, ERDAS,
USGS SDTS DEM, as well as common image formats that require manual
georeferencing, for example, PNG, GIF, JPEG.

If the file is for a region much larger than the region of interest, you
can first create a subset of the data using GDAL tools and the current region
information (as explained in Section 3.3.3) and then import the smaller, easier
to manage subset. As an example, we will cut out a subset and import the
NC 1996 land cover raster map (full size is 400MB), provided in the same

http://www.grassbook.org
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coordinate system as we use in our nc_spm LOCATION, so no reprojection is
needed:

# set the resolution to match the data
# and get the coordinates for the current region
g.region swwake_30m res=28.5 -ap

# cut out an image subset for the current region
# with boundary coordinates W N E S
gdal_translate -projwin 630000 228500 645000 215000 \

lc96ras.img lc96ras_cut.img

# import the image subset and display the raster map
r.in.gdal lc96ras_cut.img out=landuse96_28m
d.mon x0
g.region rast=landuse96_28m -p
d.rast landuse96_28m

Note that only the raster map with category numbers is imported; you will
have to add labels describing the land use types that are provided in a sepa-
rate text file lc96catlables.txt to the categories using r.support (see Sec-
tion 5.1.9 for details).

If your data set does not include coordinate system information (projec-
tion, datum, and units) and you are sure that it matches the coordinate system
of your LOCATION, the -o flag allows you to use the LOCATION projection
information for the imported map and override the projection match check
in r.in.gdal. This is common with data in the TIFF/TFW format that usu-
ally consist of two files: map.tif (matrix of values) and map.tfw (header with
coordinates but without projection information). Make sure to get both files
when obtaining data. We have used this option to import a 1m resolution or-
thophoto, acquired in the year 2001 for the NC Floodplain mapping program,
and provided in TIFF/TFW format for a small subarea of our test region:

g.region res=1
r.in.gdal -o IMG3720079200P20040216.tif out=ortho_2001_t792_1m
g.region rast=ortho_2001_t792_1m -p

# erase the monitor to set it to the current region and resol.
d.erase
d.rast ortho_2001_t792_1m

If the imported TIFF image consists of several bands, they are extracted as
separate raster maps into the current MAPSET. A typical example is aerial
color images delivered in RGB (red, green, blue) channels. GeoTIFF format is
easier to import as it includes projection information and one or several raster
maps in a single file. You can automatically extend the LOCATION default
region given in the DEFAULT_WIND file based on an imported data set that
covers a larger area using r.in.gdal -e. Import preparation of multispectral
satellite data is explained in Section 8.1.2.
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Generating a new LOCATION from an external raster map The
module r.in.gdal provides an additional, very useful functionality by auto-
matically generating a LOCATION from an external raster data set. For this
purpose, it has to be run within another LOCATION (this LOCATION can be
completely unrelated to the imported data and its setting won’t be affected
by r.in.gdal execution). For example, you can import a new 30m Shuttle
Radar Topographic Mapping (SRTM) Digital Surface Model (DSM) for our
area, provided as ArcGRID coverage 88123760 in a SRTM_30m_ll.zip file1 in
geographic coordinate system (WGS84 datum), and at the same time create a
new LOCATION mync_ll2 that is defined with the parameter location. The
projection information is taken from the input data set, in our case stored in
the file 88123760/prj.adf. To import the SRTM Digital Surface Model, run
the r.in.gdal command from the current nc_spm LOCATION:

unzip SRTM_30m_ll.zip
cd 88123760/
r.in.gdal 88123760 location=mync_ll2 output=srtm_30m_ll

To display the imported SRTM DSM, start GRASS with the new mync_ll2
LOCATION, MAPSET PERMANENT. You should see your imported raster
map srtm_30m_ll when you run g.list rast and you can check the coordi-
nate system using g.proj -p. The region is automatically set to the imported
raster map, so you can open your GRASS monitor using d.mon x0 and display
the map using d.rast srtm_30m_ll.

Generally, if no projection information is present, the new LOCATION will
be set up without the coordinate system definitions. The module g.setproj
can then be used within the new LOCATION to define the projection infor-
mation. Be careful to use g.setproj only in a new LOCATION because it
will overwrite your existing projection definition and units files! Note that
the module does not perform any coordinate transformation of data (see Sec-
tion 3.3 to learn how to do that).

Import of ASCII raster files You can import the GRASS ASCII raster
format using r.in.ascii. The input file must include a header followed by a
matrix of values with the first line starting at the NW corner and the last line
ending at the SE corner. You can try it out within the nc_spm LOCATION
as follows:

# create ASCII raster file by exporting the
# elevation map at 30m resolution
g.region res=30 -p
r.out.ascii elevation > elevation.asc

1 NC 1 arcsec (30m) LatLong/WGS84 SRTM DEM V1 ArcGRID coverage file,
section “Data 3rd Edition”, http://www.grassbook.org

http://www.grassbook.org
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# check the header and import the file
head elevation.asc
r.in.ascii elevation.asc out=myelev_30m

You can define null values, type (integer, float) and multiplier in the ASCII
raster file header (see the manual page for more details). The r.in.ascii
module can be also used to import SURFER ASCII grid file, by running it
with the -s flag. The ARC/INFO ASCII GRID format can be imported by
r.in.gdal. Data in this format sometimes have an associated .prj file with
projection information. If not available, you can use the -o flag to override
the projection check and use the projection definition from the current LO-
CATION.

Raster maps can be directly created from dense point data produced, for
example, by lidar or sidescan sonar and provided in the ASCII format as a set
of (x,y,z ) coordinates (see more about lidar in Section 6.9). You can use the
module r.in.xyz to create raster maps from point data by computing various
statistics using the points located within each cell, a procedure often called
binning. You can compute raster maps that represent the number of points
located in each cell, range of values in each cell, or compute a DEM using
a mean elevation value, as shown in our example for the bare ground lidar
elevation data for a small subarea in our sample data set (the input ASCII file
produced by the NC Flood Mapping Program BE3720079200WC20020829m.txt
is available in the subdirectory ncexternal/ of the data set provided at the
GRASS book site):

# set the region extent using the related airphoto but set to
# lower resolution to have several points per grid cell
g.region rast=ortho_2001_t792_1m res=10 -p

# compute a raster map representing number of points per cell
r.in.xyz BE3720079200WC20020829m.txt out=lidar_792_binn10m \

meth=n
d.rast lidar_792_binn10m

# compute a raster map representing mean elevation for each cell
r.in.xyz BE3720079200WC20020829m.txt out=lidar_792_binmean10m \

meth=mean
d.rast lidar_792_binmean10m

You will learn more about the point cloud data analysis using the r.in.xyz
command in Section 6.9.

Raster map representing areas, lines or points can be created from given
coordinates by r.in.poly. The module accepts text files containing coordinate
pairs with labels. Either raster area (“A”) or raster line (“L”) type can be
specified. As an example, we use a single area represented by its boundary
coordinates stored in a text file newfacility.txt:
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A
638656.00 220611.00
638796.00 220609.00
638799.00 220520.00
638653.00 220519.00
638653.00 220609.00
= 1 facility

The last line in the file defines the category number and a label for the area.
To define the imported raster extent and resolution it is important to set the
current region: we use a pre-defined rural sub-area at 1m resolution stored in
a region file rural_1m. Then we import the ASCII file with r.in.poly and
display it on top of a previously imported aerial imagery:

# list available regions and set the current region
g.list region
g.region rural_1m -p

# import and display the data
r.in.poly in=newfacility.txt out=newfacility_1m
r.info newfacility_1m
d.erase
d.rast ortho_2001_t792_1m
d.rast -o newfacility_1m

The resulting raster map newfacility_1m contains the desired area labeled as
“1 facility”.

Import MrSID files High resolution imagery data are often distributed in
the proprietary MrSID format. To import this format using r.in.gdal, the
GDAL library has to be compiled with MrSID support after downloading the
necessary Software Development Kit (SDK). Alternatively, you can convert
the file to GeoTIFF using the proprietary converter mrsidgeodecode as we
show for a TIFF file available in ncexternal/:

mrsidgeodecode -i lkwhee4.sid -o geotifflkwhee4.tif -of tifg
# verification
gdalinfo geotifflkwhee4.tif

# flag -o since projection info is missing but the map matches
r.in.gdal geotifflkwhee4.tif out=orthoIR1998 -o
g.region rast=orthoIR1998.blue -p
d.erase
d.rgb b=orthoIR1998.blue g=orthoIR1998.green r=orthoIR1998.red

The resulting image is a 1998 infrared Digital Orthoimagery Quarter Quad-
rangles (DOQQ) at 1m resolution.
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Import binary arrays and raster formats not supported by GDAL
The module r.in.bin reads numerous binary array grids such as GTOPO30
DEM (worldwide elevation data at 30 arc-seconds resolution provided by
USGS), Etopo-2 DEM (worldwide elevation data at 2 arc-minutes resolu-
tion), Globe DEM (worldwide elevation data at 30 arc-seconds resolution, pro-
vided by NOAA), BIL, AVHRR (Advanced Very High Resolution Radiome-
ter), and GMT (Generic Mapping Tool). Please refer to the related manual
page (g.manual r.in.bin) for encoding details. Many of these formats are
much easier to import using r.in.gdal, but we include a few examples2 of
import into mync_ll for comparison (see ncexternal/ subdirectory for sam-
ple data). To avoid reading the GTOPO30 data incorrectly, you can add a
new line PIXELTYPE SIGNEDINT in the .HDR to force interpretation of the file as
signed rather than unsigned integers. For this, open the W100N40.DEM in a text
file. Open GRASS in mync_ll LOCATION and import the data as follows:

# extract and import GTOPO30 DEM
tar -xvzf GTOPOw100n40.tar.gz

# edit W100N40.DEM as described above, then import
r.in.gdal W100N40.DEM out=gtopo30_usa
g.region rast=gtopo30_usa -p

# check range for strange maximum value
r.info -r gtopo30_usa
min=1
max=6710

r.colors gtopo30_usa col=terrain
d.mon x0
d.erase
d.rast gtopo30_usa

# alternative import method
# note: add ’anull=-9999’ to set the sea level to NULL
r.in.bin -sb input=W100N40.DEM out=gtopo30_usa2 bytes=2 \

north=40 south=-10 east=-60 west=-100 \
r=6000 c=4800 anull=-9999

r.info -r gtopo30_usa2
r.colors gtopo30_usa2 col=terrain
d.rast gtopo30_usa2

As another example, we import ETOPO2v2 DEM data:3

# import ETOPO2v2 DEM for entire NC - includes bathymetry
r.in.bin NCETOPO2_4604.g98 out=ncetopo_2min bytes=2 \

north=38 south=32 east=-72 west=-85 r=180 c=390

2 GTOPO30 tile covering North Carolina,
http://edc.usgs.gov/products/elevation/gtopo30/w100n40.html

3 ETOPO2v2 DEM data Web site,
http://www.ngdc.noaa.gov/mgg/fliers/06mgg01.html

http://edc.usgs.gov/products/elevation/gtopo30/w100n40.html
http://www.ngdc.noaa.gov/mgg/fliers/06mgg01.html
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r.colors ncetopo_2min col=terrain

# import a GMT type 1 (float) binary array (use -b to
# swap bytes if needed)
r.in.bin -hf input=your_map.grd out=gmtmap

GRASS includes several modules for importing raster maps in specialized
formats that are not currently supported by GDAL. These include gridatb
files formatted for TOPMODEL supported by the module r.in.gridatb,
MATLAB files by r.in.mat, and SRTM HGT files from the NASA server
by r.in.srtm. The module r.in.aster performs rectification, georeferencing
and import of ASTER imagery, it requires compilation of GDAL with HDF
support.

Import raster data directly from Web Sources GRASS 6 supports di-
rect download of raster data from Open Geospatial Consortium’s Web Map
Service (OGC WMS) compliant Web servers by the module r.in.wms. The
module downloads the requested data layers from the given map server for
the current or given region, reprojects them and patches the tiles together.
You can use it, for example, to download a USGS Digital Raster Graphics
file (digitized topographic map) from MS Terraserver into the nc_spm LOCA-
TION:

# list available layers
r.in.wms -l output=terraserver-drg \
mapserver=http://terraserver.microsoft.com/ogccapabilities.ashx

g.region rural_1m -p
r.in.wms output=terraserver-drg \

mapserver=http://terraserver.microsoft.com/ogcmap6.ashx \
layers=DRG region=rural_1m format=tiff

Note that to run this module you need to have several standard Unix and
Web tools installed, such as wget, sed, grep, see the manual page for more
details.

To download LANDSAT pseudo-color pan-sharpened map (15m) into the
nc_spm LOCATION, run:

# enforce 15m resolution
g.region swwake_30m res=15 -p
r.in.wms layers=global_mosaic \

mapserver=http://wms.jpl.nasa.gov/wms.cgi \
output=wms_global_mosaic_nc

d.erase
d.rast wms_global_mosaic_nc
d.vect roadsmajor col=yellow
d.barscale at=0.0,0.0 tcol=white bcol=none
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# visualize in NVIZ (set its viewing resolution to 1)
nviz elevation col=wms_global_mosaic_nc vect=roadsmajor

Figure 4.4 shows the resulting map in the GRASS monitor.

Import of raster data without ancillary georeferencing files If you
obtain a raster map in a common format such as TIFF, but without the
related TFW file, you can update the geocoding manually. Of course, you
have to get the related georeference information from the data provider. You
can import the map by overriding the projection check with r.in.gdal -o.
The lower left corner coordinates of the imported map will be at the origin of
the LOCATION coordinate system, which is usually outside the study area
and when you try to display the imported map you often don’t see anything
because the map is outside the current region. To include the georeferencing
information the imported raster map header needs to be modified using the
module r.region, in our case, we use the header information (spatial extent)
of another raster map which perfectly matches our imported map:

r.in.gdal -o NonGeoIMG792.tif out=NonGeoIMG792
r.info NonGeoIMG792
[...]

Projection: Lambert Conformal Conic (zone 0)
N: 3048 S: 0 Res: 1
E: 3048 W: 0 Res: 1

Range of data: min = 53 max = 188

Fig. 4.4. LANDSAT pseudo-color pan-sharpened map of South-West Wake County
(NC) imported from JPL/NASA WMS (northern part of map shown)
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If you use d.rast NonGeoIMG792 nothing will be displayed. In this case the
map header needs to be modified:

r.region NonGeoIMG792 rast=ortho_2001_t792_1m
r.info NonGeoIMG792
[...]

Projection: Lambert Conformal Conic (zone 0)
N: 222504 S: 219456 Res: 1
E: 640081 W: 637033 Res: 1

Range of data: min = 53 max = 188
d.rast NonGeoIMG792

You can also use a vector map, a named region, a 3dview file or coordinate
values to define the missing spatial extent of the imported map. Alternatively,
the header can be modified using r.support. After starting it, specify the map
name and go through the following dialog:

1. “Edit the header?” <y>. Rows and columns can be checked now. The values
should be correct.

2. Pressing <ESC><ENTER> changes into the coordinates menu which looks
similar to the LOCATION definition screen.

3. Now you have to update the boundary coordinates. Enter the correct
coordinates and GRID RESOLUTION for this map by moving around
with the cursor keys. Afterward hit <ESC><ENTER> to proceed.

4. The additional questions can be skipped with <ENTER>.

Then you can use the r.support module to assign labels for the raster map
categories, add the map title, or change the color table, see Section 5.1.9 for
details.

Import of 3D raster data (voxel) You can import 3D ASCII raster data
in GRASS format using r3.in.ascii, see the manual page for the format
description. You can also create a volume raster model based on 2D raster
data by converting 2D raster slices into 3D raster or a 3D volume map based
on 2D elevation and value raster maps, see examples in the volume data
processing section in Section 5.6.

4.1.4 Import and geocoding of a scanned historical map

In this section, we explain rectification and georeferencing of a scanned map
(e.g. a historical map). For this procedure, it is important to understand the
relation between on ground distance, scale and spatial extent. This general
cartographical relation is also needed when transforming a hardcopy map
into a digital map. When scanning maps, keep in mind the proper handling
of copyright restrictions.
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Determining the scanning parameters The relationship between the
distance on the ground and the corresponding length of a raster cell is deter-
mined by the scanning resolution. When working with toposheets, scanning
resolution between 150 and 300dpi is recommended. Of course, the text labels
on the map should stay readable. Depending on the number of colors in the
map, the image can be scanned as color image with 256 colors. Assuming a
scanning resolution of 300dpi, we first calculate its equivalent in centimeters:

300dpi = 300
lines

2.54cm
= 118.11

lines
cm

(4.1)

Suppose that the scale of the scanned map is 1:25,000. Thus, one centimeter
on the map is equivalent to 25,000cm on the ground. Now we can calculate
the on-ground distance that corresponds to the length of a raster cell:

distance on the ground
scanned lines per cm

=
25, 000cm
118.11lines

= 211.6
cm
line

= 2.12
m

line
(4.2)

The resulting value of 2.12m is the spatial resolution of the scanned map at
the 300dpi scan resolution. If you want the spatial resolution to be an integer,
do the inverse calculation and adjust the scanning resolution accordingly.

Geocoding of scanned maps After scanning the map, store it in a file. If
needed, you can convert it to a GRASS supported format using gimp, display
(ImageMagick package) or xv which are available for many operating systems,
as well as the netpbm tools4 which can be run on command line. General
procedure for geocoding a scanned map has the following five steps:

• create or use an existing xy LOCATION and import the map into it using
r.in.gdal -e;

• restart GRASS with the projected LOCATION. If GIS manager did not
open, start it with gis.m. Display reference map(s);

• from the menu, launch File ; Georectify which opens a convenient graph-
ical user interface to the geocoding tools:
– select the map type you want to geocode (raster or vector map);
– select a source LOCATION/MAPSET (usually the xy LOCATION);
– add the map(s) to a group if not done by r.in.gdal import (internally

launches i.group and i.target);
– select the group;
– select the unreferenced map to display for interactive georectification

(normally a raster in the group you want to georectify);
– start searching for ground control point in both the unreferenced and

the reference map (internally launches i.points);
– rectify the unreferenced map into the target LOCATION (internally

launches i.rectify).
4 Netpbm tools, http://sourceforge.net/projects/netpbm/

http://sourceforge.net/projects/netpbm/
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This task is using image processing tools for geocoding.
As an example, we geocode a “historical” city map of Raleigh (original

scale 1:62,500) from the U.S. Geological Survey 19515. First, start GRASS
with the nc_spm LOCATION and import the scanned map by r.in.gdal into
the new xy LOCATION:

g.region n=232700 s=220400 w=632100 e=648700 res=10 -p
r.in.gdal -e raleigh_nc_1951.jpg location=nc_xy \

out=raleigh_nc_1951

The command will create the new LOCATION nc_xy. The flag -e automati-
cally ensures that the new xy LOCATION has a region large enough for the
imported map.

Make sure that the GIS manager gis.m is running. The first step is to
display reference maps, for example streets_wake and lakes vector maps
(use the Add vector layer icon, the maps are actually displayed by clicking on
the Display active layers button in the Map Display 1 window). Zoom to the
city center of Raleigh (approximately centered at 642700, 225400 NC State
Plane coordinates) or to the current region using the Zoom to button. Choose
blue color filling for the lakes and redraw the map display.

Next we set up the map(s) to geocode. From the menu of the GIS man-
ager gis.m, launch File ; Georectify for the geocoding tools. For 1. Select
mapset, we select through the file manager LOCATION nc_xy and therein
MAPSET PERMANENT (the latter will be shown in the selection field). Then
we use 2. Create/Edit group just to verify, that r.in.gdal created the group
raleigh_nc_1951. We select this existing group in 3. Select group. With 4. Se-
lect map, we choose one of the color channels, e.g. raleigh_nc_1951.blue. Now
we are ready to search ground control points (GCPs) in both the reference
maps and the unreferenced maps by clicking on 5. Start georectifying. You can
zoom in both maps using the zoom tool in each map display and set GCPs
by activating the GCP icon (in the georeferenced map display window you
have to activate the Pointer icon to set a point there). The GCP coordinates
are automatically added to the Manage ground control points (GCPs) window
table. To set additional points, always click into a new table row. Finding
common points is not very easy, it may be best to search a lake and then
pan within the maps. To make it easier we have added a map with suggested
GCPs to the book’s Web site. Once you have sufficient and well distributed
GCPs, you can calculate a RMS error.6 It should not be larger than half of the
true resolution of the scanned map as we have calculated above. The overall
RMS error is computed from the errors for individual matching points. If it is
too large, you can delete a point from the GCPs table (toggle the checkbox to
5 City map of Raleigh 1951 download,
http://www.lib.utexas.edu/maps/north_carolina.html

6 The RMS error is computed from the distance of the set matching point towards
the accurately placed matching point. It is calculated as:
rms =

√
(x− xorig)2 + (y − yorig)2

http://www.lib.utexas.edu/maps/north_carolina.html
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switch a point on and off) and select a new point. Once sufficient GCPs are
selected and assigned properly, leave i.points, by clicking on the disk icon in
the GCPs table and the points will be saved.

Finally, we perform the transformation of the unreferenced map. We select
a 1st order polynomial (as “order of transformation”) since we don’t expect too
many spatial distortions. This will perform linear transformation (stretching
and rotating). To start the transformation, click on the Rectify maps in group
icon. Internally, the module i.rectify is launched to transform the map. This
may require some time, depending on map size, resolution, and hardware,
but you can run it in background and continue working with GRASS. After
the transformation has finished, you can look at the new map in the target
LOCATION and add it to the GIS manager map list for display. All three
bands (red,green,blue) were geocoded and to create a map with the original
colors, you can run r.composite. The above described procedure can also be
used for georeferencing vector maps.

4.1.5 Raster data export

GRASS raster data can be exported to more than 20 formats using
r.out.gdal. In addition, there is a set of export modules designed for spe-
cific formats, most of them were already mentioned in the import sec-
tion: GRASS ASCII (r.out.ascii), ARC/INFO ASCII GRID (r.out.arc),
BIL (r.out.bil), BINARY ARRAY (r.out.bin), PPM (r.out.ppm), MPEG
(r.out.mpeg), TIFF (r.out.tiff), Matlab’s MAT (r.out.mat), Topmodel’s
GRIDATB (r.out.gridatb).

As mentioned above, only the portion of the map that falls within the
current region will be exported. The export modules can be used on com-
mand line as well as interactively with menus. Several export modules, such
as r.out.ascii or r.out.ppm can be used with UNIX piping, i.e. redirecting
the data stream to another module, as illustrated by the following example
that creates an 8 bit GIF image:

r.out.ppm elevation out=- | ppmquant 256 | ppmtogif > elev.gif

The result of r.out.ppm is directly sent to ppmquant to quantize the elevation
categories to 8 bit (256 colors), and then to ppmtogif. The data transfer is
done through “standard output” (stdout) indicated by - (dash). The GIF data
stream resulting from ppmtogif is written to the elev.gif file. The produced
GIF file is stored into the current directory.

Several commands support export of GRASS raster data for external vi-
sualization tools, for example, r.out.pov exports elevation file into a height
field in Targa (TGA) format that can be used with the Persistence of Vision
(POV) raytracer7 and r.out.vtk, r3.out.vtk export the 2D and 3D raster

7 POV-Ray Web site, http://www.povray.org

http://www.povray.org
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data as VTK-ASCII file that can be used for visualization with Paraview or
MayaVi8. You will learn more about these options in the visualization chapter.

Export to XYZ ASCII format A common format for raster data ex-
change is the plain XYZ ASCII format (i.e. x, y coordinates with the z value or
category number). Unlike the GRASS ASCII raster export with r.out.ascii
and r3.out.ascii (which exports the data as an ASCII matrix), the following
command produces a file with one line for each cell, each line containing three
columns (easting, northing, z):

r.out.xyz elev_ned_30m out=elev_ned_30m_xyz

To export category labels (attributes of the raster cell, if they are numerical)
instead of category values or floating values, you can use r.stats with the
following flags:

r.stats -1lg landuse96_28m nv="-9999" > luse96_28m.asc

more luse96_28m.asc
629994.2531 228513 18 Mixed Hardwoods/Conifers
630022.7531 228513 18 Mixed Hardwoods/Conifers
630051.2531 228513 15 Southern Yellow Pine
[...]

The optional nv parameter will replace the NULL value with a different char-
acter or string, in our case -9999.

4.2 Vector data

Point, line, area and 3D features can be represented in GRASS by a vector
data model. It stores the feature’s geometry, topology, and attributes. Differ-
ent vector object types are used to store points (vector points), lines (vector
lines), and polygons (called vector areas). GRASS 6 has a topological vec-
tor data support that includes attribute management handled by a database
management system. Old vector and site data in the pre-GRASS 6 formats
must be converted into the new format using v.convert for vector data and
v.in.sites for old site data.

4.2.1 GRASS vector data model

Vector geometry GRASS stores vector data geometry using vector object
types (graphic elements or primitives) such as a point, line, area boundary,
and centroid (label point for an area). Points defining a line are called vertices,
end points of a vector line are special vertices called nodes (see Figure 4.5).

8 Paraview Web site, http://www.paraview.org

http://www.paraview.org
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Fig. 4.5. Vector types in GIS: vector line and vector area

Vector lines are represented as a directed sequence of points and may consist
of a single line (arc) or multiple connected lines (polylines). A closed ring of
line segments defines an area boundary; an area boundary with a centroid
inside defines a vector area. An area inside an area is called island. A 3D area
is called face. Point data are represented as nodes that are not connected.

In GRASS 6, the following vector object types are defined:

• point: a point;
• line: a directed sequence of connected vertices with two endpoints called

nodes;
• boundary: the border line to describe an area;
• centroid: a point within a closed boundary;
• area: the topological composition of centroid and boundary;
• face: a 3D area (see Fig. 4.6);
• kernel: a 3D centroid in a volume (not yet used in GRASS 6);
• volume: a 3D corpus, the topological composition of faces and kernel (not

yet used in GRASS 6).

Note that all lines and boundaries can be polylines (with nodes in be-
tween). Conversion between several vector types is possible. Vector data are
stored in a portable way in the GRASS DATABASE so that they can be
exchanged directly across different platforms and architectures.

GRASS vector data map is stored in several separate files. The geometry
part comprises:

• vector map ASCII header with information about the map creation (date
and name), its scale and threshold;

• binary geometry file which includes the coordinates of graphic elements
(primitives) that define the vector feature;

• binary topology file describes the spatial relationships between the map’s
graphic elements;

• history ASCII file with complete commands that were used to create the
vector map, as well as the name and date/time of the map creation;
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Fig. 4.6. Möbius strip visualization to illustrate the 3D vector faces capabilities of
GRASS 6 (imported from 3D DXF)

• binary category index file which is used to link the vector object IDs to
the attribute table rows;

• ASCII file which contains link definition(s) to attribute storage in database
(DBMS): table name, database, key column and more are defined here.

Topology The GRASS vector data model includes topology describing spa-
tial relations between the graphic elements that define the feature location
and geometry. GIS topology describes the spatial relationships between con-
necting or adjacent geographic components. With topological information, it
is possible to efficiently perform the following tasks (Bartelme, 1995; Curtin,
2007):

• find neighborhood relationships between objects;
• analyze if one object contains another object (island areas);
• find intersections of objects;
• analyze vicinity of two objects;
• perform vector network analysis based on graph theory.

In a topological GIS like GRASS, a valid common border between two adjacent
areas is stored only once and is shared between these two areas. Also shared
nodes do not have to be duplicated. In a non-topological GIS this border
would be digitized and stored twice. Topological representation of vector data
helps to produce and maintain vector maps with clean geometry and supports
certain analyses that can not be conducted with non-topological or spaghetti
data. In GRASS, topological data are refered to as level 2 data and data
without the built topology is referred to as level 1.

Sometimes topology is not necessary and the additional memory and space
requirements are burdensome to a particular task. Therefore a few modules
allow us to work directly on level 1 (non-topological), especially for import
and processing of large point data sets (e.g., as with lidar data). Point data
without attributes can be imported without topology but the support is then



4.2 Vector data 73

rather limited, we will discuss this issue in more detail in the following vector
data import section. Most vector modules require level 2 that is needed to
build spatial index for efficient vector data processing.

Detailed rules for digitizing vector data in a topological GIS are given in the
digitizing section 6.3.1. For discussions on general computational geometry, see
the book of O’Rourke (1998).

Attributes in DBMS

Vector points, lines and areas usually have attribute data that are stored in
DBMS. The attributes are linked to each vector object using a category num-
ber (attribute ID, usually the “cat” integer column). The category numbers
are stored both in the vector geometry and the attribute table. The category
numbers can be printed or maintained using v.category.

A vector object can have zero to several categories. The vector objects can
be linked to one or more attribute tables, each link to a distinct attribute
table represents a vector data “layer”. For example, multiple layers can be
used to link the vector objects with multitemporal attributes, with each layer
representing a single time snapshot. Multiple layers are also useful for integra-
tion of thematically distinct but spatially related vector objects. In this case,
each table represents attributes only for objects with a given theme, creating
thus separate layers for each theme. Although the layers make combination
of points, lines and areas in a single vector map possible, it is generally rec-
ommended to store different vector types in separate vector maps. The first
layer is active by default, i.e. the first table corresponds to the first layer.
Additional tables are linked to subsequent layers. Map layers can be listed or
maintained using v.db.connect.

The default database driver used by GRASS 6 is DBF. It provides only
limited Structured Query Language (SQL) support; therefore other DBMS are
commonly used, for example, PostgreSQL, MySQL, or SQLite. By introduc-
ing the full DBMS support, GRASS 6 handles multiattribute vector data by
default. The db.* set of commands provides basic SQL support for attribute
management, while the v.db.* set of commands operates on the vector map.

4.2.2 Import of vector data

GIS vector data are available in many different formats. There is no single
standard available but some formats, such as ESRI SHAPE, are widely used
for vector data exchange. Because of the complex data structure, exchange of
vector data is often more complicated than for raster data. In GRASS 6, the
import has been greatly simplified by introduction of the v.in.ogr module, a
vector analog to r.in.gdal.

If you just want to display external vector data provided in any of the
OGR9 (OGR is part of the GDAL library) supported formats along with
9 OGR library, http://www.gdal.org/ogr/

http://www.gdal.org/ogr/
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your GRASS data you can link these data into your MAPSET by running
v.external command, for example:

# make sure that we have the right region set
g.region swwake_10m -p

# unzip the SHAPE data and link them to GRASS from curr. dir.
unzip geod_pts_spm.zip
v.external dsn=. layer=gdc output=ext_geodetic_pts
d.vect ext_geodetic_pts

It is important to know that the linked data are “read-only” and that they use
the OGR/OGC simple feature model that does not include topology (some
GRASS modules may not work properly with such data). It is therefore rec-
ommended to import the data into native GRASS vector format if operations
beyond data viewing are performed.

Many common vector data formats, such as SHAPE, Arc/Info Cover-
age, MapInfo, DGN, SDTS, PostGIS, or TIGER can be imported using the
v.in.ogr module (see its manual page for a complete, up-to-date list of sup-
ported formats). It provides options for importing subsets of the original vec-
tor data by defining the desired spatial extent, minimum area or data with
certain attribute values defined by SQL statement. For example, we can im-
port a subset of statewide soil map data provided as a SHAPE file set in the
current directory that covers only our study area as follows:

# get the coordinates of the study region
g.region swwake_10m -p

# import the NC state soil data associations from a SHAPE file
# clipped to the current region (W,S,E,N)
v.in.ogr gslnc.shp out=soils_nc \

spatial=630000,215000,645000,228500

# check the imported data, there will be only two associations
v.info soils_nc
v.info -c soils_nc
d.vect soils_nc

Topology is built automatically for each imported data set. Note that in the
GRASS 6 implementation topology building for large data sets requires sub-
stantial memory and disk space so it may be necessary to split large vector
data sets into subregions when importing. Attribute data for SHAPE files are
stored by default in a DBF database (or you change the DBMS settings, see
Section 6.2.1 for details).

If you observe that polygons are not built correctly (overlapping areas,
area without category due to lost centroids, etc.), use the snap parameter
of v.in.ogr to polish the topology while importing. This snapping thresh-
old for boundaries must be selected with care depending on the scale of the
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vector map. Additionally, min_area can be used to suppress small areas by
defining the minimum size of an area to be imported (given in square map
units). Smaller areas and islands will be ignored then. The value should be
greater than the square of the snapping threshold. Snapping problems often
occur when importing “Simple Features” data like SHAPE files that were not
generated in a topological GIS. Such data sometimes contain gaps or slivers
which need to be corrected. If the topology is still not built without problems,
use the advanced tools of v.clean to polish it or manually edit the map with
v.digit. More examples of vector data import are described in the manual
page for v.in.ogr. See Section 6.5 for details on cleaning topology.

Vector data in the ESRI E00 format are imported with v.in.e00. It re-
quires the avcimport and e00conv programs to be installed.10 The E00 format
is preferred to the SHAPE files because it includes projection information
and keeps better data structure; however, it is much less common because of
its complexity. The import module re-builds the topology and stores the at-
tributes in a database table. The module can read E00 files from any directory.
If no path is specified, the current directory is used.

You can generate a vector area map that represents the rectangle defining
the current region as follows:

v.in.region out=myregion
d.vect myregion

The resulting vector map can be used for clipping subsets of your vector data
for a given region using the vector overlay tools. MATLAB vector data can
be imported using the command v.in.mapgen.

Import of GRASS ASCII vector files and ASCII point data The
standard GRASS ASCII vector maps are usually generated by v.out.ascii,
manually or by custom applications, and can include all supported vec-
tor objects (points, lines, boundaries, etc.). We can modify the text file
newfacility.txt (used in the raster ASCII import example in Section 4.1.3
and provided in ncexternal/) to GRASS ASCII vector format by modifying
a line indicating the vector object type (primitive). We use B for boundary
rather than A for area, followed by 5 for number of points and 1 for a sin-
gle category. Then we include the coordinates of the boundary and the layer
number and the category ID on the last line:

B 5 1
638656.00 220611.00
638796.00 220609.00
638799.00 220520.00
638653.00 220519.00
638653.00 220609.00
1 1

10 AVCTools Web site: http://avce00.maptools.org

http://avce00.maptools.org
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We save the file as newfacility.asc and then convert it to a GRASS binary
vector map using v.in.ascii (the -n flag indicates that the ASCII file does
not include the standard vector map header):

g.region rural_1m -p
v.in.ascii -n input=newfacility.asc out=my_facility \

format=standard

# display the imported map over orthophoto
d.erase
d.rast ortho_2001_t792_1m
d.vect my_facility col=red

You can learn more about GRASS ASCII format by exporting different types
of GRASS vector maps (points, lines, areas) using v.out.ascii and then
exploring the result (see more in the next section).

Point data in ASCII format can be imported using v.in.ascii. For exam-
ple, you can import the bare earth lidar point data provided as x,y,z text file
(find the data within ncexternal/) as follows:

v.in.ascii -ztb BE3720079200WC20020829m.txt out=mylidar_pts \
x=1 y=2 z=3

# set the region to imported data to see all of them
g.region vect=mylidar_pts -p
d.erase
d.rast ortho_2001_t792_1m
d.vect mylidar_pts siz=1 col=yellow

The flags mean that the data will be imported as 3D vector (-z), without
creating an attribute table as there is no attribute (-t) and no topology will
be built (-b). Without topology the data can only be displayed by d.vect or
interpolated by v.surf.rst, so if you want to do more, you either need to skip
the relevant flag or build topology after the file is imported using v.build (as
we have mentioned, this may be problematic for large data sets with millions
of points).

Another common example of ASCII point data are the data exported from
a spreadsheet as a comma separated variable (.csv) file. Such data can be
easily imported by v.in.ascii whith the separator parameter set to fs=",".
The manual page for v.in.ascii includes many excellent examples of various
vector ASCII data imports, including tips for generating such data.

Import of GPS, Gazetteer and DBMS point data Waypoints, routes
and tracks can be directly imported from a GPS device or a text file using
commands v.in.garmin or v.in.gpsbabel. Both commands work in a simi-
lar way, the first is using gpstrans to convert the data and the second one
is based on gpsbabel. Both modules automatically project the data in geo-
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graphic coordinates to the current coordinate system unless you use flag -k.
For example, to read GPS tracks from a USB connected Garmin device, run

v.in.gpsbabel -t in=/dev/ttyUSB0 format=garmin output=mytracks

Depending on the number of waypoints, lengths of tracks or routes, the data
transfer can take some time. You can learn more in Section 10.3.

US-NGA GEOnet Names Server11 (GNS) country files can be imported as
GRASS vector point data using v.in.gns. The data include geographic and
UTM coordinates, so you need to import them into a lat-long LOCATION
such as our nc_ll and then project into State Plane from nc_spm using v.proj:

# open GRASS in nc_ll LOCATION and run
v.in.gns nc_names.txt vect=nc_names_ll

# open GRASS in nc_spm LOCATION and project
v.proj nc_names_ll out=nc_names locat=nc_ll mapset=PERMANENT

g.region vect=nc_names -p
d.erase
d.vect nc_names displ=shapes,attr attrcol=Feature_Name size=3

You can also import vector point data stored in a database system using the
module v.in.db, and select a subset to be imported using a category column
name and SQL query.

Import of DXF files GRASS supports import and export of 2D and 3D
multiple layer vector maps in DXF format. As an example we show import of
a DXF vector map with multiple layers representing map planimetry (roads,
building footprints, fences, etc.) The DXF data can be imported as a vector
map with a single layer that will include all DXF layers (useful for a preview of
what is in the file, but difficult to work with) or you can choose only selected
layers, as in the following example run from the nc_spf LOCATION:

# set region to the small rural area and display airphoto
g.region rast=IMG_airBW_79200WC_3ft -p
d.rast IMG_airBW_79200WC_3ft

# list available layers
v.in.dxf -l P079216.DXF

# import all layers as one map
v.in.dxf -1 P079216.DXF
d.vect P079216

11 US-NGA GEOnet Names Server, http://earth-info.nga.mil/gns/html/

http://earth-info.nga.mil/gns/html/
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# import only the layers with buildings
v.in.dxf P079216.DXF out=buildings79216 \

layer=BLDG_COMMER_BL,BLDG_RESID_BL
d.vect buildings79216 col=red

To reproject these local government data provided in State Plane coordinate
system, units feet into our sample data set in State Plane system, units me-
ters, open GRASS with nc_spm LOCATION and use v.proj to reproject the
imported DXF layers.

DXF polyface meshes can be imported as 3D wireframe using flag -f (with-
out flag it will be imported as vector faces type):

v.in.dxf -f building.dxf out=building_wire

Buildings and other 3D vector features can be visualized using the module
nviz that we will describe in detail in the visualization chapter 7.

Import vector data directly from Web Sources GRASS 6 supports
direct download of vector (feature) data from Open Geospatial Consortium’s
Web Feature Service (OGC WFS) compliant Web servers using v.in.wfs. As
an example, we download the registered GRASS users from the community
mapserver portal (run command in latitude-longitude LOCATION nc_ll):

# enter URL in single row
v.in.wfs \

wfs="http://mapserver.gdf-hannover.de/cgi-bin/\
grassuserwfs?REQUEST=GetFeature&SERVICE=WFS&VERSION=1.0.0" \

out=grass_users
v.db.select grass_users \

where="name ~ ’Helena’ OR name ~ ’Markus’"
cat|ogc_fid|name|company
467|42|Helena Mitasova|NCSU
636|2|Markus Neteler|ITC-irst (Povo)
[...]

The WFS request downloads a XML file from the WFS server which is then
converted into a GRASS vector map with attribute table.

4.2.3 Coordinate transformation for xy CAD drawings

CAD drawings, usually provided in the DXF format, are sometimes delivered
in non-georeferenced xy coordinates. To use them along with other GIS data,
these coordinates have to be transformed to the coordinate system of the
current LOCATION. You can do it using the geocoding tool in the GRASS
GIS manager gis.m as explained in the section 4.1.4 or using the module
v.transform. The later requires a table of ground control points (GCPs, also
called tie points) to perform this transformation. It is a table of points with
xy coordinates and their corresponding georeferenced coordinates. To generate
this table, coordinates of points such as road intersections etc. are identified in
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the DXF map and another corresponding reference map. Also, GPS measure-
ments can be used. With v.transform, the map can be shifted and stretched
in x, y, and z direction, as well as rotated around the z axis. It maintains 3D
structures in case they are present in the CAD drawing.

In GRASS, the DXF map geocoding process requires three steps:

• DXF data are imported into the projected LOCATION, although the DXF
map keeps its xy coordinates reference;

• the ground control points are identified within the imported DXF map as
well as the reference map or taken from GPS measurements and stored in
a text GCPs table;

• finally, the imported map is transformed to the current LOCATION co-
ordinate system by shifting and rotating the input DXF map using the
GCPs table.

To illustrate the procedure we will import the DXF map Masterplanxy.dxf
(xy coordinates) and transform it to the map Masterplan stored in a georef-
erenced LOCATION, in our case the State Plane NAD83 with units meters.
To start, we import the DXF map into the nc_spm LOCATION as a GRASS
vector map in xy coordinates. To view it, you will have to change the region
as shown below:

# import the dxf file in xy coordinates
v.in.dxf Masterplanxy.dxf out=Masterplan_xy

# change the region to view the imported map
g.region vect=Masterplan_xy -p
d.mon x0
d.erase
d.vect Masterplan_xy

If you do not expect internal map distortions, only four ground control points
(GCP) will be needed for the transformation. In our example, the easy to
identify points are at highway interchanges. To get the (x, y) coordinates for
the GCPs from the imported DXF map, you can use d.where and then store
the coordinates in an ASCII file (e.g. called GCPforDXF.txt) in your home
directory. You can use any text editor to create the file and write or rather
paste each (x, y) coordinate pair on a separate line. The next step is to find the
corresponding four GCPs in the georeferenced map or to assign corresponding
coordinates from a GPS measurement. When using GPS data, just enter the
georeferenced coordinate values. When using a reference map in the current
LOCATION, for example the vector map streets_wake, you can open a new
monitor, reset the current region and display the map (for convenience we
show the zoomed-in region for the streets_wake that includes the Master
plan area):

d.mon x1
g.region -p n=228396.0 s=222148.0 w=634206.0 e=641883.0
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d.erase
d.vect streets_wake

Again, use d.where to get the corresponding four GCP coordinate pairs from
the reference map. Store these values in the ASCII text file GCPforDXF.txt
next to the related xy coordinates as EASTING NORTHING with all values
delimited by a space. The GCP text file will look as follows (the first two
values are the X and Y coordinates, the second two values are EASTING and
NORTHING):

10547.28 19180.92 636087.08 227883.50
12681.62 11905.81 636728.77 225661.66
22963.16 2289.81 639873.03 222725.95
27782.63 683.32 641340.88 222252.71

Now you can transform the imported map in xy coordinates to the State Plane
NAD83 using the module v.transform:

v.transform Masterplan_xy out=Masterplan points=GCPforDXF.txt
[...]
Residual mean average: 4.581719

The module transforms the coordinates of the nodes and vertices of the DXF
map and prints out the error for each GCP and the overall RMS (root mean
square) error. If the RMS error is too high for the given application you can
try to improve the result by more accurate selection of GCPs. To verify the
transformation result, reset the current region to the transformed map and
display it along with the reference map:

g.region vect=Masterplan -p
d.erase
d.vect Masterplan col=red
d.vect streets_wake

Both maps should match well.

4.2.4 Export of vector data

GRASS vector data can be exported in various formats using v.out.ogr and
several format-specific commands.

Export to OGR-supported formats You can export GRASS vector maps
into more than 15 formats including SHAPE, KML, GML2, PostGIS and DNG
using the v.out.ogr command that is based on the OGR Simple Features
Library (part of GDAL). For example, to export the roadsmajor vector file
from our sample data set to ESRI SHAPE format, including an appropriate
projection information stored in ESRI-style .prj format (indicated by the flag
-e) run:
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# get the info about the vector map
v.info roadsmajor
v.out.ogr -e roadsmajor dsn=roadsmajor type=line

Several files are written into the roadsmajor subdirectory of the current direc-
tory: roadsmajor.shx, roadsmajor.shp, roadsmajor.prj and roadsmajor.dbf.
Note that you did not have to specify the output format or feature type be-
cause the SHAPE format and line features are default. The written DBF file
may be inspected with OpenOffice (http://openoffice.org), a free office
software. Additional examples of export of areas, 3D faces and points into
different formats are below:

# export soils map to PostgreSQL/PostGIS
v.out.ogr soils soils \

dsn="PG:host=localhost,dbname=postgis,user=postgres" \
type=area format=PostgreSQL

# export 3D faces into KML; facility.kml needs to be
# reprojected to LatLong/WGS84 for WorldWind or Google Earth
v.out.ogr facility_3d dsn=facility.kml olayer=facility \

format=KML type=face
# export points into CSV
v.out.ogr schools dsn=schools type=point format=CSV

To export to DXF (and some other formats) GDAL/OGR needs to be com-
piled with additional libraries, but you can also use the module v.out.dxf to
export data into the DXF format:

v.out.dxf roads out=roads.dxf

The DXF file is written to the current directory or to a specified path.

Export to GRASS ASCII vector format You can use the module
v.out.ascii to export a GRASS vector map to GRASS ASCII format. Only
geometry and category numbers are exported in this format. You can export
the line and point vector maps as follows:

# export to GRASS ASCII format
v.out.ascii roadsmajor out=roadsmajor.asc format=standard

# alternate way to export to CSV table format
v.out.ascii schools out=schools.txt fs=" "

Note that the format “point” is default so we did not have to specify it for the
vector map schools.

Export to visualization and graphics formats: POV, VTK and SVG
You can export GRASS vector maps for sophisticated visualization in POVRay
using v.out.pov or VTK-based tools such as Paraview or MayaVi using
v.out.vtk. See Chapter 7 on visualization for more details. An important

http://openoffice.org
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addition in GRASS 6 is the possibility to export vector maps in the Scalable
Vector Graphics (SVG) format that can be used for graphically rich web appli-
cations, hardcopy output, and as exchange format for numerous applications.
For example, you can export the soils map as follows:

v.info -c census_wake2000
v.out.svg census_wake2000 out=census_wake2000.svg \

type=poly attrib=TRACTID

The resulting map can be displayed in Web browsers with SVG support.
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Working with raster data

In this chapter, we explain processing of raster data, including examples of
spatial analysis and modeling. We provide basic description of the GRASS
raster tools accompanied by numerous practical examples; you can learn more
details from the manual pages, tutorials and publications provided on the
GRASS Web site. For description of the GRASS raster data model, as well as
raster data import and export, please refer to the Sections 4.1.1 and 4.1.3.

5.1 Viewing and managing raster maps

In this section, we continue to use the North Carolina sample data set to
illustrate our examples. Please refer to Section 3.1.4 on how to start GRASS
with the nc_spm LOCATION.

5.1.1 Displaying raster data and assigning a color table

As mentioned before, display of GRASS data is easy to handle using your
favorite GRASS GUI, especially when you need to combine various raster and
vector maps. The available GUIs evolve rapidly, therefore, we use the more
stable underlying commands in this book. The command line interface (CLI)
is also faster than GUI if you need to work over the Internet.

We have already displayed raster maps using the d.rast module (see Sub-
section 3.1.5, so here we just repeat the procedure. First set the current region
to the map of interest, then open the GRASS monitor, and run the raster dis-
play module (see Section 4.1.2 for region management and Section 3.1.5 for
GRASS monitor usage):

g.region rast=elevation -p
d.mon x0
d.rast elevation
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The module d.rast offers two useful optional parameters, catlist and
vallist. When using catlist you can selectively display categories for in-
teger maps, while vallist applies to floating point maps. For example, we
display selected land use categories with the display background set to black
and selected elevation values over the geology map:

# display only categories 1, 2 (developed) for land use map
d.rast landuse96_28m cat=1,2 bg=black

# check the range of elevation values of the entire map
r.info -r elevation

# display only elevation higher than 100m over the geology map
d.rast geology_30m
d.rast -o elevation val=100-160

The flag -o allows you to display the raster map (or its selected subset of cat-
egories or values) over the map already displayed in the monitor. Remember,
from Section 3.1.2, that you need to type only the first letters of each keyword
(e.g., cat instead of catlist).

To get a list of the maps currently displayed in the GRASS monitor, run:

d.frame -l

The GRASS monitor can be erased with d.erase. You can display all raster
maps in the selected MAPSETS in a single monitor as follows:

d.erase
d.slide.show mapsets=PERMANENT

Optionally, you can define a name prefix to see only selected maps. To learn
how to view raster data in 3D using the nviz module, see Chapter 7.

Color tables and legends Each raster map has its own color table. When
no color table file is present, the rainbow color coding will be used (not always
the best choice). You can assign a color table for a raster map using the
r.colors module. It provides a range of pre-defined color tables. To give it a
try, change the color table of the elevation map to various pre-defined color
schemes and then display it again using d.redraw:

d.rast elevation
r.colors help
r.colors elevation col=gyr
d.redraw
r.colors elevation col=elevation
d.redraw

The parameter color uses GRASS internal color tables (in
$GISBASE/etc/colors/). The color tables typically used with elevation
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raster maps are available under the names elevation and terrain. If the
parameter color is set to rules, you can build customized color tables by
color list, by category values, and by “percent” values or their combination.
The colors can be defined by name or by the numbers 0-255 for red-green-blue
triplets. The following example illustrates how to combine different methods
for color table specification:

r.colors elevation col=rules
Enter rules, "end" when done, "help" if you need it.
fp: Data range is 55.578... to 156.329...
> 0% aqua
> 20% green
> 100 255 255 0 #yellow
> 120 orange
> brown
> end

d.redraw elevation

# put back the original color table
r.colors elevation col=elevation

The parameter rules allows you to define the path to an existing color table
file and the parameter raster can be used to copy a color table from an
existing raster map. You will find additional examples of color table definitions
throughout the book and in the manual page for this command.

You can add a legend and a scale to your displayed map as follows:

d.barscale at=5,90
d.legend elevation at=70,15,5,10

You will get the barscale drawn at the lower left corner of the graphical
window (at 5% from the left, at 90% of the window from the top) and the
legend at lower left corner in a box starting at 15% from the bottom, 5%
from the left extending to 70% from the top and 10% from the left. If you
want to interactively define the location and extent of the legend using the
mouse, include the -m flag. Then click the left mouse button to “Establish
a corner”, drag the mouse over the area where you want your legend and
finish by clicking the right button to “Accept box for legend”. The same flag
is available for barscale. The menus for these interactive display commands
are always explained in the terminal window. If you have selectively displayed
only certain categories or values using the catlist or vallist options for
the d.rast command, you can selectively display the relevant colors in your
legend using the use option for a list of categories and the range option for a
range the map values. Try the graphical user interface for more sophisticated
options to display maps with legends, scales, and titles. A simple way to show
a raster map with legend is to use d.rast.leg (see Section 7.1.1 for changing
the legend font):
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g.region rast=landuse96_28m -p
d.erase
d.rast.leg landuse96_28m
d.erase -f

To remove the map including the legend frame, use d.erase -f. You can use
the command d.text to add text to your image.

5.1.2 Managing metadata of raster maps

Information about the data source, accuracy, producer, date of mapping or im-
age acquisition, date of map production, and eventual modifications, is called
metadata (data describing data). Data documentation is crucial for GIS work,
especially for evaluation of data quality and suitability for a given task. This
is particularly important for long-term projects or where GIS data are shared
with other users. Most geospatial data provided by the US government agen-
cies include a comprehensive, standard metadata file. You can find several
examples in the external data sets provided in within ncexternal/ subdirec-
tory. For example, see the text file gdc.txt stored within geod_pts_spm.zip
for the NC geodetic points data.

We have already used the command r.info to get basic information about
a raster map. The module r.describe provides a simple output of category
numbers or range of values, while r.cats prints a list of category numbers
and associated labels:

r.info landuse96_28m
r.describe landuse96_28m
r.cats landuse96_28m

Modifying metadata GRASS offers an option for maintaining a “history
file” that stores basic raster map documentation. Many analytical modules
save their calculation steps into the history file automatically. You can add
additional information, including raster map units and vertical datum, by
modifying the “map history” using the command r.support:

# make you own copy of the raster map so that you can modify it
g.copy rast=elevation,myelevation
r.info myelevation
r.support myelevation history="Downloaded from USGS,\

projected to spm" units=meter vdatum=NAVD88
r.info myelevation

or by running r.support in interactive mode:

r.support myelevation

This will guide you through series of questions that give you the op-
portunity to edit the header, update histogram, edit categories or color
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table; you may proceed with <ENTER> until you reach the question:
Edit the history file for [myelevation]?. Confirming with <y> opens an
input screen showing the metadata for this map.

You can see that map date, title, creator, a description containing the
map creating method “generated by r.proj” and a few more entries are already
stored there. You may fill the field “Data source” with “USGS NED”. With
<ESC><ENTER> you reach the next screen with comments that include the
full command used to create the map and a comment that we have added
above. You may add more comments here for example, “Based on 2001 NC
Flood mapping program survey”. Another <ESC><ENTER> takes you back to
the questionnaire mode of r.support; you can skip the rest of the questions
with <ENTER>, and leave the module. You can check your modification by
running:

r.info myelevation

This will display the updated data description, boundary coordinates, and
data range.

Raster map timestamps Mapping and monitoring often produce time
series of spatial data that require to store the relevant temporal information.
We can store it separately from the history file using the module r.timestamp.
This command has two modes of operation. If no date argument is supplied,
then the current timestamp for the raster map is printed. If a date argument
is specified, then the timestamp for the raster map is set to the specified
date or date range. Absolute timestamp that includes date, time and time
zone can be added as follows (you need to open GRASS with the MAPSET
PERMANENT or copy the raster maps into your own mapset to run the
examples below):

r.timestamp lsat7_2002_10 date="24 May 2002 09:30:00 -0000"

Check the defined timestamp by:

r.timestamp lsat7_2002_10

Time range is represented by two comma-separated timestamps (e.g.
date="07 october 1999, 24 march 2000"). Also relative timestamps can be
specified:

r.timestamp elevation_shade \
date="17 hours 25 minutes 35.34 seconds"

r.timestamp cfactorgrow_1m date="130 days"

Timestamps can be removed by:

r.timestamp elevation_shade date=none
r.timestamp elevation_shade
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5.1.3 Raster map queries and profiles

One of the most common tasks when working with digital maps is querying
the values at a given location. This can be done either interactively using
a mouse, or on the command line for a location given by its coordinates.
To query single or multiple maps interactively use d.what.rast, the mouse
button menus are explained in the terminal window:

g.region rast=landuse96_28m -p
d.erase
d.rast landuse96_28m
d.what.rast
Buttons
Left: what’s here
Right: quit
637637.66225962(E) 221085.80408654(N)
landuse96_28m in PERMANENT (15)Southern Yellow Pine

d.what.rast elevation,landuse96_28m
...
641350.22271715(E) 220066.25835189(N)

elevation in PERMANENT, quant (102)
elevation in PERMANENT, actual (102.465187)

landuse96_28m in user1 (1)High Intensity Developed

The command d.what.rast will work without specifying a map name when
a raster map is already displayed in the GRASS monitor. By clicking with
the left mouse button at a certain location, you will get the coordinates at
that point as well as the category values and labels in the given map(s). For
the floating point maps you will get the actual value and an integer quantized
value (category number). When you are finished with the query, don’t forget
to end the request mode using the right mouse button within the GRASS
monitor. To get only the coordinates at a point by mouse click, use d.where.

Non-interactive queries of one or more raster maps can be performed either
at individual points or along a transect (profile along a line). You can query
a single or multiple maps at a point given by its coordinates or at a set of
points stored in a file with the module r.what. In the following example, we
use the coordinates of schools stored in the file schools.txt (provided in the
sample data set subdirectory ncexternal/, generated in Section 4.2.4):

# query at a single point: provides category number and label
r.what -f landuse96_28m east_north=638650,220610
638650|220610||4|Managed Herbaceous Cover

# query multiple maps at multiple points
# ’more’ lists the file contents, leave with <q>
more schools.txt
r.what -f elevation,landuse96_28m \

null=-9999 < schools.txt > schools_el_lu.txt
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# note: coordinates shortened here
more schools_el_lu.txt
633649.29|221412.94|1|145.07||2|Low Intensity Developed
628787.13|223961.62|2|-9999|-9999
[...]

d.rast.leg landuse96_28m
d.vect schools_wake icon=basic/circle fcol=yellow

Category labels (in our case the type of land use) are included in the output
when running the command with the -f flag. The result in the second example
is written into an ASCII file schools_el_lu.txt. The schools located outside
our area have NULL for elevation and land use, defined as -9999 by the null
parameter. Note that the decimal digits printed beyond millimeters are due
to printing format and do not reflect the data precision. Additional interesting
examples of r.what usage are given in its manual page.

Profiles You can interactively draw profiles within the GRASS monitor
with the command d.profile. You may try it with the elevation map:

d.profile elevation

Then follow the menu provided within the monitor.
Numeric terrain profiles can be generated using r.profile. It outputs

raster map values located on user-defined line(s) and writes the result to a file
or to standard output (stdout). For example, you can extract a profile along
a line specified by coordinates of two GPS tracking points or a profile along
a series of points stored in a file road_profile_xy.txt (see the subdirectory
ncexternal/ of the NC sample data set to get this text file):

g.region rast=elevation -p
r.profile elevation out=- profile=641373,221962,641272,219354 \

res=200
Using resolution 200
Output Format:
[Along Track Dist.(m)] [Elevation]
Approx. transect length 2609.955078 m.
0.000000 74.698303
200.000000 78.065613
400.000000 82.880783
[...]

cat road_profile_xy.txt
cat road_profile_xy.txt | r.profile -g elevation \

out=road_profile_xyz.txt
more road_profile_xyz.txt
641373.134328 221962.686567 0.000000 74.698303
641373.134328 221952.686567 10.000000 74.768227
641373.134328 221942.686567 20.000000 74.704346
[...]
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The output list for the first example has two columns. The first column is
the cumulative transect length, the second column is the raster value found
at the corresponding grid cell resampled to 200m resolution. The second
example takes the coordinate input from a file and stores output in a file
road_profile_xyz.txt that includes easting, northing (due to the flag -g) as
well as the cumulative transect length and the raster value at that position.
You can use the flag -i to select the profile points interactively in the GRASS
monitor. Profiles defined by a starting point, direction and distance can be
extracted using r.transect.

5.1.4 Raster map statistics

Univariate statistics for a raster map can be computed with r.univar. It
computes the number of cells, minimum, maximum, range, arithmetic mean,
variance, standard deviation, variation coefficient and sum of all values. As
an example, we apply it to the map elevation:

g.region rast=elevation -p
r.univar elevation
[...]
Of the non-null cells:
----------------------
n: 2025000
minimum: 55.5788
maximum: 156.33
range: 100.751
mean: 110.375
mean of absolute values: 110.375
standard deviation: 20.3153
variance: 412.712
variation coefficient: 18.4057 %
sum: 223510266.5581016541

Extended statistics that includes median and 90th percentile can be computed
by running the command with the -e flag. Univariate statistics is applicable
to raster maps representing continuous fields and even those require caution
when interpreting the results, we discuss these issues in more detail in the
Section 10.2. Please refer to Appendix A.1 for equations used in this module
to compute the univariate raster statistics.

You can use the modules r.report and r.stats to report summaries for
raster maps such as area sizes for each category with units given by parameter
units (cells, hectares, percent, etc.):

r.report landuse96_28m unit=c,h,p
r.stats -pl zipcodes,landuse96_28m

The r.report example outputs a table that shows category number and la-
bel, number of cells, area in hectares and percent for each land use category.
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The r.stats example computes percent of land use type for each zipcode.
In addition, you can use the command r.stats with the flag -1 to output
individual cell values (left to right, top to bottom) in a format that can be
further customized using additional flags. Often, the result is piped to other
tools such as awk for further processing (see an example in Section 5.1.9).

5.1.5 Zooming and generating subsets from raster maps

An easy way to create spatial subsets is to zoom and save a raster map. You
can interactively zoom into a selected location within a map displayed in the
GRASS monitor using the command d.zoom (see Section 3.1.5 for details).
You can now save the selected region using the g.region command:

g.region save=myzoomregion

Besides zooming, you can use g.region also to adjust the current region set-
tings to well defined region boundary values as we have shown in Section 4.1.2.
You must run d.redraw (or the sequence d.erase; d.rast map) after using
g.region to give the GRASS monitor the information about the changed
current region. The module d.erase which is internally used by the d.redraw
script sends the updated coordinates to the monitor while erasing its contents.
Therefore, a redraw is required to get the map(s) back.

Generating map subsets If you have a large raster map, but you want to
work only on its smaller subset, you can select it and store it into a separate
raster map. This saves processing time, especially when you want to try a
more complex calculation before applying it to the full map.

To create a raster map subset, we will use the GRASS feature that makes
the GRASS raster computations limited to the current region at current res-
olution. After defining the area of interest with g.region or d.zoom, you can
use the module r.mapcalc to extract the map portion into a new map:

# change region to the airphoto tile 792 and resolution 10m
g.region rast=ortho_2001_t792_1m res=10 -ap
d.erase
d.rast ortho_2001_t792_1m

# create a subset of the map elevation for this subregion
r.mapcalc "elevation_792_10m=elevation"
d.rast elevation_792_10m

# zoom out to see that it is a subset, click middle button
d.zoom

Through this simple map algebra expression the map portion defined by the
current region is saved as elevation_792_10m, by copying the cell values from
the larger original map elevation to the new map (nearest-neighbor method).
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5.1.6 Generating simple raster maps

GRASS has several modules that allow users to compute various types of
simple raster maps. To create a new raster map using on-screen digitizing you
can use r.digit. For example, you can create an additional area, circle and
line for a planned new building with parking, circular fountain and a service
road as follows:

# change region to the high resolution, small rural area,
# display the orthophoto and proposed facility area
g.region rural_1m -p
d.erase
d.rast ortho_2001_t792_1m
d.rast -o facility

# digitize an additional raster map area and raster line
# using the orthophoto as a background
r.digit myfacility_1m

# this menu appears
Please choose one of the following
A define an area
C define a circle
L define a line
X exit (and create map)
Q quit (without creating map)

Now select the appropriate letter and digitize the desired polygon(s), circle(s)
or line(s) using the middle button, then follow the directions to create a raster
map from the drawn objects. Try to digitize the facilities in the north-east as
areas (<A> for area, category number 1, category label “house”). To save the
map, leave with <X>. In Section 6.3 we show a more sophisticated digitizing
tool.

You can then display the result on top of the orthophoto and check the
information about the new map:

d.rast -o myfacility_1m
r.info myfacility_1m

When running r.info you will see that the raster map was in fact created by
the command r.in.poly that is used to import raster maps defined by ASCII
vector data (see Section 4.1.3).

A raster map representing set of concentric circles around given points can
be created using the r.circle command. For example, you can create a set of
circles around a selected school given by a vector point starting at the distance
of 200m growing up to 1000m with a step equal to the current resolution:

g.region swwake_10m -p
d.erase
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# display streets and schools, find the coordinates
# of the selected school: Centennial
d.vect streets_wake
d.vect schools_wake col=red disp=shape,attr attrcol=NAMESHORT
d.what.vect -x schools_wake

# create raster map circle and display it over the vector data
r.circle out=school_circle coor=637768,222962 min=200 max=1000
d.rast -o school_circle

You can then use such a raster map for various types of analysis such as iden-
tifying spatial relationship between the given point and landscape properties
as function of the distance from this point.

Random sampling Analysis that involves random sampling may require
a raster map with randomly distributed cells that are within a given mini-
mum distance. You can create such map using the module r.random.cells
(we use low resolution of 100m in our example to make the results easier to
understand):

g.region rast=elevation res=100 -ap
r.random.cells out=randomcells_200m distance=200
d.erase
d.rast randomcells_200m
r.info randomcells_200m
d.what.rast

Each random cell has a unique non-zero value ranging from 1 to the number
of cells generated, in our case it was 2866 (you may get a slightly different
number, depending on how the random cells are distributed). The unfilled
cells are assigned the value zero. You can use map algebra, explained later in
this chapter, to replace the zeroes by nulls and the random values by a single
value, if necessary.

Random surface, useful for modeling uncertainty and analysis of sensitivity
of various algorithms to errors in the modeled surface, can be generated by
r.random.surface:

r.random.surface out=rand_surf_100m
r.random.surface out=rand_surf_100m_d1000 distance=1000
d.rast rand_surf_100m
d.rast rand_surf_100m_d1000

The first surface generated with the default spatial dependence set to
distance=0 generates a surface where the cells are independent of each other.
The second surface has the range of influence (spatial dependence) set to
1000m, essentially creating a random surface with features that are around
1000m in size (Ehlschlaeger and Goodchild, 1994). The values in the resulting



94 5 Working with raster data

map range between 1 and the value given by the parameter high (in our case
it was 255 given as the default value). Alternatively, random surface without
spatial dependence can be created by module r.surf.random where you can
choose both the minimum and maximum value. You can find more detailed
explanation and relevant publications about the above described modules in
the manual pages.

In the next set of examples, we generate a raster map representing a plane
that passes through the point e=638789, n=219570, z=113 with inclination
(dip) of 25 degrees and orientation (azimuth) of 120 degrees. We also show
how to create a fractal surface (see Wood, 1996) and a Gaussian surface:

r.plane name=plane dip=25 azimuth=120 easting=638789 \
northing=219570 elevation=113 type=float

d.rast plane

# fractal surface
r.surf.fractal surf_fractal
d.rast surf_fractal

# Gaussian surface
r.surf.gauss surf_gauss mean=100 sigma=10
d.rast surf_gauss

The fractal surface resembles natural topography and its structure depends
on the fractal dimension (Mandelbrot, 1983). The fractal dimension (D) lies
between the Euclidian dimensions 2 (plane) and 3 (volume), the closer D is
to 3 the more rugged is the generated relief. Our surface uses the default
dimension 2.05. The Gaussian surface represents random values around the
mean value of 100 with standard deviation 10.

5.1.7 Reclassification and rescaling of raster maps

Reclassification of a raster map creates a new map based on the transfor-
mation of existing categories in the original map to a new set of categories.
Usually, ranges of categories are grouped into a new category using the mod-
ule r.reclass. Those category numbers which are not explicitly reclassified
to a new value will be reclassified to NULL. Before using r.reclass you need
to know:

• transformation rules (reclass table) describing which old categories will be
assigned to which new categories;

• optionally, names for the new categories (category labels).

We recommend using the module on the command line and storing the reclass
table in a file. This is convenient in the case that additional modification
of the reclass table is required. The file containing the reclass rules is read
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from standard input (i.e., from the keyboard, redirected from a file, or piped
through another program). The following examples illustrate the concept.

First, we reclassify the raster map zipcodes, which includes 13 categories
(you may check that with r.report zipcodes). The new map will include 6
categories representing the area towns and cities. We store the reclass rules
into a text file zipreclass.txt:

27511 27513 27518 = 1 CARY
27529 = 2 GARNER
27539 = 3 APEX
27601 27604 27605 27608 = 4 RALEIGH-CITY
27603 27606 27610 = 5 RALEIGH-SOUTH
27607 = 6 RALEIGH-WEST

To apply the rules to the zipcodes map and create a new reclassified map
towns, we run:

# display the original map
g.region rast=zipcodes -p
d.erase
d.rast zipcodes

# display with simple legend, omit entries with missing label
d.rast.leg -n zipcodes

# check reclass table and then pipe it to the reclass command
cat zipreclass.txt
cat zipreclass.txt | r.reclass zipcodes out=towns \

title="Cities and towns"

# check the result as percent area table and as map
r.report towns unit=p
d.rast.leg -n towns
d.vect roadsmajor

The first cat command just shows the table contents. We then send the table
to the GRASS module using the pipe into the second command. You can check
the resulting map towns by reporting the percent area for each new category
(town or city section) and displaying the map with major roads for better
orientation. The reclassification rules can be displayed with r.info towns. To
remove the legend frame use d.erase -f.

The next example explains reclassification of a continuous field map. We
want to reclass the aspect map into 4 aspect ranges reflecting the terrain ori-
entation. Aspect angle can range from 0 to 360 degrees (origin is east and ro-
tation counterclockwise) so we create a reclass rules table aspectreclass.txt:

0 thru 45 = 4 East
45 thru 135 = 1 North
135 thru 225 = 2 West
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225 thru 315 = 3 South
315 thru 360 = 4 East

This table is then applied to the map:

cat aspectreclass.txt
cat aspectreclass.txt | r.reclass aspect out=orientation \

title="Terrain orientation"
d.rast.leg orientation

As another example, we show a mixture of the reclass rules described above.
The mixed rules table reclasses the landuse96_28m map to a reduced number
of categories:

0 = NULL
1 2 = 1 developed
3 = 2 agriculture
4 6 = 3 herbaceous
7 8 9 = 4 shrubland
10 thru 18 = 5 forest
20 = 6 water
21 = 7 sediment

As in the previous examples, we store this table into a file landuserecl.txt
and run r.reclass on the landuse96_28m map:

cat landuserecl.txt
cat landuserecl.txt | r.reclass landuse96_28m out=landclass96\

title="Simplified landuse classes"
r.report landclass96 unit=p
r.colors landclass96 col=ryg
d.rast.leg landclass96

A hint: To minimize typing efforts, you can start from the category table of
the landuse96_28m map, store it to the file landuserecl.txt and modify it
accordingly. The module r.cats outputs the category table; we can redirect
it to an initial reclass table:

r.cats landuse96_28m > landuserecl.txt

You can then use a text editor to prepare the reclass table from the file
landuserecl.txt. Be cautious with reclassed maps. Since r.reclass internally
generates a table referencing the original raster map rather than creating a
real raster map, a reclass map will not be accessible if the original raster map
upon which it was based is removed. If such a case occurs, g.remove prints a
warning. You can use r.mapcalc to convert a reclass map to a regular raster
map:

g.region rast=landclass96 -p
r.mapcalc "landclass_simpl=landclass96"
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Filter by area size In case that you need to filter areas by size, use
r.reclass.area. In our example, we eliminate all areas that are smaller than
1 hectare:

r.report landuse96_28m unit=h
r.reclass.area in=landuse96_28m out=landuse96_28m_1 great=1
r.report landuse96_28m_1 unit=h

# assign the same colors as in the original map and compare
r.colors landuse96_28m_1 rast=landuse96_28m
d.rast.leg -n landuse96_28m
d.rast.leg -n landuse96_28m_1
d.vect roadsmajor

The script r.reclass.area will generate a new map landuse96_28m_1 where
the minimum area size is 1 hectare, setting the omitted small areas to NULL.
These no-data areas could be filled again with surrounding values using
r.neighbors with the mode parameter, see Section 5.4.1. Use d.erase -f to
remove the legend frame.

Rescaling You can also reclassify a raster map by rescaling it to a different
range of values using r.rescale or r.rescale.eq; both modules are based on
r.reclass. To show the difference between the two rescaling modules, we will
apply them to the slope map where most cells in our region have relatively
low values (up to 6 degrees) and only few represent steep slopes:

g.region rast=slope -p
# remove above d.rast.leg frame, too
d.erase -f
r.rescale slope from=0,90 to=1,6 out=slope_c6
r.rescale.eq slope from=0,90 to=1,6 out=slope_ceq6
d.rast slope_c6
d.rast slope_ceq6
r.info slope_c6
r.info slope_ceq6

The histogram equalized reclassification has more evenly distributed cate-
gories throughout the region as opposed to standard rescaling where most
area falls into the categories 1 and 2.

5.1.8 Recoding of raster map types and value replacements

More complex reclassification, conversion between different raster map types
and value replacement can be performed using the module r.recode. It has
routines for conversion between every possible combination of raster type (e.g.,
CELL to DCELL, DCELL to FCELL, see Section 4.1.1 for more detailed
explanation of different raster data types). The recoding is based on rules
that are read from standard input (i.e., from the keyboard, redirected from
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a file, or piped through another program). The default output floating point
raster data precision is FCELL, to write DCELL precision raster use the flag
-d. The general form of a recoding rule is:

oldmin:oldmax:newmin:newmax

In the following example, we use a special UNIX method to direct data, such
as the recode rules, into the command r.recode. This method is very con-
venient for script programming because it skips printing out messages about
the data range and help. We specify EOF (end of file) in the first line and the
module reads input until the second EOF appears. If you do not specify EOF, the
module prints the data range (both floating point and integer, if applicable)
and prompts you for the rules. Alternatively, you can also store your recode
rules in a text file and redirect it or pipe it as an input to r.recode, as we did
in our r.reclass examples. To simply convert a raster map between types,
for example from DCELL to CELL, run the command with the following rule:

r.info zipcodes_dbl
r.recode zipcodes_dbl out=zipcodes_int << EOF
27511.0:27610.0:27511:27610

EOF
r.info zipcodes_int

This will convert a DCELL raster map to a new CELL raster map with the
same range of values. The same task can be accomplished using r.mapcalc as
we will show in the Section 5.2. To convert a raster map from FCELL to CELL
while simultaneously changing the range of values in the aspect raster map
from 0.0-360.0 (infinite number of directions) to 1-8 (D8 – eight directions
often used for flow routing), run the command with the following rule (in this
example, we skip EOF to illustrate how it works):

r.info aspect
r.recode aspect out=aspect_d8
Data range of aspect is 0 to 360 (entire map)
Integer data range of aspect is 0 to 360
Enter the rule or ’help’ for the format description:
> 0.:360.:1:8
> end

r.info aspect_d8

To illustrate the conversion of a raster map from CELL to DCELL while simul-
taneously replacing the values, we replace the landuse categroy in a recently
created raster map landclass96 (see the section above for land use associated
with each number) with associated land cover erosion factor (C-factor):

g.region rast=landclass96 -p
r.recode -d landclass96 out=cfact96_30m
Integer data range of landclass96 is 1 to 7



5.1 Viewing and managing raster maps 99

[...]
> 1:1:0.0:0.0
> 2:2:0.1:0.1
> 3:4:0.01:0.01
> 5:5:0.0001:0.0001
> 6:6:0.0:0.0
> 7:7:0.9:0.9
> end

The values appear twice because the module expects both the minimum and
maximum for the old and new values. When we display the resulting map,
only small spots with high erosion factor are visible, so we need a new color
table to cover the values that change over several magnitudes:

d.rast cfact96_30m
r.colors cfact96_30m color=rules
> 0 grey
> 0.0001 green
> 0.01 yellow
> 0.1 orange
> 0.9 red
> end

d.rast cfact96_30m
d.vect roadsmajor

You will find additional alternatives for defining the rules in the r.recode
manual page. The value replacement method using recoding is often faster
than formulating complex “if” conditions with raster map algebra module
r.mapcalc.

5.1.9 Assigning category labels

Raster maps may include category labels that are internally stored in a special
category table. Sometimes, this table does not exist, for example, when the
map has been created by r.mapcalc or when it was imported without labels.
In other cases you may want to modify or update the existing labels.

Modifying existing category labels for a raster map The module
r.support can be used to update existing category labels. As an example,
we modify existing labels of the geology_30m map by replacing some of the
geology type acronyms with the full description. First, let us look at the orig-
inal map:

r.report geology_30m

Because the map is stored in the read-only PERMANENT MAPSET we can-
not modify it (see Section 3.1.2 for explanations), and we first have to create
a copy within our MAPSET:
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g.copy rast=geology_30m,mygeology_30m

The category label editor is included in the module r.support. Start it with
the name of your map:

r.support mygeology_30m

Answer the questions with <n> until it asks you if you want to “Edit the
category file for [mygeology_30m]?” Enter <y> here. You will get to the first
screen where the highest category number should be defined. Because you
are not going to change the number of categories, you can accept the current
value and continue with <ESC><ENTER>. This takes you to the category table
where you can move around with cursor keys. The table displays the first 10
categories, the others are on the next page(s). If you want to change just few
categories, you can get directly to it by entering it’s number into the field
“Next category ”. As an example, proceed to the category number 24: Enter
<24> in that bottom line and hit <ESC><ENTER>. Now you have the requested
category number on top of the table which should read “Ccl”. Go to the line
and enter the full name “Lower Chilhowee”.1 You can then go to the category
number 10 and then to 20 to learn how it is working. To leave this mode,
either scroll through the full table with <ESC><ENTER> or just type <end>
into the line “Next category ”. Now you get back to the questionnaire mode
of r.support, you can skip the rest of the questions with <ENTER> to exit
the module. Finally, check the updated table with r.cats or r.report. This
procedure looks a bit old-fashioned, but you can use it even remotely through
low-bandwidth (wireless) network access because no graphical user interface
is required.

If you have a derivative map which is based on category labels of another
map, you can easily transfer category labels (the category numbers have to
correspond of course):

r.support newmap rast=landuse96_28m

Note that you can create categories for floating point maps representing con-
tinuous fields such as elevation or precipitation. To do this, you can run
r.support and create categories for ranges of FP data.

Assigning new attributes to a raster map The next application is a bit
more sophisticated because we want to automatically assign new attributes
to a raster map based on calculations. For illustration, we create a new raster
map towns_area by substituting the category labels that represent the town
names in the map towns to labels representing town areas (towns was created
in Section 5.1.7). The procedure will read the map towns, calculate the areas
for the individual areas, output the results as reclass rules and reclass the
towns map according to the rules.
1 NC geological map legend,
http://www.geology.enr.state.nc.us/usgs/blueridg.htm

http://www.geology.enr.state.nc.us/usgs/blueridg.htm
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To get the area information, we can use r.report or r.stats. Compare
the results of both (we use -h to suppress page headers):

g.region rast=towns -p
r.report -h towns units=h
+------------------------------------------------------------+
| Category Information | |
|#|description | hectares|
|------------------------------------------------------------|
|1|CARY . . . . . . . . . . . . . . . . . . . . . | 2608.490|
|2|GARNER . . . . . . . . . . . . . . . . . . . . | 1415.720|
|3|APEX . . . . . . . . . . . . . . . . . . . . . | 254.440|
|4|RALEIGH-CITY . . . . . . . . . . . . . . . . . | 1605.140|
|5|RALEIGH-SOUTH. . . . . . . . . . . . . . . . . |12,276.320|
|6|RALEIGH-WEST . . . . . . . . . . . . . . . . . | 2089.890|
|------------------------------------------------------------|
|TOTAL |20,250.000|
+------------------------------------------------------------+

# output in map units (here: square meters)
r.stats --q -an towns
1 26084900.000000
2 14157200.000000
3 2544400.000000
4 16051400.000000
5 122763200.000000
6 20898900.000000

The -a flag allows us to print the area values in square meters related to a
category, while -n suppresses NULL values. The flag --q suppresses printing of
percent complete messages to standard output. Note that the area calculation
depends on the raster resolution. The results from r.report and r.stats
should be comparable.

However, we cannot use the output of r.stats as rules for reclassification
of the towns map directly as it is not properly formatted for such task. Since
we want to store the area values as category labels for each town we need to
modify the output of r.stats, using a UNIX tool called awk. It is a “pattern
scanning and processing language” which is very useful for modification of
character strings and simple calculations with data stored in text files (see
more details on how to use awk in the GRASS Wiki2). It allows us to modify
a data stream on the fly:

r.stats --q -an towns | awk \
’{printf "%d=%d %.2fha\n", $1, $1, $2/10000.}’

1=1 2608.49ha
2=2 1415.72ha
3=3 254.44ha
[...]

2 GRASS Wiki, GNU text tools,
http://grass.gdf-hannover.de/wiki/GNU_text_tools

http://grass.gdf-hannover.de/wiki/GNU_text_tools
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r.stats --q -an towns | awk \
’{printf "%d=%d %.2fha\n", $1, $1, $2/10000.}’ \
| r.reclass towns out=towns_area

r.report -h towns_area
[...]
|1|2608.49ha |
|2|1415.72ha |
|3|254.44ha |
[...]

The redirection is done with UNIX piping which sends the output of r.stats
directly to awk to do some formatting, then further on to r.reclass for gen-
erating the new map. If desired, you can copy the original color table from
towns to towns_area with r.colors (see Section 5.1.1).

Clumping raster area features For some applications, we may need to
create an individual category number for each raster area (polygon). For ex-
ample, when the raster map includes several areas with the same surface
water type (assigned the same category number), we may need to distinguish
each area, in case we are interested in computing the size of each area using
r.report.

The module r.clump finds all areas of contiguous cell category values in
the input raster map and assigns a unique category value to each such area
(“clump”) in the resulting output raster map. This can be used to calculate
statistics based on the clumps instead of individual cells (also called “zonal
statistics” in other GIS).

Assume that we have a lake map with 3 lake types (3 category numbers)
in 22 polygons. After “clumping”, we will have all 22 polygons numbered in-
dividually and we can report areas for each of them individually:

g.region rast=lakes -p
r.report lakes units=a
[...]
| #|description | acres|
|-----------------------------------------------------------|
|34300|Dam/Weir . . . . . . . . . . . . . . . . | 10.922|
|39000|Lake/Pond . . . . . . . . . . . . . . . . | 867.296|
|43600|Reservoir . . . . . . . . . . . . . . . . | 11.614|
| *|no data. . . . . . . . . . . . . . . . . |49,147.918|
|-----------------------------------------------------------|
|TOTAL |50,037.750|

r.clump lakes out=lakes_individual
r.report lakes_individual units=a
[...]
| #|description | acres|
|-----------------------------------------------------------|
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| 1| . . . . . .. . . . . . . . . . . . . . . . .| 5.164|
| 2| . . . . . .. . . . . . . . . . . . . . . . .| 5.535|
[...]
|20| . . . . . .. . . . . . . . . . . . . . . . .| 533.439|
|21| . . . . . .. . . . . . . . . . . . . . . . .| 10.922|
|22| . . . . . .. . . . . . . . . . . . . . . . .| 7.611|
| *|no data. . .. . . . . . . . . . . . . . . . .|49,147.918|
|-----------------------------------------------------------|
|TOTAL |50,037.750|

While most raster polygons have assigned the same category (39000
lake/pond) in the original lakes map, all raster polygons in the
lakes_individual map are numbered individually. This is useful for cal-
culating area size for each individual lake.

5.1.10 Masking and handling of no-data values

Raster MASK allows the user to block out certain areas of a map from analysis
by hiding them from other GRASS raster modules. MASK is a raster map
which contains the values 1 and NULL. Those cells where the MASK map
shows value 1 are available for display and processing while those assigned
NULL are hidden. The map name MASK is a reserved filename3 for raster
maps. If you have a MASK map in your MAPSET, it will be used as for all
raster operations when reading raster data. Any raster data falling outside of
the MASK are treated as if its value were NULL.

To create a MASK, you need a base map that is used to select which values
will represent the hidden and the active areas. As an example, we may decide
to work only with urban areas defined in the raster map urban. We can set the
MASK that will exclude all areas outside the urban category from operations
(display, analysis) as follows:

# find the category number for urban areas
d.rast urban
r.cats urban
55

# set the mask and check its effect
d.rast elevation
r.mask urban maskcats=55
d.rast elevation

Now, for any map that you display, in our example it was elevation, you will
see only the areas designated as urban while the rural areas are left out. If
you are using “bash” shell, the command line prompt will change to [Raster
MASK present] as long as a MASK is present. Note that this raster MASK
does not apply to vector maps.
3 Note that MS-Windows does not distinguish between “mask” and “MASK”. We

prefer to use “MASK” throughout the book.
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You can also generate MASK directly by r.mapcalc as we explain later in
Section 5.2, or you can rename an existing binary raster map to MASK with
g.rename. Finally, you can remove MASK either with

r.mask -r MASK

or g.remove rast=MASK, or by renaming it to another name for later re-use;
for example, g.rename rast=MASK,mymask.

NULL value management GRASS distinguishes between 0 (zero) and no-
data (NULL). While zero may represent a true value, such as temperature,
NULL is used where no value is available. You can specify the values to be
considered as NULL when importing raster data. This is important because
other systems may have a different NULL encoding. Sometimes you may want
to modify the current values, such as setting a specific value to NULL or
setting NULL to a true value. Here, we explain how to exchange NULLs with
a single other value using the module r.null. You can change a certain value
(e.g. -9999 or 0) to NULL, using the setnull parameter:

# generic example for setting cells with -9999 value to NULL
r.null mymap setnull=-9999

# create a copy of SRTM DSM map
# replace cells with elevation=0 by NULL
g.copy rast=elev_srtm_30m,myelev_srtm_30m
g.region rast=myelev_srtm_30m -p
d.rast myelev_srtm_30m
r.null myelev_srtm_30m setnull=0.
d.rast myelev_srtm_30m

The example changes zero to NULL in the myelev_srtm_30m raster map. Note
that when displaying the resulting map and checking the data range with
r.info or r.univar we still find unrealistic negative elevation along the lake
borders. Later on, when talking about r.mapcalc, we introduce more complex
replacement methods that will allow us to change these negative elevation
values to NULL too. For some applications, we may need to fill in the areas
with missing values, such as the surface water elevation in our SRTM DSM
example above. We will explain this after you learn more about raster data
processing, in the section about raster data interpolation.

To replace the NULLs by a true value, you can use the null parameter:

# replace NULLs with 0 and check the values in the white area
g.copy rast=urban,urban_0
r.null urban_0 null=0
d.rast urban_0
d.what.rast urban,urban_0

The example will change NULL to zero, we will show in the section about
r.mapcalc why this may be needed for some map algebra operations.
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5.2 Raster map algebra

Raster map algebra is a powerful tool for spatial analysis and modeling using
raster data. In GRASS, map algebra is performed with r.mapcalc using the
following general command:

r.mapcalc "newmap=expression(map1, map2, ...)"

where expression is any legal arithmetic expression involving existing raster
maps, integer or floating point constants, and functions known to the calcula-
tor. The expression should be enclosed within quotes in command line mode.
You can also type r.mapcalc, then enter one or more expressions at a prompt
(quotes are not necessary), and the expressions are executed after you type
end:

r.mapcalc
mapcalc> newmap1=expression1(map1, map2, ...)
mapcalc> newmap2=expression2(map2, map3, ...)
mapcalc> end

The expression is stored in the history file of the newly computed raster map
and can be displayed using r.info. The following operators (listed in the
order of precedence) are available in r.mapcalc:

- negation
! not
∼ one’s complement (bit operator)
∧ exponentiation
% modulus (remainder upon division)
/ division
∗ multiplication
+ addition
- subtraction
<< left shift
>> right shift
>>> right shift (unsigned)
> greater than
>= greater than or equal
< less than
<= less than or equal
== equal
!= not equal
& bitwise and
| bitwise or
&& logical and
&&& logical and∗



106 5 Working with raster data

|| logical or
||| logical or∗
# color separator into R, G, and B color portions

∗ The &&& and ||| operators handle NULL values differently compared to
other operators (see Section 5.2.4).
The following functions are available in r.mapcalc:

abs(x) return absolute value of x
acos(x) inverse cosine of x (result is in degrees)
asin(x) inverse sine of x (result is in degrees)
atan(x) inverse tangent of x (result in degree)
atan(x,y) inverse tangent of y/x (result is in degrees)
cos(x) cosine of x (x in degree)
double(x) convert x to double-precision floating point
eval([x,y,...,]z) evaluates the values of the given expression,

pass results to z
exp(x) exponential function of x
exp(x,y) x to the power of y
x^y alternative for x to the power y
float(x) converts x to single-precision floating point
graph(x,x1,y1[x2,y2..]) convert the x to y based on points in a graph
if decision operator
if(x) 1, if x does not equal 0, otherwise 0
if(x,a) a, if x does not equal 0, otherwise 0
if(x,a,b) a, if x does not equal 0, otherwise b
if(x,a,b,c) a, if x > 0, b if x equals 0, c if x < 0
int(x) converts x to integer [truncates]
isnull(x) 1, if x equals “no data” (NULL)
log(x) natural log of x
log(x,b) log of x base b
max(x,y[,z...]) largest of the listed values
median(x,y[,z...]) median of the listed values
min(x,y[,z...]) smallest of the listed values
mode(x,y[,z...]) mode of the listed values
not(x) 1 if x is zero, 0 otherwise
pow(x,y) x to the power y
rand(low,high) generates random number between the values

low and high
round(x) rounds x to the nearest integer
sin(x) sine of x (x in degree)
sqrt(x) square root of x
tan(x) tangent of x (x in degree)
xor(x,y) exclusive-or (XOR) of x and y
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r.mapcalc provides some additional, internal variables, which are related to
the “moving window” used for calculations:

x() current x-coordinate of moving window
y() current y-coordinate of moving window
col() current col of moving window
row() current row of moving window
nsres() current north-south resolution
ewres() current east-west resolution
null() NULL value

The value NULL (no-data) is specified with null(). As denoted before, NULL
differs from 0 (zero).

5.2.1 Integer and floating point data

The resulting raster type in map algebra operations is defined by the type of
the input raster maps and constants. The result of an expression including
integer maps and constants will be an integer map; it will be a floating point
map if at least one of the constants or input maps is floating point. For
example, when dividing two integer maps, it is important to use multiplication
by 1.0 to store the result as a floating point map and preserve the decimal
values. To illustrate this rule, we will add a constant to an integer map:

g.region rast=ortho_2001_t792_1m -p
r.mapcalc "img_int = ortho_2001_t792_1m + 123"
r.info img_int
[...]
Range of data: min = 176 max = 311

r.mapcalc "img_fp = ortho_2001_t792_1m + 123."
# use -r to only get the range
r.info -r img_fp
min=176.000000
max=311.000000

The resulting map img_int is stored as an integer map, while img_fp is stored
as a floating point map. To transform an integer map into a floating point map,
simply multiply it by 1.0 or use the float() or double() functions. The calcula-
tion of the Normalized Difference Vegetation Index (NDVI from LANDSAT-
TM5) is a good example of an application where the function of integer maps
needs to be stored as a floating point map. In the next example, we have
used short generic names, but you can try it with the maps lsat7_2002_40
(substitute for tm4) and lsat7_2002_30 (substitute for tm3):

g.region rast=tm4 -p
r.mapcalc "ndvi1 = 1.0 * (tm4 - tm3) / (tm4 + tm3)"



108 5 Working with raster data

r.info -r ndvi1

r.mapcalc "ndvi2 = float(tm4 - tm3) / float(tm4 + tm3)"
r.info -r ndvi2

The maps ndvi and ndvi2 are the new floating point raster output maps,
tm3 and tm4 are LANDSAT channels used as integer input maps (see also
Section 8.3.1). Without the multiplication by 1.0, the result would be saved
as integer and important information would be lost. When using the float()
function, it is important to apply it before doing the division.

5.2.2 Basic calculations

Cell-wise addition or subtraction of two or more raster maps is one of the com-
mon map algebra tasks. For example, we can compute the difference between
the SRTM DSM elev_srtm_30m and the USGS DEM elev_ned_30m:

g.region rast=elev_ned_30m -p
r.mapcalc "srtm_ned30_dif=elev_srtm_30m - elev_ned_30m"

# create a custom color table to distinguish the negative
# and positive values
r.colors srtm_ned30_dif col=rules
fp: Data range is -142.24... to 86.19...
> -145 blue
> -10 aqua
> 0 white
> 10 orange
> 90 red
> end

d.erase
d.rast srtm_ned30_dif
d.what.rast elev_srtm_30m,elev_ned_30m,srtm_ned30_dif
d.vect streets_wake

You can see that we have many areas where the USGS DEM elev_ned_30m is
around 5 to 30m lower than the SRTM DSM elev_srtm_30m (positive values,
orange areas) mostly due to the vegetation and buildings captured by SRTM.

To illustrate a more complex arithmetic expression, we can calculate a
weighted average of two maps (here decimal points are used to ensure that
the resulting elev_avg is stored in floating point format):

r.mapcalc "elev_avg=(3.*elev_srtm_30m + 5.*elev_ned_30m)/8."
d.rast elev_avg
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5.2.3 Working with “if” conditions

Various logical operations can be performed with raster data by combining
operators with if() functions. We can create a new raster map by applying an
if() function to a set of raster maps or values as illustrated by the following
examples:

• if map = a, then b, else c, for example, set all cells in landclass96 with
category 1 (developed) to the same category 1 in the new map calcmap1
and all other categories to category 2:
g.region rast=landclass96 -p
r.mapcalc "calcmap1=if(landclass96 == 1, 1, 2)"
d.erase
d.rast.leg landclass96
d.rast.leg calcmap1

• if map is not equal a, then b, else c, will result in the opposite classification
(2 for developed, 1 for non-developed):
r.mapcalc "calcmap2=if(landclass96 != 1, 1, 2)"
d.rast.leg calcmap2

• we can use if map >= a, then b, else c to create the same map as the
previous example, because all non-developed categories are equal or greater
than 2:
r.mapcalc "calcmap3=if(landclass96 >= 2, 1, 2)"
d.rast.leg calcmap3

• if map >= a and map <= b, then c, else d, leads to category 1 vegetated
and category 2 other:
r.mapcalc "calcmap4= \

if(landclass96>=3 && landclass96<=5,1,2)"
d.rast.leg calcmap4

The if() functions can be combined to define more complex logical operations:

• Select the values 1 and 2 from landclass96 and save them in calcmap5
while setting all other values to 0:
r.mapcalc "calcmap5a= \

if(landclass96==1,1,0) + if(landclass96==2,2,0)"
d.rast.leg calcmap5a

# alternatively with logical ’or’ operator
r.mapcalc "calcmap5b= \

if(landclass96==1 || landclass96==2,landclass96,0)"
d.rast.leg calcmap5b

• Select the values 1 and 2 from landclass96 and save them in calcmap6 as
a category 1 while setting all other values to 0, leading to a binary map:
r.mapcalc "calcmap6= \

if(landclass96==1,1,0) || if(landclass96==2,1,0)"
d.rast.leg calcmap6
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5.2.4 Handling of NULL values in r.mapcalc

The basic rule to remember when working with NULL data in map algebra is
that operations on NULL cells lead to NULL cells. For example, if one of the
input maps included in the r.mapcalc expression has NULLs in the given area,
the resulting map will have NULLs in this area, too (both for addition and
multiplication functions). In this way, NULL behaves differently from zero,
which will have in this area zeroes for multiplication but not necessarily for
addition. Therefore, if we want to do operations with NULL data, we need to
use a special function isnull(). For example, if we want to fill the NULLs
in the raster map lakes with values from landclass96 (in other words, when
cell value in lakes is NULL, then write corresponding value of landclass96,
otherwise use value in lakes divided by 1000), so we run:

r.mapcalc "luselakes=if(isnull(lakes),landclass96,lakes/1000)"
d.rast.leg luselakes

The result will be a land cover map with more detailed representation of lakes
and ponds than the original landclass96 map. We have divided the map
lakes by 1000 because its categories are on the order of ten thousands and we
want the categories in the new map to be at approximately he same order of
magnitude as the landclass96 map. You can check the categories in the input
maps and in the result using r.cats. If you don’t use the isnull() function,
the NULL values will remain in the output map (NULL propagation). To illus-
trate how to avoid NULLs when adding maps, we will compute a new SRTM
DSM elev_avg_nonull where NULLs in the SRTM map myelev_srtm_30m (in
locations with larger lakes; see Section 5.1.10 for creation of the SRTM map)
are replaced by elevations from the USGS NED elev_ned_30m. We use the
function isnull() to replace NULLs by 0 (zero):

r.mapcalc "elev_avg_nonull=elev_ned_30m + \
if(isnull(myelev_srtm_30m), 0, \
elev_srtm_30m-elev_ned_30m)"

We had to subtract USGS DEM in the if statement to avoid adding it to the
valid values of the SRTM DSM. The above examples show that it is important
to carefully evaluate the use of the function isnull() when applying map
algebra to raster maps containing NULLs.

If you want to change all cell values that fulfill a certain condition (for
example, all values greater than 1) into NULL value, and all other values to
a given value or a map (we use value 1 in our example), you need to use a
function null():

r.mapcalc "developed = if(landclass96 > 1, null(), 1)"

The result will be a map with developed areas represented by the category 1
and all other land use types set to NULL.
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There are also special AND (&&&) and OR (|||) operators that behave
differently with NULL data compared to the general rule stating that NULL
in the input map always leads to NULL in the resulting map. For example, we
want to create a map where developed areas with SRTM-based elevation less
than 100m are set to the category 1 while all other areas are set to category
2:

r.mapcalc "dev_low = \
if(landclass96<3 && myelev_srtm_30m<100.,1,2)"

r.mapcalc "dev_low2= \
if(landclass96<3 &&& myelev_srtm_30m<100.,1,2)"

The first example results in a map with NULLs in the areas with lakes that
were NULLs in the SRTM map myelev_srtm_30m. In the second example, the
NULLs are replaced by category 2 (the condition is treated as false).

5.2.5 Creating a MASK with r.mapcalc

You can use r.mapcalc as an alternative way to create a MASK, especially
if it is based on more than one map or you want to use more complex rules
than those offered by r.mask. As an example, we will create a MASK that will
allow us to perform operations only in developed areas with a given range of
elevations. We compute a raster map MASK using an expression which assigns
the value 1 to the cells that have elevations between 60m and 100m in the
given elevation map and land use categories 1 and 2 (high and low intensity
developed) in the given map landuse96_28m, while NULLs will be assigned
elsewhere:

# set the region, display the input maps and create a MASK
g.region rast=elevation -p
d.erase
d.rast elevation
d.rast landuse96_28m
r.mapcalc "MASK=if((elevation > 60 && elevation < 100) \

&& (landuse96_28m==1 || landuse96_28m==2),1,null())"

# display elevation again to see the MASK effect
d.rast elevation

# rename MASK to disable it, and display elevation again
g.rename rast=MASK,maskfile
d.rast elevation

You will see that the display command run after the MASK is computed shows
only the selected elevations in the developed areas. All raster map operations
performed after setting a MASK are performed only in the non-masked areas.
After the MASK is renamed, the entire elevation map is displayed again.
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Fig. 5.1. Linear functions between two consecutive points to transform slope into
probability values (e.g. for a soil property) as input for r.mapcalc (graph created
with R)

5.2.6 Special graph operators

You can use a special graph operator to transform values in an input map
representing a continuous field to new values in an output map defined by a
series of linear relationships applied to a sequence of interval values. In other
words, if the relationship between two variables is defined by a discrete set
of (vi, wi) points, where vi is a value in input map and wi is a corresponding
value in the output map, you can use the graph operator to perform the trans-
formation using linear function between two consecutive points. We illustrate
the concept by transforming a slope map to a map representing probability
values (e.g. for a soil property) that increase linearly with the slope value,
but the rate of increase changes at given threshold values (in our example at
2., 8. and 15. degrees). The second example shows computation of probability
values that decrease with slope value, and in the third example the probability
values increase up to 8 degrees slope and then they decrease (see Fig. 5.1):

r.mapcalc "probability1 = graph(slope, 0.,0.,2.,0.1,8.,0.3, \
15.,0.8,90.,1.)"

r.colors probability1 col=byr
d.rast.leg probability1
r.mapcalc "probability2 = graph(slope, 0.,1.,2.,0.9,8.,0.7, \

15.,0.2,90.,0.)"
r.colors probability2 col=byr
d.rast.leg probability2
r.mapcalc "probability3 = graph(slope, 0.,0.,2.,0.5,8.,1., \

15.,0.5,90.,0.)"
r.colors probability3 col=byr
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Fig. 5.2. Square “moving window” method for neighborhood operations in raster
map algebra. The raster cell value X of the new map is calculated from a 3 × 3
matrix of the old map

d.rast.leg probability3

# check and compare the transformed values
d.what.rast slope,probability1,probability2,probability3

When defining the corresponding values, make sure that the values for the
input map vi are increasing, the values for the output map wi can change
arbitrarily.

5.2.7 Neighborhood operations with relative coordinates

The map algebra module r.mapcalc can be used for analysis and modeling
that involves neighborhood operations by providing an option for working
with relative coordinates of a moving window (Figure 5.2). The offset format
is map[r,c], where r is the row (y) offset and c is the column (x) offset. For
example, map[1,2] refers to the cell one row north (above) and two columns to
the west (left) of the current cell, map[-2,-1] refers to the cell two rows south
(below) and one column to the east (right) of the current cell, and map[0,1]
refers to the cell one column to the west (left) of the current cell. Neighboring
cells can be used in calculations, and larger, possibly asymmetrical moving
windows (beyond the common 3 × 3 matrix) can be defined. We will use a
simple smoothing average applied to the noisy SRTM DSM elev_srtm_30m to
illustrate the concept:

g.region rast=elev_srtm_30m -p
d.erase
r.mapcalc "elev_srtm30m_smooth=(elev_srtm_30m[-1,-1] \

+ elev_srtm_30m[-1,0] + elev_srtm_30m[-1,1] \
+ elev_srtm_30m[0,-1] + elev_srtm_30m[0,0] \
+ elev_srtm_30m[0,1] + elev_srtm_30m[1,-1] \
+ elev_srtm_30m[1,0] + elev_srtm_30m[1,1])/9."
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# assign the resulting map the same color table as the original
r.colors elev_srtm30m_smooth rast=elev_srtm_30m
d.rast elev_srtm_30m
d.rast elev_srtm30m_smooth

You can check the range of values in the original and smoothed maps using
r.info -r or r.univar and verify that the range of values in the smoothed
map is lower than in the original.

The current row and column values of the moving window can be in-
tegrated into expressions using the functions row() and col(), for current
coordinates use x() and y(). To illustrate the functionality, we can generate
a map mosaic using the following rules. If the x and y coordinates are smaller
than the given values, then use the values from the map elevation in the
resulting elev_combined map, otherwise use values from elev_srtm_30m:

r.mapcalc "elev_combined=if(x()<637455. && y()<224274.,\
elevation, elev_srtm_30m)"

d.rast elev_combined

In the above example, the variable containing the current coordinates of the
moving windows was used. Note that color values of the original maps are not
transferred. As another example of an application with internal variables we
can generate a tilted plane, dipping to the northwest with starting altitude
100m (we have to specify 98m, as row and column each start with 1):

r.mapcalc "tiltplane = 98 + row() + col()"
r.info -r tiltplane
d.rast tiltplane

Evaluation of internal temporary variables To perform multiple steps
within one expression, we can use the function eval(). It evaluates temporary
variables without the need to store them in a raster map. The intermediate
steps are written within the eval() function, delimited by comma and the
last result is saved as a raster map. As an example, we select a range subset
from rounded values of a floating point SRTM DSM elev_srtm_30m, while
the NULL values will be kept. We use the variables “t1” and “t2” to store the
temporary results representing the rounded map and the map with rounded
out of range values replaced by the values from the elevation map and then
put back the NULLs:

g.region rast=elev_srtm_30m -p
r.mapcalc "elev_srtm_sub = eval (t1=round(elev_srtm_30m), \

t2=if(t1 >= -33 && t1 <= 55,elevation,elev_srtm_30m), \
if(isnull(elev_srtm_30m), elev_srtm_30m, t2))"

d.rast elev_srtm_sub

A useful alternative for value replacement is the module r.recode that we
have explained earlier (see Section 5.1.8). For complex value replacements this
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Fig. 5.3. Modules for transformation of different types of raster data to vector
representation

may be more convenient than writing lengthy “if” statements in r.mapcalc.
Many interesting examples of r.mapcalc applications can be found in Shapiro
and Westervelt (1992).

5.3 Raster data transformation and interpolation

GRASS provides a range of capabilities for transformation of raster maps
to vector maps. The approach depends on the type of raster data and the
application. In this section, we also explain how to perform interpolation and
approximation with raster data.

5.3.1 Automated vectorization of discrete raster data

If the raster data represent linear features, homogeneous areas, or points
they can be transformed to vector data using the module r.to.vect (see
Figure 5.3).

Vectorizing lines Raster lines often need to be thinned (skeletonized) to
a single pixel width using the module r.thin before they can be transformed
to vector data. The lines are then vectorized using the r.to.vect module
with the default feature type option set to line. For example, to vectorize the
raster map streams_derived that represents stream network derived from the
10m resolution DEM by r.watershed, we run:

g.region rast=streams_derived -p
d.erase
d.rast streams_derived
r.thin streams_derived out=streams_derived_t
r.to.vect streams_derived_t out=streams_derived_t
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d.vect streams_derived_t col=blue
d.vect streams col=red

You can compare the vectorized stream network with the vector map streams
provided by the Wake county government. This streams map was digitized
from 1:1200 orthophotos using additional information from photogrammetri-
cally derived contour maps and is considered to be the most accurate stream
data source for this area. The vector map streams_derived_t should fit well
with the Wake county streams vector map although there are some significant
differences within lakes and around highways.

Vectorizing raster polygons A different method is needed for vectoriza-
tion of raster polygons. Such polygons may be generated by reclassification of a
raster map (see Section 5.1.7) or by several modules, for example r.watershed.
Using the area borders, we can convert the raster polygons to vector areas.
Note that vectorizing areas do not require thinning and can be done directly
with r.to.vect. As an example, we vectorize the watershed map basin_50K
derived from the 10m resolution DEM by r.watershed:

g.region rast=basin_50K -p
d.erase
d.rast basin_50K

# convert to vector map while assigning each area
# a unique category number,
# store raster value as attribute "value" in attribute table
r.to.vect -s basin_50K out=basin_50K feature=area
d.vect -c basin_50K

# alternatively convert to vector map while
# using raster value as category number (flag -v)
r.to.vect -sv basin_50K out=basin_50Kval feature=area
d.vect -c basin_50Kval

# compare how raster values are stored in the new vector maps
d.what.vect -x basin_50K,basin_50Kval
[...]
table: basin_50K
key column: cat
cat : 5
value : 20
[...]
table: basin_50Kval
key column: cat
cat : 20

The flag -s smoothes corners when generating vector lines or boundaries.
The vector topology is built automatically. The flag -v allows us to use
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the raster map values as category numbers, otherwise the category numbers
are generated by the module and the values are stored as vector map at-
tribute called value. The randomly color-filled polygons are displayed with
d.vect -c mapname.

The module r.to.vect also supports transformation of a raster map into
a gridded vector points map. The density of points is controlled by the current
region GRID RESOLUTION which you can adjust with g.region. To see how
it works, you can generate a vector point map (with the points 50m apart)
from the raster map elev_ned_30m as follows:

g.region swwake_10m res=50 -p
d.erase
d.rast elev_ned_30m

# transform to points with values stored as attributes
# and build topology
r.to.vect elev_ned_30m out=elev_ned50m_pts feature=point
v.info -c elev_ned50m_pts
d.vect elev_ned50m_pts size=1

# transform to points with values stored as z-coordinate,
# do not build topology
r.to.vect -zb elev_ned_30m out=elev_ned50m_ptsz feature=point
v.info -c elev_ned50m_ptsz
d.vect elev_ned50m_ptsz size=1

By default, the raster map values (in our case elevation) are stored in the
attribute table in a column called value, along with a category number (col-
umn cat) generated by the module for each point. Alternatively, the raster
values can be stored as z-coordinate rather than an attribute using -z flag, as
shown by our second example above. If the current resolution is lower than
the resolution of the raster map, the nearest neighbor cell value is used. The
computation of topology requires a lot of resources (memory and disk space)
and it can be skipped for vector point data output by running the module
with the -b flag. A vector map without topology is not supported by most
modules and should be considered as a temporary map that is to be converted
to raster or exported as ASCII file using v.out.ascii.

A raster map can be transformed to a set of random points using r.random.
For example, we can transform the elevation map used in the previous exam-
ple; however, this time the resulting set of points (we select 6000) will be
randomly distributed:

g.region rast=elev_ned_30m -p
d.erase
r.random elev_ned_30m rast=elev_rand vect=elev_randpts n=6000
d.rast elev_ned_30m
d.vect elev_randpts size=2

The output vector points are the centers of randomly selected grid cells.



118 5 Working with raster data

5.3.2 Generating isolines representing continuous fields

Continuous fields (e.g. elevation, temperature) are often represented by iso-
lines, or in the case of an elevation surface, contours. Isolines can be derived
from raster data using the module r.contour. The module determines the
minimum and the maximum isoline values for a given raster map, but at least
the isoline/contour interval should be provided by the step parameter. For
example, we can generate contours with a 10m interval from the raster map
elevation by running:

g.region rast=elevation -p
d.erase
d.rast elevation
r.contour elevation out=elev_contour_10m step=10
d.vect elev_contour_10m

The vector map topology is built automatically and the resulting contour lines
are stored in the vector map elev_contour_10m.

The contour interval should be carefully selected so that the contours do
not hide the underlying map, but at the same time, they should be dense
enough to provide a good representation of the surface. In case that there are
no additional requirements on the contour interval, its optimal value (step
parameter) can be computed by the following formula, developed by Imhof
(in Hake and Grünreich, 1994:382):

A = n ∗ log n ∗ tanα with (5.1)

n =

√
M

100
+ 1 (5.2)

where A[m] is the contour interval (difference in elevation), α[deg] is the slope
angle class for the given relief type, and M is the map scale denominator. The
value of α is selected based on the relief type:

• mountains: α = 45◦
• rolling hills: α = 25◦
• plains: α = 10◦

This leads to a contour interval of 15m for a map scale of 1:50,000 for a region
with rolling hills (α = 25◦). In our example, the map displayed on the screen is
approximately 1:100,000 scale, leading to n = 31. We can estimate the average
slope needed to select the appropriate α value, by computing the univariate
statistics of the slope map:

r.univar slope

The mean slope is 3.86◦, so we can use the slope angle for plains (α = 10◦)
leading to the rounded contour interval value of 8m, close to what we have
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a                                                                                  b

Fig. 5.4. Difference between a) nearest neighbor resampling and b) interpolation
to higher resolution by RST

used in our example. More detailed, but still readable elevation surface rep-
resentation is obtained by using the rounded mean slope of 4◦ leading to the
contour interval of 3m that we will use in r.contour as the step parameter:

r.contour elevation out=elev_contour_3m step=3 min=55 max=154
d.rast elevation
d.vect elev_contour_3m

We have also defined the minimum and maximum contours to ensure that
they are generated at easy to handle rounded values.

5.3.3 Resampling and interpolation of raster data

Transformation of a raster map to different resolution is performed automati-
cally whenever the region resolution settings are changed. It is done by simple
resampling designed for rasters representing discrete categories. Changing res-
olution of raster maps that represent continuous fields requires interpolation
(Figure 5.4). Interpolation is also needed when filling gaps in merged raster
data or when a raster map is patchy and contains NULL values that need to
be replaced to achieve continuous coverage.

Nearest neighbor resampling, bilinear and bicubic interpolation
GRASS uses automatic resampling when the actual region resolution is differ-
ent from the resolution of the given raster map. When resampling from lower
to higher resolution, the high resolution cells are assigned the same values as
the cell within which they are located. When resampling from higher to lower
resolution, the low resolution cell is assigned the value of the high resolution
cell which is located the closest to its center (nearest neighbor). Resampling
can be also applied to a raster map by the module r.resamp.interp that in-
cludes the nearest neighbor, bilinear and bicubic interpolation. Resampling is
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designed for raster data which represent geometrical features, such as lines and
areas (raster maps with categories, e.g. the map landuse96_28m). If applied
to raster maps representing continuous fields, such as elevation, the result-
ing surface may have a checkerboard pattern as you can see in the following
example and in the Figure 5.4:

g.region rast=elevation -p
r.resamp.interp landuse96_28m out=landuse96_10m_nn met=nearest
r.resamp.interp elev_ned_30m out=elev_ned10m_nn method=nearest

# check the resampled landuse map
d.erase
d.rast landuse96_10m_nn
# check the resampled elevation surface using the aspect map
r.slope.aspect elev_ned10m_nn aspect=aspect_ned10m_nn
d.rast aspect_ned10m_nn

Nearest neighbor resampling works for the landuse map (areas with category
values) but creates artifacts for the elevation map (continuous surface) which
requires interpolation.

Continuous surfaces can be re-interpolated to a different resolution using
either the bilinear or the bicubic method that are both implemented in the
module r.resamp.interp. The bilinear interpolation uses a product of linear
functions in x and y direction derived from 4 neigboring points (see the math-
ematical formulation in the Appendix A.1). Due to the small number of points
used for the interpolation this method is very fast but for larger changes in
resolution, a checkerboard structure may appear. The module has a special
option for “wrap-around” interpolation of latitude-longitude rasters. The bicu-
bic method uses a product of 3rd order polynomials approximated from 16
points defining the cell centers in a given rectangular area (see the equations
in the Appendix A.1). The method produces smoother surface and can be
applied to larger differences in resolution. You can compare these methods
with the result of the nearest neighbor resampling after running:

g.region rast=elevation -p
r.resamp.interp elev_ned_30m out=elev_ned10m_bil meth=bilinear
r.resamp.interp elev_ned_30m out=elev_ned10m_bic meth=bicubic

# check the interpolated elevation surface using aspect maps
r.slope.aspect elev_ned10m_bil aspect=aspect_ned10m_bil
r.slope.aspect elev_ned10m_bic aspect=aspect_ned10m_bic
d.erase
d.rast aspect_ned10m_bil
d.rast aspect_ned10m_bic

Bilinear or bicubic methods are better alternatives for resampling of contin-
uous data than the nearest neighbor. However, for both methods, the cell
values at the edges of the region and edges of nodata areas that do not have
the required 3 × 3 neighbors are set to NULL.
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Inverse distance weighted average (IDW) interpolation The module
r.surf.idw computes the value at a grid point as a weighted average of a
given number of neighboring grid points (default number of points is 12). The
weight depends on a distance between the computed grid point and the given
point (see the equation in Appendix A.1). The module is intended to generate
a surface through a set of irregularly spaced data values. It does not perform
well for regular grids, therefore we discuss its use in the vector data processing
chapter, Section 6.8.1.

Regularized spline with tension (RST) interpolation If there is a
large difference in resolution (1:3 or more) or there are larger gaps in the raster
data that r.resamp.interp cannot handle due to its use of relatively limited
3 × 3 neighborhood, it is advisable to use splines for the interpolation. If ap-
propriate parameters are selected, the result will be better than with the IDW
method (output raster map is floating point and should have fewer artifacts).
The spline interpolation is available for raster and vector data in the modules
r.resamp.rst and v.surf.rst respectively. As an example, we resample the
30m USGS DEM elev_ned30m to 10m resolution using r.resamp.rst. The
handling of resolution by this module is different than in the previous cases,
with the input resolution set to the input raster file elev_ned30m and resulting
resolution given as parameters ew_res, ns_res:

g.region rast=elev_ned_30m -p
r.resamp.rst elev_ned_30m elev=elev_ned10m_rrst \

ew_res=10 ns_res=10

# first change the region to the resampled map
# check the interpolated elevation surface using aspect map
g.region rast=elev_ned10m_rrst -p
r.slope.aspect elev_ned10m_rrst aspect=aspect_ned10m_rrst
d.erase
d.rast aspect_ned10m_rrst

The resulting surface is similar to the bicubic interpolation, but the en-
tire region is interpolated, including the border that was set to NULL by
r.resamp.interp. Besides the interpolation, the r.surf.rst module option-
ally calculates topographic parameters such as slope, aspect and curvatures
(profile, tangential and mean). The raster implementation r.resamp.rst of
the RST interpolation is less general than the vector version and if the results
are not satisfactory you can transform the raster map into random vector
points, using r.random (see Section 5.3.1) and use the v.surf.rst module
to interpolate to desired resolution, as we will describe in the Section 6.8.
For details about the spline interpolation including the equations see the Sec-
tion 6.8.6, Appendix A.1 and papers by Mitas and Mitasova (1999); Mitasova
and Mitas (1993); Mitasova and Hofierka (1993).

As we have shown, when using interpolation, it is important to check
the quality of the resulting map (see for example, Web document by Dylan
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Beaudette)4 We have used aspect maps for visual comparison but you can also
compute the difference between the input and output raster maps and quan-
titatively evaluate the differences. We will explain the spatial interpolation of
raster maps from rasterized contours (or isolines) using r.surf.contour and
r.surf.nnbathy in the vector data processing chapter (Section 6.8.1).

Filling data holes in a raster map Sometimes raster maps may include
areas with NULL values (e.g., due to clouds or water in case of lidar data).
These areas can be filled using two approaches:

• replacing the NULL values with a given value;
• filling the NULL value areas using their boundary values by interpola-

tion (for continuous fields) or by using neighborhood operations (for the
discrete category maps).

The first approach can be done with r.null as explained in the previous
sections. For the second option, you can use the script r.fillnulls. It will
fill the holes with interpolated values based on the values at the no-data area
boundaries using internally the v.surf.rst module. The script stores the hole
boundaries in a separate temporary map which forms a set of “NULL lakes”.
The values for the “lakes” are interpolated and merged back into the original
map. Only the holes are filled with the new values, the original non-NULL
values remain unchanged. We can use the script to fill the holes in the SRTM-
V1 DSM (see Section 5.1.10 for creation of the SRTM map myelev_srtm_30m):

g.region swwake_30m -p
# first replace the garbage values along the lake boundaries
# to NULL and extract the null areas to new map
r.mapcalc "lakes_srtm=if(isnull(myelev_srtm_30m),1,null())"
d.erase
d.rast lakes_srtm

# create a buffer around them that covers the wrong boundary
# elevations, buffering 3-4 pixels
r.buffer lakes_srtm out=lakes_srtm_buff dist=120

# change the buffered lakes to NULL and the NULLs to 0
r.null lakes_srtm_buff null=0 setnull=1,2

# find the correct lowest elevation in the region
r.info -r elev_ned_30m
min=55.173603
max=156.386520

4 Beaudette, D. E., Image matrix,
http://169.237.35.250/~dylan/gdalwarp/image_matrix.html

http://169.237.35.250/~dylan/gdalwarp/image_matrix.html
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# set all cells with elevation less than 56m and within
# the buffered lakes to NULL (NULL propagation)
r.mapcalc "elev_srtm30m_null=if(elev_srtm_30m<56, null(), \

elev_srtm_30m+lakes_srtm_buff)"

# fill the lakes using interpolation
r.fillnulls elev_srtm30m_null out=elev_srtm30m_filled
d.rast elev_srtm30m_filled

# compare with USGS 30m NED that has the lakes filled
r.mapcalc "srtmfillned30_dif=elev_ned_30m-elev_srtm30m_filled"
r.colors srtmfillned30_dif col=rules
[...]
> 0% 0 0 126
> 30% 0 0 255
> 0 white
> 70% 255 0 0
> 100% 126 0 0
> end

d.histogram srtmfillned30_dif
d.rast.leg srtmfillned30_dif

It is important to realize that depending on the shape of the NULL data
area(s), problems may occur due to an insufficient number of input cell values
for the interpolation process or, as in our case, if the boundary values do
not represent very well the values in the filled areas. In our example, the
SRTM elevations around the lakes often represent top of the trees, therefore
the interpolated elevation of the lakes is higher than in the USGS 30m NED.
Additional problems may occur if an area containing NULLs reaches the map
boundary. You have to carefully check the result using r.mapcalc to generate
a difference map to the input map and/or d.what.rast to query individual
cell values.

Resampling using aggregation You can resample a raster map from
higher to lower resolution using several statistical methods included in the
module r.resamp.stats. We will again use the elevation and landuse maps as
examples, this time resampling from 30m to 100m resolution:

g.region rast=elev_ned_30m res=100 -p
# continuous field
r.resamp.stats elev_ned_30m out=elev_new100m_med method=median
# discrete categories
r.resamp.stats landuse96_28m out=landuse96_100m method=mode

For more accurate computation, you can use flag -w that weights the values
from the input map according to the proportion of the input cell area that is
located within the output map cell.
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Fig. 5.5. Map composite of roads, lakes map, planned facility, and elevation model
created with r.patch (only northern half of the map shown)

5.3.4 Overlaying and merging raster maps

As we have already mentioned, it is possible to overlay raster maps visually in
the GRASS monitor using d.rast -o. To store such a raster map overlay in
a new map, the two or more maps need to be merged into a single new map
using r.patch. The module requires the names of input maps and a name for
the new output map. The specified input map order determines the result:
The NULL areas in the first map (which is on top of the virtual map stack)
are filled with values from the second map and so forth for additional maps.
It is important to properly set the region, the best approach is to use the
option that sets the region extent and resolution based on the set of the maps
to be patched. For example, multiple adjacent digital elevation models can be
merged as follows (we use the lidar based 6m resolution DEM from the NC
Flood mapping program that is distributed in small tiles):

# set region to include all imported maps
g.region rast=el_D793_6m,el_D783_6m,el_D782_6m,el_D792_6m -p
r.patch in=el_D793_6m,el_D783_6m,el_D782_6m,el_D792_6m \

out=elevlidD_6m
r.colors elevlidD_6m rast=elevation
d.erase
d.rast elevlidD_6m

In another example, we will compose several raster maps within the same
area. All the input maps contain some NULL values which are filled by the
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underlying map(s) (in case that they contain non-NULL values in these par-
ticular cells):

g.region rast=elev_ned_30m -p
r.patch roadsmajor,facility,lakes,elevation out=composite
r.colors composite col=rules
[...]
fp: Data range is 1 to 43600
> 1 black
> 55 green
> 90 yellow
> 130 orange
> 160 brown
> 30000 aqua
> 50000 aqua
> end

d.erase
d.rast composite

The roads network is on top in the patched map, followed by the small facility
and lakes. The DEM is filling all areas not being filled by other maps (see
Figure 5.5). Map overlays can also be done with r.mapcalc as we have done in
the Section 5.2. The “r.mapcalc tutorial” describes several examples (Shapiro
and Westervelt, 1992).

r.patch

r.mapcalc

+, −, *, /, if, ... (formula)

Fig. 5.6. Raster data merging with r.patch (left) and r.mapcalc (right)
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Figure 5.6 shows the differences between a map merge using r.patch and
r.mapcalc. The module r.patch patches on basis of overlays, while r.mapcalc
combines the raster maps based on a user defined expression, as described in
the Section 5.2.

For validation, the module r.cross checks the plausibility of merged maps
against the input maps by enumerating all existing combinations which occur.
In this example, we only check the categorical maps:

g.region rast=roadsmajor,facility,lakes -p
r.cross in=roadsmajor,facility,lakes out=composite_cross
r.cats composite_cross
d.erase
d.rast composite_cross
d.what.rast
635893.57262104(E) 215484.55759599(N)
composite_cross in user1 (116)category 0;category 0;Lake/Pond

The resulting map can be displayed and checked using d.what.rast to see
whether the results are equivalent to the source data or not. In case that you
want to display only the table with category labels (attributes), use r.cats
in conjunction with the r.cross output map.

5.4 Spatial analysis with raster data

GRASS raster modules can be used to perform a wide range of spatial analysis
tasks. Map overlay, generation of buffers, finding shortest paths, and deriving
topographic parameters can be combined to analyze complex spatial relation-
ships. We describe many of the available modules in this section.

5.4.1 Neighborhood analysis and cross-category statistics

The neighborhood operators determine a new value for each cell as a function
of the values in its neighboring cells. All cells in a raster map, except for
the cells at the map boundaries, become the center cell of a neighborhood as
the neighborhood window moves from cell to cell throughout the map. The
following neighborhood operators, with the user defined size of the moving
window, are available in r.neighbors (see Appendix A.1 for equations):

• average: the average value within the neighborhood;
• diversity: the number of different cell values within the neighborhood;
• interspersion: the percentage of cells containing categories which differ

from the category assigned to the center cell in the neighborhood, plus 1;
• maximum: the maximum cell value within the neighborhood;
• median: the value found half-way through a list of the neighborhood’s cell

values, when these are arranged in numerical order;
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• minimum: the minimum cell value within the neighborhood;
• mode: the most frequently occurring cell value in the neighborhood;
• stddev: the statistical standard deviation of cell values within the neigh-

borhood (rounded to the nearest integer);
• sum: sum of cell values within the neighborhood;
• variance: the statistical variance of cell values within the neighborhood

(rounded to the nearest integer).

When using the neighborhood operator, you need to carefully consider
whether you are working with a category map or a map that represents a
continuous field based on measured values. The map type is reported with
r.info -t mapname (compare Section 4.1.1). As an example of use with a
category map, we can compute a simple landuse diversity map as follows:

g.region rast=landuse96_28m -p
r.info -t landuse96_28m
r.neighbors landuse96_28m out=lu_divers method=diversity size=7
d.erase
d.rast.leg lu_divers
d.vect streets_wake
r.report lu_divers unit=p

You can see that one of the largest areas with the smallest diversity (a single
category 1) is downtown Raleigh while most of the region has a combination
of 2-3 landuse categories. You can experiment with different neighborhood
window size (we have used 7 × 7 cells, close to an approximate city block size
of 200m × 200m) to see its impact on the resulting map.

To show how the operator can be applied to a continuous field map, we will
use it to smooth the SRTM DSM. We already smoothed it using a 3 × 3 neigh-
borhood in the section illustrating the neighborhood operator in r.mapcalc,
here we will compute the average elevation using a 5 × 5 neighborhood and
then display the original and smoothed DEMs:

g.region rast=elev_srtm_30m -p
r.neighbors elev_srtm_30m out=elev_srtm30m_smooth5 \

method=average size=5
r.colors elev_srtm30m_smooth5 rast=elev_srtm30m_smooth
d.erase
d.rast elev_srtm_30m
d.rast elev_srtm30m_smooth
d.rast elev_srtm30m_smooth5

For better comparison, we transfer the color table from elev_srtm30m_smooth
to the new map. You can see that with 5 × 5 neighborhood the smoothing
effect is quite substantial. Additional examples can be found in the manual
page of r.neighbors.

Alternatively, r.mapcalc can be used to perform neighborhood operations
with relative coordinates, see Section 5.2.7 for details. In the broader sense,
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also the r.li suite (see Section 5.4.5) and r.texture (see Section 8.8) belong
to neighborhood analysis.

Category-based statistics of base and cover map To find an average,
median, mode, standard deviation, minimum, maximum, sum, and several
additional statistical measures for values in a given cover raster map within
areas assigned the same category numbers in a base raster map, you can
use r.statistics. This command integrates and extends the functionality
of r.average, r.median, and r.mode. For example, you can compute average
and standard deviation of elevation (continuous field) based on each landuse
category. The resulting maps are computed as reclassified base raster maps
(landuse) with the computed values (elevations) stored as category labels. You
can then use r.mapcalc to convert them to raster maps with the computed
values stored as raster values:

# convert elevation to integer: update to FCELL not yet done
g.region rast=elevation -p
r.mapcalc "elevint=round(elevation)"
r.statistics base=landuse96_28m cov=elevint out=elevstats_avg \

method=average
r.cats elevstats_avg
[...]
1 104.7486264124
2 106.2974427995
3 116.0606444918
[...]

# convert cat. labels to values, assign colors and display map
r.mapcalc "elev_avg_bylanduse=@elevstats_avg"
r.colors elev_avg_bylanduse rast=elevation
d.rast.leg elev_avg_bylanduse
d.what.rast elevstats_avg,elev_avg_bylanduse,landuse96_28m

# compute and display the standard deviation map
r.statistics base=landuse96_28m cover=elevint \

out=elevstats_stddev method=stddev
r.mapcalc "elev_stddev_bylanduse=@elevstats_stddev"
d.rast elev_stddev_bylanduse
d.what.rast elev_stddev_bylanduse,landuse96_28m

The resulting maps show that the water bodies have the lowest average ele-
vation (as one would expect), followed by high density development while the
evergreen shrubs category has the highest average elevation. The standard de-
viation in elevation is again the lowest for water bodies, but it is the highest
for high density development.

You can also use the module to find the most frequently occuring category
in a cover raster map for the areas defined by the base raster map. The
result will be a table that shows the distribution of categories in the cover
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map for each category in the base map. As an example, we will compute the
most frequent landuse category and distribution of landuse categories for each
zipcode:

g.region rast=zipcodes -p
r.statistics base=zipcodes cover=landuse96_28m \

out=landusestats_mode method=mode
r.mapcalc "landuse_mode_byzip=round(@landusestats_mode)"

# copy the category labels
r.support landuse_mode_byzip rast=landuse96_28m
r.cats landuse_mode_byzip

d.erase
d.rast landuse_mode_byzip
d.what.rast landusestats_mode,landuse_mode_byzip

# compute distribution of land use categories
r.cats landuse96_28m
r.statistics base=zipcodes cover=landuse96_28m out=dummy \

method=distribution
[...]
27601 1 59.518782
27601 2 36.515791
27601 4 2.540248
27601 11 1.411982
27601 18 0.013196
[...]

The downtown zipcode 27601 has as the most common landuse category 1
“High Intensity Development”, most of the suburban zipcodes (27511, 27518,
...) are in southern pine forests. The second example with the method distri-
bution outputs a table that shows for each zip code percent covered by the
landuse category (for example, the zipcode 27601 has 59.5% of its area in
category 1). This output is useful for scripting, we will show below how to get
more readable result using r.report.

To compute the statistical measures of values which are stored as category
labels, use r.statistics -c. In this case, the category label for each category
in the cover map must be a valid number (integer or decimal).

Cross-category reports We can easily generate reports for two or more
maps which include occurrence of categories in the second map for each cat-
egory in the first map. As an example, we can create a report which includes
the size of the areas in each land use category listed for each zipcode:

g.region rast=landuse96_28m -p
r.report zipcodes,landuse96_28m units=h,p
[...]
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|MAPS: Zipcode areas derived from vector map (zipcodes in PER|
| NC Land Use 1996 clipped (landuse96_28m in PERMANENT|
|------------------------------------------------------------|
| Category Information | | % |
| #|description | hectares| cover|
|------------------------------------------------------------|
[...]
|------------------------------------------|----------|------|
|27608|RALEIGH | 439.915| 2.17|
| |------------------------------------|----------|------|
| | 1|High Intensity Developed . . . . | 52.471| 11.93|
| | 2|Low Intensity Developed. . . . . | 254.153| 57.77|
| | 4|Managed Herbaceous Cover . . . . | 1.706| 0.39|
| |15|Southern Yellow Pine . . . . . . | 131.585| 29.91|
|------------------------------------------|----------|------|
|27610|RALEIGH | 1334.446| 6.59|
| |------------------------------------|----------|------|
| | 1|High Intensity Developed . . . . | 242.457| 18.17|
| | 2|Low Intensity Developed. . . . . | 515.535| 38.63|
[...]

As you can see, this produces a nicely formatted version of the r.statistics
output with method distribution. If you want to build a table using a set of
maps, you can select them with g.mlist and send the list to the module in
one line:

# validate selection
g.mlist type=rast pattern="land*9*" sep=, mapset=PERMANENT
# store selection into shell variable for easier re-use
MAPS=‘g.mlist type=rast patt="land*9*" sep=, mapset=PERMANENT‘
echo $MAPS
r.report -n map=$MAPS

The backtick <` `> characters have a special meaning in a shell (on the com-
mand line or in scripts). A command enclosed by these characters is executed
and the message sent by the command can be stored in an environmental vari-
able (in our case $MAPS) as above. More details on shell script programming
are given in Section 9.2.

You can also compute size or area percentage of mutual occurence of cat-
egories for two raster maps and output it as a table. Tabulating such coinci-
dence is usually useful for maps with small number of categories, so we will use
the reclassified maps landclass96 and towns that we have created in previous
sections to illustrate the output:

g.region rast=landclass96,towns -p
r.cats landclass96
r.cats towns
r.coin -w map1=landclass96 map2=towns unit=p
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The resulting table shows percent of each landclass for each town as well as
the summaries. For example, 60% of our region is in South Raleigh and about
half of the area is covered by forest and 30% is developed.

Covariance and correlation matrix It is also possible to compute a cat-
egory raster map that is a cross product of the category values from multiple
raster maps using the module r.cross. We illustrated its functionality in Sec-
tion 5.3.4 to verify patching of raster maps. The covariance and correlation
matrix of several raster maps can be computed using r.covar. As an example,
we will print the correlation matrix for our different elevation data sets:

g.region rast=elev_ned_30m -p
r.covar -r elevation,elev_ned_30m,elev_srtm_30m
[...]
1.000000 0.996847 0.897588
0.996847 1.000000 0.894038
0.897588 0.894038 1.000000

The result shows that the 10m and 30m DEMs are practically identical (both
were derived from lidar data), while the SRTM DSM has slightly lower cor-
relation (we have already explored its problems around lake boundaries and
noise).

Linear regression analysis We can also perform a more detailed linear
regression analysis for the elevation data:

g.region rast=elev_srtm_30m -p
r.regression.line map1=elevation map2=elev_srtm_30m
y = a + b*x
[...]

a b R N F
-2.7344 1.0479 0.897692 225000 -0.805848

medX sdX medY sdY
109.964 20.2356 112.491 23.6204

r.regression.line map1=elevation map2=elev_ned_30m
[...]

a b R N F
0.29376 0.996681 0.996815 225000 -0.993636

medX sdX medY sdY
109.964 20.2356 109.892 20.2329

The result includes the following coefficients: offset (a) and gain (b), residuals
(R), number of elements (N), medians (medX, medY), standard deviations
(sdX, sdY), and the F test for testing the significance of the regression model
as a whole (F).
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Surface and volume calculation The area of a surface represented by
a raster map can be computed by r.surf.area which calculates both the
area of the horizontal plane for the given region and the area of the 3D sur-
face estimated as a sum of triangle areas created by internally splitting each
rectangular cell by a diagonal (in map units):

g.region rast=elev_ned_30m -p
r.surf.area elev_ned_30m
[...]
Current Region plan area: 2.025000e+08
Estimated Region Surface Area: 2.031663e+08

# current region plan area can also be calculated from
g.region -e

Volume of an object defined by a surface (or its subsections defined by
clumps) and a horizontal plane can be computed using r.volume. In our ex-
ample, we assume that a facility will be built in a rural subarea of our study
region. We have already defined the footprint of the facility using r.digit and
stored it as a raster map myfacility_1m (see Section 4.1.3); it is also available
in the mapset PERMANENT as a raster map facility. The construction will
require grading that includes excavation to the depth of 4m. To calculate the
costs of the excavation work, we have to find the corresponding earth volume.

First we set MASK defined by the raster map facility so that only the
facility area is included in the computation. Then we can find the minimum
elevation for the facility area by running e.g. r.univar:

# set the region, display facility on top of orthophoto
g.region rural_1m -p
d.erase
d.rast ortho_2001_t792_1m
d.rast -o facility

# set MASK to facility map and find min elevation
r.mask facility
r.univar elevation
[...]
minimum: 123.521
maximum: 129.026
[...]

The minimum elevation is 123.521m, and the elevation of the bottom of the
excavation area will then be 123.52m–4m=119.52m. We subtract this elevation
from the masked portion of the DEM and store the result into a new map
excavation that defines the volume that we want to compute:

r.mapcalc "excavation=elevation-119.52"
d.rast excavation
r.univar excavation
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[...]
minimum: 4.00057
maximum: 9.50554
[...]

r.volume excavation
Cat Average Data # Cells Centroid Total
Number in clump Total in clump Easting Northing Volume
1 7.88 103489 13130 638725.50 220565.50 103489.00

# remove the mask after we are done
r.mask -r MASK

The earth volume to be excavated for the facility is roughly 103,489m3.
You can re-run the computation with a higher resolution, lidar-based DEM
elev_lid792_1m, you will see that the difference in volume estimate is around
3%, so our 10m resolution DEM is sufficiently accurate. For a more interest-
ing (and realistic) example you can set the bottom elevation of the facility to
125m and use r.mapcalc and r.volume to compute the cut and fill volumes
and estimate the amount of soil that will be left.

5.4.2 Buffering of raster features

Investigation of an impact of a linear or area feature on its neighborhood
belongs to common tasks in spatial analysis. The areas within a given dis-
tance from the studied feature can be generated using a buffering function
implemented in the r.buffer module.

As an example, we want to find the noise impact along highways in our
study region. We use a simplified model based on the assumption that the
potential noise impact is a function of the distance from the road. Our goal
is to find which developed areas are influenced by different levels of noise.
The result may determine whether noise protection walls have to be installed.
The buffer zones (isophones) may be 250m (high impact), 500m (moderate
impact) and more than 500m (low impact). We have selected the last buffer
to be 2,500 meters in order to define a distance beyond which the impact can
be considered negligible.

We apply the buffer zones to the rasterized version of the major roads map
roadsmajor and then use map algebra to find the developed areas that are
located within these buffers:

# set region and create buffers along major roads
g.region rast=landuse96_28m -p
r.buffer roadsmajor out=roads_buffers dist=250,500,2500
d.erase
d.rast roads_buffers

# intersect developed areas from landuse map with road buffers
r.cats landuse96_28m
r.mapcalc "noise=if(landuse96_28m==1 || landuse96_28m==2,\

roads_buffers, null())"
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Fig. 5.7. Noise impact map from interstate (simple noise buffer model with iso-
phones)

# transfer the category labels
r.support noise rast=roads_buffers

# convert the buffers to vector and display the result
r.to.vect -s roads_buffers out=roads_buffers feature=area
r.colors noise col=ryg
d.rast elevation_shade
d.rast -o noise
d.vect roads_buffers type=boundary
d.barscale at=5,90

# find total area for each level of impact
r.cats roads_buffers
d.what.rast noise,landuse96_28m
r.report -n noise units=h
[...]
|#|description | hectares|
|---------------------------------------------------------|
|1|distances calculated from these locations. .| 136.53923|
|2|0-250 meters . . . . . . . . . . . . . . . .|1045.93432|
|3|250-500 meters . . . . . . . . . . . . . . .| 716.89185|
|4|500-2500 meters. . . . . . . . . . . . . . .|2505.62880|
[...]

The resulting map noise shows only those residential areas which are influ-
enced by the major roads (see Figure 5.7). We have used r.support to assign
labels to the map categories to indicate the level of impact. We have then
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queried the map directly and printed a report of affected developed area sizes
(while filtering out all NULL values by running it with flag -n). Buffers can
be applied in a similar way to raster areas.

Some applications may require to keep the original areas and the buffer in
the same category and use a special metrics for creating the buffer. The mod-
ule r.grow includes maximum and Manhattan metric along with Euclidean
distance for computation of buffered areas. For example, we need to compute
the total area covered by lakes and their protective 100m buffer (given as
radius 10 cells wide) in the region with the zipcode 27606:

# set region, restrict analysis to selected zipcode
g.region rast=zipcodes -p
r.mask zipcodes maskcats=27606

# create the buffer, change categories to lake=1, buffer=2
# assign color table to resulting map
r.grow lakes out=lakes_grow radius=10 metric=manhattan \

old=1 new=2
r.colors lakes_grow col=wave

# display the results and compute the protected area
d.erase
d.rast zipcodes cat=27606
d.rast lakes_grow -o
r.report -n lakes_grow unit=h
r.mask -r MASK

The result shows that the protected lake area in this zipcode is 502ha. Refer
to Wikipedia5 for explanation of Manhattan metric, measured along the edges
of a grid or lattice, here we have used it just for illustration (it results in a
more blocky area).

5.4.3 Cost surfaces

Cost surfaces are raster maps showing the cumulative costs of moving between
different geographic locations in an input raster map. The value assigned to
each cell in the input raster map represents the cost of traversing that cell.
The module r.cost will produce an output raster map in which each cell
represents the lowest total cost of traversing the space between each cell and
the user-specified points.

We will explain the functionality using a simple application. Assume that
there was an accident with fire on the major highway at coordinates 634886E,
224328N (NC State Plane meters coordinate system used in our nc_spm LO-
CATION). Our task is to identify the fire station(s) that can provide the

5 Wikipedia “taxicab” article on metric geometry,
http://en.wikipedia.org/wiki/Taxicab_geometry

http://en.wikipedia.org/wiki/Taxicab_geometry
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Fig. 5.8. Cost surface displayed in nviz with point symbols representing the location
of the accident (sphere) and firestations (pyramids)

fastest help. The decision is influenced by two parameters: the potential speed
and the distance to the fire. To solve the problem, we have to calculate a “cost
surface”.

A detailed roads map is available as a vector map streets_wake. It includes
speed limit for each road segment as an attribute. We transform the vector
map to a raster map streets_speed at 30m resolution while using the speed
attribute for the raster map values. We then fill the NULLs in the resulting
map with 5 mi/hr speed so that neither the target point (fire location) nor the
starting point (firestation) falls within a NULL area that cannot be included
in the cost surface computed by r.cost:

g.region swwake_30m -p
d.erase
v.info -c streets_wake
v.to.rast streets_wake out=streets_speed use=attr col=SPEED

# replace NULL in the street_speed map with 5 mi/hr speed
r.null streets_speed null=5
r.info streets_speed
r.colors streets_speed col=gyr
d.rast streets_speed

The resulting map shows speed limits ranging from 5 miles per hour in off-
street areas, through 25 miles per hour on small residential streets, to 65mph
on the Raleigh beltline and interstate highways. To store the location of the
fire in a vector map, we import it as a vector point:
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echo "634886 224328 1"|v.in.ascii out=fire_pt fs=space
d.vect fire_pt col=red icon=basic/marker siz=20

The echo command is a UNIX command to display a line of text. Here, we
pipe the string of coordinates to the module v.in.ascii which is faster but
effectively the same as storing the coordinates string into a text file and sub-
sequently importing it.

Next we have to transform the street speed map into a map representing
potential travel time per mile. Although the fire trucks will travel at speeds
above the speed limit, they still have to adjust to the type of road and the
traffic, so we can use the inverse value of speed limit as a relative measure of
time it takes to pass through each cell. The reason to use the relative travel
time rate instead of the speed is that r.cost considers high values as costly.
We can use map algebra to generate a new map streets_travtime in [hr/mi]:

r.mapcalc "streets_travtime=1./streets_speed"
r.info streets_travtime
d.rast streets_travtime
d.vect fire_pt col=red icon=basic/marker siz=20

The new map of relative travel time provides the input to the cost surface
module, which also requires the coordinates of the fire location. The costs to
travel along the roads based on the inverse speed are then calculated from
this location. Finally, we display the results along with the location of fire
and existing firestations (Figure 5.8):

r.cost -k streets_travtime out=streets_cost coor=634886,224328
d.rast streets_cost
d.vect firestations col=red siz=10
d.vect firestations displ=attr attrcol=LOCATION
d.vect fire_pt col=red icon=basic/marker siz=20
d.what.rast
[...]
3.274 12 SE Maynard
635933.17819149(E) 225959.77393617(N)
2.008 20 Western Blvd
633186.50265957(E) 221417.8856383(N)
3.069 52 Holly Springs

nviz streets_cost vect=streets_wake point=firestations,fire_pt

You can find the fire stations that can reach the fire the fastest by visual
inspection of the resulting cost map and by querying the resulting cost map
at the locations of the fire stations using d.what.rast. The result shows that
the fire brigade coming from the Western Blvd station (category 20) can reach
the fire slightly faster (costs are lower) than those from the other stations.
You can also use r.what to find cost for each firestation by providing their
coordinates obtained from v.out.ascii:
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# get firestation coordinates; several are outside the region
d.vect firestations displ=cat col=black
v.out.ascii firestations
[...]
630879.21198056|224876.55413017|12
[...]

# find cost for stations with categories 20, 52
r.what streets_cost east_north=635940,225912,633178,221353
635940|225912||2.0080178411
633178|221353||3.2176276305

# find the cost for all
v.out.ascii firestations fs=’ ’ | r.what streets_cost

The results confirm that the station category 20 provides the fastest access.
Of course we are also interested in getting the optimal route through the

road network. The optimal routing module r.drain, which analyzes the cost
surface, needs the coordinates of the fire stations located on the street_cost
network, we have identified them using v.out.ascii. Additionally we specify
the flag -n to count the number of cells along the path (a simple indicator for
the distance):

# compute the optimal path
r.drain -n streets_cost out=route_20Western coor=635940,225912
r.drain -n streets_cost out=route_52Holly coord=633178,221353

# display the results, overlaying various maps
d.erase
d.vect streets_wake col=grey
d.vect fire_pt col=red icon=basic/marker size=20
d.vect firestations col=red icon=basic/box size=4
d.vect firestations displ=cat col=black xref=right lsize=15 \

lcol=red
d.vect firestations displ=attr attrcol=LOCATION
d.rast -o route_20Western
d.rast -o route_52Holly

# print the length of the path in cells
r.describe route_20Western
r.describe route_52Holly

The results are two path maps with accumulated numbers of cells indicating
the distance. Precise distance measure could be done by converting the raster
lines to vector lines and generating a related line length report as we will show
in the vector analysis chapter (see Section 6.4.1). The results should be used
with caution, because we did not take into account the fact that some roads
that appear connected on the raster map do not cross in reality. For example,
the route route_52Holly makes turn onto the highway in a location where
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there is an overpass over the highway and such turn is not possible. Using
3D vector data with true overpasses solves this problem (see vector network
analysis in Section 6.6).

Computing a distance map To compute the shortest distance of each
grid cell in the study area from rasterized lines, we can use cost surfaces with
cost value 1. For example, we can compute a raster map that will represent
the shortest distance to a major road for each grid cell in our study area as
follows:

# set region, convert vector road map to raster
g.region swwake_30m -p
v.to.rast roadsmajor out=roadsmajor use=val

# compute the distance map
r.mapcalc "area_one=1"
r.cost -k in=area_one out=dist_toroad start_rast=roadsmajor
r.mapcalc "dist_meters=dist_toroad * (ewres() + nsres())/2."
d.rast.leg dist_meters

We have used the map area_one as a cost map and the distances were cal-
culated from the major roads network. The resulting dist_toroad map rep-
resents distance information in number of cells to the closest road (it can
be queried with d.what.rast). To calculate an approximate distance map in
meters dist_meters, we have multiplied the cell values by the cell resolution
(we have used average of resolution in north-south and west-east directions).
Keep in mind, that this won’t compute the exact Euclidian distance, but a
polygonal approximation with accuracy dependent on the resolution.

Walking over terrain A modification of cost map specially designed for a
walking person is r.walk. We will show its functionality using the following
example: A child got lost in the forested park in the southern part of our
region. To make the search effort more efficient, we compute a map that
will show how far the lost child could get (the distribution of cost) from the
point where she was last seen while taking into account the topography and
landcover (see Appendix A.1 for the equations used in the model, Aitken,
1977; Fontanari, 2001):

g.region swwake_30m -p

# create friction map based on land cover
r.cats landclass96
r.recode landclass96 out=friction << EOF
1:3:0.1:0.1
4:5:10.:10.
6:6:1000.0:1000.0
7:7:0.3:0.3

EOF
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# import coordinates of the starting point
# compute the cost map and generate isochrones
echo "635576,216485"|v.in.ascii out=lostperson fs=","
r.walk -k elev=elev_ned_30m fric=friction out=walkcost \

coord=635576,216485 lambda=0.5 max=10000
r.contour walkcost out=walkcost step=1000

# display the results
d.erase
d.rast lakes
d.rast -o walkcost
d.vect lostperson
d.vect walkcost col=red
d.vect streets_wake

The result shows that the lost person can get farther towards the north where
there are lower slopes and some developed areas, while the lake to the south,
along with steep bluffs and forest minimize the movement in that direction.
The result is highly dependent on the choice of friction parameters. The flag
-k indicates the use of Knights move for computation of distances, you can
learn more about the algorithm and additional parameters in the manual page
for the r.walk module.

5.4.4 Terrain and watershed analysis

Topographic analysis (geomorphometry, terrain analysis, or the more gen-
eral surface analysis) provides methodology for estimation of parameters that
describe geometrical properties of a studied surface (Hofierka et al., 2007),
including:

a) summary parameters and profiles, including volumes, surface areas, rough-
ness indexes, and fractal dimension (we have worked with some of them
already in Section 5.1.4);

b) point parameters describing the geometry of surface in a given point, such
as slope, aspect, and different types of curvatures;

c) flow parameters based on integration along flowlines, such as slope length,
flow accumulation, upslope contributing area, watershed (basin) bound-
aries, stream networks;

d) ray tracing parameters based on lines (rays) emitted from or towards the
surface, such as line of sight or insolation;

e) landforms, process-related indexes (wetness, topographic erosion poten-
tial) and other combined measures or features.

GRASS provides a comprehensive set of tools for surface analysis, we provide
their overview with examples in the following section, see also Hofierka et al.
(2007).
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Point parameters: slope, aspect and curvatures These parameters rep-
resent measures of change in elevation (gradient) and measures of rate of this
change (curvatures) and are usually expressed as the following parameters
(find the exact mathematical definitions and equations in the Appendix A.1):

• slope [deg]: steepest slope angle, function of gradient magnitude;
• aspect [deg]: slope orientation, direction of gradient, the steepest slope

direction, direction of flow;
• profile curvature [m−1]: curvature in the direction of the steepest slope

(perpendicular to contour lines), measures rate of change in gradient mag-
nitude, convex curvature leads to accelerated and concave to decelerated
flow;

• tangential curvature [m−1]: curvature in the direction of contour tangent
(perpendicular to the steepest slope direction), measures rate of change
in gradient direction, convex curvature leads to dispersal and concave to
convergent flow.

You can compute these parameters using the module r.slope.aspect that
generates raster maps of slope, aspect, curvatures and partial derivatives from
a raster map of true elevation values. The slope values are calculated in de-
grees by default, or you can change the units to percentage using the param-
eter format. In case you are working in a coordinate system that uses feet (or
units other than meter), you need to be aware of the fact that the module
automatically converts the horizontal distances to meters. You must use the
parameter zfactor to convert elevation to meters to obtain correct values of
slope, curvatures and derivatives. The aspect values represent the direction of
flow (pointing downslope), measured in degrees from east, increasing counter-
clockwise: 90◦ is north, 180◦ is west, 270◦ is south and 360◦ is east. The aspect
value of 0 is assigned to the cells with slope equal zero by default where aspect
is undefined. You can define the minimum slope for which aspect is undefined
by parameter min_slp_allowed.

You can also calculate profile and tangential curvature maps. Curvatures
are expressed in m−1, that means curvature of 0.01 corresponds to a 100m
curvature radius; negative values represent concave shapes (valleys) while pos-
itive values indicate convex shape (ridges, Mitasova and Hofierka, 1993). You
can also output the raster maps of first and second order partial derivatives
and use them to compute additional parameters, such as slope in a given di-
rection or special types of curvatures, such as mean or Gaussian. We will use
this option in erosion model later in this chapter. For general explanation of
curvatures see, for example Rigon et al. (2006); Alexandrov et al. (1989), or
Mitasova and Hofierka (1993).

The module computes topographic parameters based on approximation
of the terrain surface by a second order polynomial. The partial derivatives
needed for estimation of slope, aspect, and curvatures are then computed as
weighted averages of elevation differences in the 3 × 3 neighborhood of the
given grid point (see Appendix A.1).
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To illustrate the analysis, we derive slope, aspect and curvature maps from
the elevation map as follows:

g.region rast=elevation -p
r.slope.aspect el=elevation slope=slope asp=aspect\

pcurv=profcurv tcurv=tancurv
d.erase
d.rast.leg slope
d.rast.leg aspect
d.rast.leg profcurv
d.rast.leg tancurv

The elevation DEM is based on lidar surveys, and the topographic parame-
ters highlight the level of detail captured by these data. The curvature maps
are relatively noisy, we will learn how to compute smoother curvatures at a
desired level of detail using v.surf.rst in the next chapter, Subsection 6.8.6.
Although most DEMs are now provided as floating point with cm or better
precision, special care needs to be taken when working with DEMs represented
by integer values in meters: artificial flat areas may be present and the aspect
is biased in the cardinal directions. Reinterpolation to floating point DEM is
then recommended (see e.g. Section 5.3.1 or .ection 5.3.3). You can see the
effect of integer precision by computing a polar diagram for the 30m DEM
represented with cm and m precision:

g.region rast=elev_ned_30m -p
# simulate integer DEM
r.mapcalc "elev_ned_30m_int=int(elev_ned_30m)"
r.slope.aspect elev_ned_30m asp=aspect_ned30m
r.slope.aspect elev_ned_30m_int asp=aspect_ned30m_int
d.erase -f
d.polar aspect_ned30m
d.polar aspect_ned30m_int

The aspect derived from a m integer precision DEM is highly dominated by
spikes at multiples of 45◦ (0◦, 45◦, 90◦, etc.). See Hofierka et al. (2007) for a
discussion. A map related to aspect is shaded terrain that can be computed
and displayed with elevation color map as follows:

g.region rast=elevation -p
r.shaded.relief elevation shadedmap=elevation_shade
d.erase
d.his h_map=elevation i_map=elevation_shade

The module r.shaded.relief provides parameters defining the altitude and
azimuth of the light source (sun) position as well as z-scale that allows you to
highlight different types of topographic features. Even more options for cre-
ating colored, shaded relief maps provides an add-on module r.csr available
through the GRASS AddOns Wiki site.6

6 GRASS AddOns Web site, http://grass.gdf-hannover.de/wiki/GRASS_AddOns

http://grass.gdf-hannover.de/wiki/GRASS_AddOns
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Flow parameters and watersheds Flow parameters are derived by flow
tracing (also refered to as flow routing) and are “integral” rather than “point”
parameters: The value at each cell is computed as a summary function of
values from a set of other cells – in our case along the flowpaths. Flow tracing
is based on flow paths (also refered to as flow lines or steepest slope lines),
which are curves perpendicular to contours with direction given by aspect
(minus gradient). The basic flow parameters are:

• flow path length (including hillslope length);
• flow accumulation (also flow line density, used to compute upslope con-

tributing area);
• stream network;
• watershed (basin) areas (upslope area for a given outlet).

Several algorithms have been implemented in GRASS to support for flow rout-
ing, using different methods for estimation of the flow direction and distribu-
tion of “water” to the downslope cells. Direction of flow (gradient direction or
aspect) can be approximated using the following methods:

• D8 algorithm uses 8 directions representing aspect discretized to 0, 45,
90, ... degrees and estimated from elevation differences between the given
grid cell and its 8 neighboring cells; this approach is implemented in
r.watershed, r.terraflow (Figure 5.9a,c);

• D-infinity or vector-grid algorithm uses a floating point value of aspect,
that means practically infinite number of directions; this approach is ap-
plied in r.flow (Figure 5.9c).

Flow can be routed at various levels of complexity:

• single flow direction (SFD) moves flow into a single downslope cell, it is
used with D8 by r.watershed and with Dinf by r.flow (Figure 5.9a,b);

• multiple flow direction (MFD) partitions flow into two or more downs-
lope directions, it is used by r.terraflow, r.topmodel, and the r.mapcalc
flow implementation described in the “r.mapcalc tutorial” (Shapiro and
Westervelt, 1992, see Figure 5.9c);

• bivariate (2D) flow used by an experimental module r.sim.water see Fig-
ure 5.9d).

Watersheds and stream networks can be extracted from raster DEMs using
the module r.watershed. The module outputs a raster map that represents
partitioning of the given area into watersheds (basins) with the minimum
size (in number of cells) given by the parameter threshold. It also outputs
flow accumulation map, flow directions (D8) and several additional terrain
or stream network related parameters (see the manual for more details). For
display purposes, it is useful to transform the watershed areas and stream
networks into vector format. In the following example, we derive streams and
watershed boundaries from the 30m resolution DEM:
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g.region rast=elev_ned_30m -p
r.watershed elev_ned_30m thresh=10000 accum=accum_10K \

drain=draindir_10K basin=basin_10K stream=rivers

# extract more detailed streams from flow accumulation
r.mapcalc "streams_der_30m=if(abs(accum_10K)>100,1,null())"

# convert to vector format and display results
r.to.vect -s basin_10K out=basin_10K feature=area
r.to.vect -s streams_der_30m out=streams_der_30m
d.erase
d.his h_map=basin_10K i_map=elevation_shade
d.vect basin_10K type=boundary
d.rast -o lakes
d.vect streams_der_30m col=blue
d.vect streams col=red

Incomplete basins are omitted (assigned NULL value) in the resulting water-
sheds raster map basin_10K. Cells with flow accumulation that originated out-
side the given region are assigned negative values in the output map accum_10K
and we had to use absolute values of flow accumulation to extract detailed
stream network streams_der_30m using map algebra. The river segment val-
ues in the output map rivers correspond to the watershed basin numbers.
We have set the threshold parameter to the number of cells representing the
smallest watershed to be extracted – we have used g.region -p to get the
number of cells in the given region and made sure that the threshold is a rea-
sonably large number. Small thresholds lead to small, strip shaped basins and
can stall the program. If smaller hydrologic units are needed, you could fur-
ther divide the study area into half-watersheds using the r.watershed option
half.basin for this purpose.

The r.watershed module does not require filling of depressions (pits, sinks)
in DEM prior to its application because it uses the least-cost algorithm to
traverse the elevation surface to the outlet. When applied to the new type
of DEMs that are based on lidar or radar surveys, this often leads to more
accurate results compared to standard methods that rely on filled depressions
(Kinner et al., 2005). When compared with the provided stream data that
were digitized from aerial photos, the automated stream extraction works
relatively well in natural areas; however, it cannot trace the flow properly in
locations with man-made structures, such as highways and built areas, with
bridges, culverts or subsurface drainage.

Sink filling Flow accumulation and drainage direction analysis in the
r.watershed module provides an option for a binary depression (pits, sinks,
lakes) input map which contains depressions that are large enough to store
surface runoff. Such a depression map can be generated with the r.fill.dir
module by filling the depressions in the DEM and then subtracting the filled
DEM from the original elevation map using r.mapcalc. The result can be
converted to a binary raster map on the fly using if-condition and provided as
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input depression map for r.watershed. In some cases, it is necessary to run
r.fill.dir repeatedly (using output from one run as input to the next run)
before all depressions are filled:

g.region rast=elevation -p
r.fill.dir elevation el=elev_fill1 dir=dir1 areas=unres1
r.fill.dir elev_fill1 el=elev_fill2 dir=dir2 areas=unres2
r.fill.dir elev_fill2 el=elev_fill3 dir=dir3 areas=unres3
r.mapcalc "depr_bin=if((elevation-elev_fill3)< 0., 1, null())"
d.erase
d.rast elevation
d.vect roadsmajor
d.rast -o depr_bin
d.vect lakes type=area fcol=aqua

The results show large number of depressions, mostly due to the roads acting
as dams because the culverts under roads cannot be represented in standard
raster DEMs. Smaller depressions are in the forested areas along the streams,
some are real, others are due to errors in data or artifacts of the procedure
used to extract bare ground.

Often we need to find a watershed associated with a given outlet, for ex-
ample to compute a contributing area upstream from a monitoring station. To
find such watershed, we first run r.watershed to produce drainage (flow) di-
rections map and then use these maps as input for the module r.water.outlet
along with the coordinates of the outlet. We use d.what.rast to identify the
outlet coordinates, or if the coordinates are given, to check whether it is lo-
cated on the stream derived by r.watershed (if not, we use the closest point
on the derived stream as outlet). Then we can delineate the desired watershed
as follows:

# set region to the high resolution study area
# derive flowaccumulation and flow direction
g.region rural_1m -p
r.watershed elev_lid792_1m thresh=5000 accum=accum_5K \

drain=draindir_5K basin=basin_5K

# display extracted streams over aerial image
d.erase
d.rast ortho_2001_t792_1m
d.rast -o accum_5K cat=1000-1000000

# identify outlet on the extracted stream
d.what.rast
[...]
638872.62954796(E) 220042.58544653(N)
accum_5K in user1 (238474)

echo "638872.6 220042.6 1" | v.in.ascii out=outletA30 fs=space
d.vect outletA30 col=yellow
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a                                                                       b

c                                                                       d

Fig. 5.9. Flow accumulation maps based on a) D8 method (r.watershed), b) vector-
grid (D-infinite, r.flow), c) multiple directions flow (r.terraflow), d) steady state
water depth (r.sim.water. Note that flowaccumulation is expressed as number of
contributing cells (a,b), upslope area in map units (c) or water depth in [m] (d)

# delineate the watershed and convert it to vector format
r.water.outlet drainage=draindir_5K basin=basin_A30 \

east=638872.6 north=220042.6
r.to.vect -s basin_A30 out=basin_A30 feature=area

# display watershed boundary along with contours
d.vect basin_A30 type=boundary col=green width=2
r.contour elev_lid792_1m out=elev_lid792_cont_1m step=1 min=104
d.vect elev_lid792_cont_1m col=white

# compute the watershed area
r.report basin_A30 unit=h,a



5.4 Spatial analysis with raster data 147

You can visually check the watershed boundaries against contours or a DEM
and compute the size of the contributing area by running r.report.

Spatial distribution of water flow To analyze the spatial distribution
of water flow, you can modify the color table for the flow accumulation map
accum_5K and display it with d.rast. Due to the D8 algorithm, the flow pattern
on hillslopes is artificial (biased towards the 8 directions, see Figure 5.9a);
therefore, we will use r.flow to derive a refined representation of overland
water flow patterns. This module allows us to trace flow upslope or downslope
and compute raster maps representing flow accumulation, flow path length,
and a vector map representing flow lines. The module uses the vector-grid
(D-infinite) algorithm (Mitasova and Hofierka, 1993; Mitasova et al., 1996);
therefore, it can better handle flow routing at high resolutions. First, we set
the region to the input elevation map, then we use r.flow to compute raster
maps of flow accumulation and flow path length as well as flow lines vector
map:

g.region rast=elev_lid792_1m -p
d.erase
r.flow elev_lid792_1m flout=flowlines lgout=flowlg_1m \

dsout=flowacc_1m
r.flow -u elev_lid792_1m lgout=flowlgup_1m dsout=flowaccup_1m

# display maps along with contours to see relation to terrain
d.rast flowacc_1m
d.vect elev_lid792_cont_1m col=red
d.rast flowaccup_1m
d.vect elev_lid792_cont_1m col=red
d.vect flowlines

When displaying the flow accumulation along with contours, you can see that
downslope flow accumulation concentrates in valleys, while upslope flow ac-
cumulation merges on ridges. You can also display the flowlines to verify that
they are perpendicular to contours. To compute upslope contributing area,
you need to multiply the flow accumulation map produced by r.flow by cell
area using r.mapcalc. The flow path length map flowlgup_1m provides infor-
mation about the length of the flowline drawn from each cell. It can be used
to compute the longest flow path for a given watershed, a parameter needed
in hydrologic models for estimation of time to steady state (how long it will
take for all water in the watershed to reach the outlet) or to compute the
slope length factor for the original version of the Universal Soil Loss Equation
(USLE, see Section 5.5.2).

Flow accumulation from massive DEMs Flow accumulation from mas-
sive DEMs (thousands of rows and columns) that cannot be handled by
r.watershed can be computed by the r.terraflow module (Arge et al., 2003).
This module is also useful for generating dispersal flow pattern over hillslopes
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because it uses the MFD flowrouting. Optionally, it computes topographic
wetness index (available also in r.topidx, see Appendix A.2 for the equa-
tion).

g.region rast=elev_lid792_1m -p
r.terraflow elev_lid792_1m fill=elev_lidfilled_1m \

dir=dir_terrafl_1m swater=swatershed_1m \
accum=accumterra_1m tci=tci_1m

d.erase
d.rast swatershed_1m
d.rast accumterra_1m
d.rast tci_1m

Note that the watersheds map computed by r.terraflow represents the con-
tributing areas for sinks found in the elevation data so they are slightly dif-
ferent from watersheds computed by r.watershed or other modules that are
defined for terrain after the sinks were filled (or passed through). The flow ac-
cumulation is already computed as upslope contributed area in square meters
(or sq. feet).

When compared to streams digitized from airphotos and verified on ground
we can see that the road represents an obstacle for automated flow routing. It
diverts the flow accumulation derived by r.watershed or r.terraflow to the
road’s lowest point that is located several meters east from the culvert that
drains water under the road. To see the problem, you can display the relevant
data as follows:

d.rast ortho_2001_t792_1m

# get range of flow accumulation
r.info -r accumterra_1m
# selective display
d.rast accumterra_1m val=800-300000 -o
d.rast accum_5K cat=800-1000000 -o
d.vect streets_wake col=red
d.vect streams col=green

Carving a channel into a DEM To modify the terrain so that the chan-
nel is located along the digitized stream in the Wake county stream map
streams, use r.carve:

r.carve rast=elev_lid792_1m vect=streams width=2 depth=0.8 \
out=elev_lidcarved_1m points=carved_pts

r.colors elev_lidcarved_1m rast=elev_lid792_1m
d.rast elev_lidcarved_1m

# extract streams from the carved DEM
r.watershed elev_lidcarved_1m thresh=50000 accum=accumc_5K1m
d.rast -o accumc_5K1m cat=1500-10000000
d.vect streams
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The resulting flow accumulation from r.watershed applied to the carved DEM
now passes correctly through the road and in the flat area beyond it; compare
this result with accum_5K and accum_50K. Note that the lower (10m) resolu-
tion flow accumulation accum_50K passes the road correctly as opposed to the
1m resolution flow accumulation accum_5K due to the fact that in the 10m
resolution DEM the road is smoothed out. However, carving does not help to
improve the result of r.flow as it stops the flow on the edges of the carved
channel.

Lake filling If the culvert under the road clogs with sediment and debris,
the road serves as a dam and a lake is created above it. We can simulate it
using a point near the culvert as a seed point for the r.lake module:

r.lake elev_lid792_1m wl=113.5 lake=flood1 xy=638728,220278
d.rast elev_lid792_1m
d.rast -o flood1

# display seed, overlay flow accumulation from r.watershed
echo "638728 220278 1"|v.in.ascii out=lakeseed fs=space
d.vect lakeseed
d.rast -o accum_5K cat=1000-1000000
d.vect streets_wake col=red

# use previous result as seed and increase water level
r.lake elev_lid792_1m wl=113.6 lake=flood2 seed=flood1
d.rast -o flood2

The second run puts the elevation over the lowest point on the road, flood-
ing a large area downslope. You can create a sequence of lakes by gradually
increasing elevation, to create a simplified flooding effect.

To summarize flowtracing, you can compare the pattern of flow accumu-
lation produced by different modules in Figure 5.9. Based on the algorithms
used in the modules these are general recommendations: use r.watershed to
extract stream networks and watershed boundaries, r.flow for hillslope flow-
patterns, erosion modeling, and flowline generation useful for simple surfaces,
r.terraflow for flow accumulation over massive terrains and for applications
requiring MFD (simplified floodplain mapping, wetness index).

Geomorphometry and landforms The module r.param.scale extracts
terrain parameters at selected level of detail controlled by the size of moving
window. It also derives a map of terrain features including peaks, ridges,
passes, channels, pits and planes. As an example, we extract morphometric
features from our elevation maps at different resolutions and levels of detail:

# setting region to 10m resolution DEM
g.region rast=elevation -p
d.erase
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# analyze 90m neighborhood
r.param.scale elevation out=feature9c_10m size=9 param=feature
d.rast.leg feature9c_10m

# rural subregion at 1m resolution, 9m and 45m neighborhood
g.region rural_1m -p
r.param.scale elev_lid792_1m o=feature9c_1m size=9 p=feature
r.param.scale elev_lid792_1m o=feature45c_1m size=45 p=feature
d.rast.leg feature9c_1m
d.rast.leg feature45c_1m

# display with shaded relief
r.shaded.relief elev_lid792_1m shadedmap=elev_lid792_1m_shade
d.his i=elev_lid792_1m_shade h=feature9c_1m
d.his i=elev_lid792_1m_shade h=feature45c_1m

The resulting maps partition the elevation surface into the areas that rep-
resent terrain features – you can see that the level of detail depends on the
resolution and the size of the neighborhood. If you plan to use this module
for a serious research or applications, we suggest that you read Wood (1996),
which provides detailed explanations and equations used in the module.

Sun illumination and solar energy maps Many earth processes are
influenced by the received solar energy. Incoming radiation is needed in envi-
ronmental modeling as an input for evapotranspiration models and in urban
planning it is important for designing buildings and parks. For solar illu-
mination effects and potential radiation calculations, GRASS provides two
modules: r.sunmask to calculate sun position and a cast shadow map, and
r.sun to calculate solar radiation (irradiance, energy and cast shadow) maps.

The module r.sunmask uses the SOLPOS2 algorithm from NREL (Na-
tional Renewable Energy Laboratory) which includes refraction in the atmo-
sphere to calculate the position of sun in the sky for a given date, time, and
a location on earth. You may use this feature for other purposes in case you
need the sun position (r.sunmask provides a flag -s to calculate the sun po-
sition and then to exit). For example, we can compute the cast shadow map
in our rural region for terrain and the planned facility on 22. December at
14h 25min. For this, we first calculate the solar parameters for the given date,
time and location and use this as input for the cast shadow map calculation:

# set the region and add the planned building to the DEM
g.region rural_1m -p
r.mapcalc "elevfacility_1m=if(isnull(facility), \

elev_lid792_1m,138.)"
r.colors elevfacility_1m col=elevation
d.rast elevfacility_1m
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# compute the sun position
r.sunmask -s --v elevfacility_1m out=dummy year=2001 month=12 \

day=22 hour=14 minute=25 sec=0 timezone=-5
Calc. sun position..(using solpos (V.11 April 2001) from NREL)
2001.12.22, daynum 356, time: 14:25:00(decimal time: 14.41667)
long: -78.678856, lat: 35.736160, timezone: -5.000000
Solar position: sun azimuth: 212.793472,
sun angle above horz.(refraction corrected): 23.192472
Sunrise time (without refraction): 07:26:30
Sunset time (without refraction): 17:00:28
No map calculation requested. Finished.

The sun position and date calculation results from r.sunmask can be used
as input for computation of solar radiation using r.sun (Hofierka and Súri,
2002; Súri and Hofierka, 2004), which requires the day-of-the-year and the
decimal local (solar) time for the given location as input. Optionally you can
incorporate a shadowing effect of terrain and buildings using the -s flag. In
mountainous and even hilly areas this can lead to very different results, so we
highly recommend to enable it. Note that calculating the shadowing effect of
relief can be computationally demanding:

# prepare input maps
r.slope.aspect elevfacility_1m asp=aspect_elevfacility_1m \

slo=slope_elevfacility_1m
# calculate incidence angles including cast shadows
r.sun -s elevfacility_1m asp=aspect_elevfacility_1m \

slo=slope_elevfacility_1m inc=incid_elevfacility_1m \
day=356 time=14.416667

r.mapcalc "shadow_1m=if(incid_elevfacility_1m == 0, 1, null())"
r.colors shadow_1m col=rules
> 1 grey
> end

d.rast elevfacility_1m
d.rast -o shadow_1m
d.his i=aspect_elevfacility_1m h=shadow_1m

The shadow maps shows a curvature in the cast shadow due to the terrain.
You can write a shell script (see Chapter 9) that will compute the shadow
starting in the morning at each 30 minutes and then animate the results (see
Chapter 7.1.3) to see how the shadows move throughout the day. As another
example, we calculate radiation for our entire region at 30m resolution for day
356 (22. December):

g.region rast=elev_ned_30m -p
r.slope.aspect elev_ned_30m asp=asp_ned_30m slo=slp_ned_30m
r.sun -s elev_ned_30m asp=asp_ned_30m slo=slp_ned_30m lin=2.5\
alb=0.2 beam=b356 dif=d356 refl=r356 insol_time=it356 day=356



152 5 Working with raster data

Fig. 5.10. Visibility impact analysis of a new 32 story tower in downtown Raleigh
The visibility map is overlayed over the elevation model, and it is displayed together
with the vector streets map

d.rast.leg d356
d.rast.leg it356

The radiation output maps b356, d356, and r356 represent direct (cloudless
direct beam radiation), diffuse, and reflected radiation for the given day (in
Wh.m−2.day−1), respectively. The sunshine duration is recorded in the map
it356 (in hours).

Line of sight The line of sight analysis creates a viewshed for a specific
point in an area based on the digital elevation model. The module r.los
generates a raster map output with the cells that are visible from a user-
specified observer location at a given altitude over the ground. The output map
cell values represent the vertical angle (in degree from the ground) required
to see those cells from the observer location. We introduce the usage of this
module with an example that maps the visibility of a new skyscraper that is
being built in downtown Raleigh.

The building is 32 story (165m) tall and it is being built in downtown area
at coordinates 593670E and 4926877N (NC SPM). The tower should enhance
the Raleigh skyline and there is a lot of interest in locations from where it will
be possible to see it and also what can be viewed from the top of the building.
To map the tower visbility, we use a “line of sight” method implemented in
the module r.los. We provide the elevation model as an input for analysis,
specify the coordinates and the height of the tower. The max parameter is
needed to define the maximum visibility distance (here 50km):
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g.region rast=elev_ned_30m -p

# visibility from a new 32 story tower being built in downtown
echo "642212,224767,165"|v.in.ascii -z out=tower_165m fs=, z=3
r.los elev_ned_30m out=tower_165_los coord=642212,224767 \

obs=165 max=50000
d.erase
d.his h=tower_165_los i=elevation_shade
d.vect streets_wake
d.vect tower_165m siz=10 col=orange icon=basic/marker
d.barscale at=0,0

# we can also do visibility from RedHat headquarters
echo "638898,224528,25" |v.in.ascii -z out=redhat_25m fs=, z=3
r.los elev_ned_30m out=redhat_25_los coord=638898,224528 \

obs=25 max=50000
d.rast -o redhat_25_los
d.vect redhat_25m siz=10 col=red icon=basic/marker

We have neglected the influence of trees and existing buildings – those can
be added by replacing the bare ground DEM with DSM derived from the
first return lidar data or you can try the SRTM DSM. The results show
that the tower will be widely visible up to about 5km, its visibility starts to
diminish beyond that due to impact of topography (Figure 5.10). You can see
the simulated views on the tower developers Web site.7 The second example
illustrates the same analysis for a smaller building located west of downtown
at coordinates 638898E, 224528N, that is the RedHat headquarters. You can
use r.report to compare the size of the area that can be viewed from each
building (over 10,000ha from the tower as compared to 2,550ha from RedHat).
See Section 6.5.5 for the extraction of the points of interest visible from top
of the new skyscraper.

5.4.5 Landscape structure analysis

Quantitative analysis of the landscape structure or 2D patches represented
by a raster map can be performed using the r.li set of commands (based
on the former r.le suite, Baker and Cai, 1992; Baker, 2001): r.li.setup,
r.li.patchnum, r.li.richness, r.li.simpson, and others. Patches may rep-
resent disturbances, natural resource areas, vegetation types, development or
other landscape elements. The r.li suite provides options for controlling the
shape (rectangle or circle), size, number, and distribution of sampling ar-
eas used to compute the landscape structure indexes. The outputs are single
values that characterize the patches (e.g. mean patch size) or distribution of

7 Raleigh Tower developers Web site, http://www.rbcplazacondos.com/, click on
“views”

http://www.rbcplazacondos.com/
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values (e.g. frequency distribution). These measures are raster maps or output
tables, depending on the selected landscape index.

In general, landscape structure analysis can be very memory intensive. To
minimize problems, the r.li suite is a client-server, multiprocess implementa-
tion which scales very well for larger maps. As an exercise, we perform analysis
on a forest raster map representing their distribution in the year 1996:

g.region rast=landclass96 -p
r.mapcalc "forest1996=if(landclass96==5,1,null())"
d.erase
d.rast forest1996
r.li.setup

The r.li.setup module opens a graphical dialog which interactively queries
the user to define the settings for the landscape structure analysis. With
New a new configuration dialog is started. As configuration file name, we
choose the name movwindow3 as it is independent from the analyzed raster
maps. As Raster map to use to select areas we select the raster map to be
analyzed forest1996. Next click on the Setup sampling frame button and select
Whole maplayer as sampling frame and confirm with OK. Then click on Setup
sampling areas to continue the dialog. We now define the sampling areas, in
our case we use a moving window (the r.li.setup manual page shows several
graphical illustrations of sampling areas). We confirm with OK and now click
on Use keyboard to enter moving window dimension. The shape of the mowing
window shall be rectangle and we need to provide the widths and height size.
The resolution is given in cell units. The forest1996 map has a resolution of
28.5m × 28.5m; we choose 3 × 3 as moving window dimension. We store these
settings with Save settings and return to the main window of r.li.setup. The
new configuration should be listed there. We close this module now.

The configuration is now done. At this point, we can calculate a series of
indices. We start with indices based on the patch number (here: in the moving
window) using a 4 neighbour algorithm:

r.li.patchnum forest1996 conf=movwindow3 out=forest_p_num3
r.li.patchdensity forest1996 conf=movwindow3 out=forest_p_dens3

To better understand the results, we can convert the original forest map to
vector boundaries and overlay them:

r.to.vect forest1996 out=forest1996 feature=area
d.rast.leg forest_p_num3
d.vect forest1996 type=boundary

d.rast.leg forest_p_dens3
d.vect forest1996 type=boundary

We can define a different moving window size for these or other indices by
following above described procedure using r.li.setup. We can compute an
index based on mean patch size or patch edge density as follows:
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r.li.mps forest1996 conf=movwindow7 out=forest_p_mps7
d.rast.leg forest_p_mps7
r.li.edgedensity forest1996 conf=movwindow7 \

out=forest_p_edgedens7
d.rast.leg forest_p_edgedens7

A different index type is the set of diversity indices. For example, we can
calculate Shannon’s diversity index for a raster map:

r.li.shannon forest1996 conf=movwindow7 \
out=forest_p_shannon7

d.rast.leg forest_p_shannon7
d.vect forest1996 type=boundary

Note that if you want to run another index with the same area configuration,
you do not have to create another configuration file. You can also use the
same area configuration file on another map. The r.li.* modules rescale
it automatically. For instance, if you have selected a 5 × 5 sample area on
100 × 100 rows/cols raster map, and you use the same configuration file on a
200 × 200 rows/cols raster map, then the sample area is 10 × 10.

Besides moving window, other types of sampling areas can be defined. They
can be distributed across the landscape in a random, systematic contiguous
and non-contiguous, or stratified-random manner. It can be also centered over
sites. The manual page of r.li.setup contains related figures which explain
the sampling design.

5.5 Landscape process modeling

GRASS has a long tradition of providing tools to support landscape process
modeling. It has been coupled with various external modeling tools and used
for processing of input data, analysis of results and visualization. At the same
time, several models have been fully integrated with GRASS as modules, or
were implemented using map algebra and other GRASS tools. In the following
sections, we will focus on hydrologic, groundwater and erosion modeling. We
suggest that you start grass63 with a new MAPSET, called, for example,
simulations to run examples in this section, because we will be computing a
large number of new raster maps.

5.5.1 Hydrologic and groundwater modeling

We have already shown how to compute wetness index as a function of upslope
contributing area and slope using r.terraflow (see Section 5.4.4). Alterna-
tively, we can compute it using the module r.topidx for our high resolution,
rural terrain:
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g.region rural_1m -p
r.topidx elev_lid792_1m out=wetness_1m
d.erase
d.rast wetness_1m
d.vect elev_lid792_cont_1

The module uses the MFD algorithm for flowtracing and the result is a raster
map that represents topographic potential for wetness or spatial soil moisture
pattern (see Appendix A.2 for the equation).

More complex, dynamic study of watershed hydrology in terms of pre-
dicting surface and subsurface flow and related phenomena can be performed
using several current and older versions of hydrologic models integrated with
GRASS, such as r.topmodel and r.sim.water (see example of its application
in the erosion modeling section below). Use of these models requires some hy-
drologic background, especially familiarity with hydrologic terminology and
access to input data that are not as widely available as basic GIS maps. Use
of these models is beyond the scope of this book; however, it is important
to note that to fully evaluate the impact of spatial distribution of land use
on water flow, this type of models is needed. They capture spatial aspects of
such important effects as the reduced velocity of water flow and higher infil-
tration in areas covered by dense vegetation, or increased risk of flooding due
to development when vegetated area is replaced by an impervious surface.

Modeling of several processes that form the hydrologic cycle has been
integrated in HydroFOSS (Cannata, 2006). The GRASS add-ons for mod-
eling evaporation, vegetation intercept, snow melt, and runoff (h.evapo.PM,
h.hydroFOSS.init, h.hydroFOSS.runoff, h.interception, h.snow) can be
downloaded from the GRASS AddOns Wiki. HydroFOSS supports continu-
ous time simulations, determining flow rates and conditions during both runoff
and dry periods. It is coupled with the automatic inverse calibration model
UCODE-2005 (Poeter et al., 2005). Comprehensive hydrological and geomor-
phological analyses and modeling are provided by JGrass: a Java based GIS
built on top of GRASS combined with R and recently integrated with uDig.
The sources can be found at the JGrass Web site, Italy.8

Groundwater modeling The most recent addition to GRASS that should
greatly enhance its potential for development of physics based models is a new
library gpde_lib that is designed to support solution of partial differential
equations (Gebbert, 2007). Two new modules r.gwflow and r3.gwflow for
2D and 3D groundwater modeling have been developed using the library (see
Gebbert, 2007). We illustrate their functionality using hypothetical input data
for piezometric head phead_10m, boundary condition status status_10m, inner
water sink well_10m, hydraulic conductivity tensor hydcond_10m, and specific
yield syield_10m for a confined aquifier with its top and bottom surfaces

8 JGrass Web site, http://www.jgrass.org

http://www.jgrass.org
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defined by horizontal planes at elevation 30m and 65m, and an unconfined
aquifier with top at 98m:

# set region and prepare input data
g.region rural_1m res=10 -pa
d.erase
r.mapcalc "phead_10m= if(row() < 3, 85, 70)"
d.rast phead_10m
r.mapcalc "status_10m=if(row() < 3, 2, 1)"
d.rast status_10m
r.mapcalc "well_10m=if(row()==28 && col()==26, -0.005, 0)"
d.rast well_10m

r.mapcalc "hydcond_10m=0.00021"
r.mapcalc "top_conf_10m=65.0"
r.mapcalc "top_unconf_10m=98.0"
r.mapcalc "bottom_10m=30.0"
r.mapcalc "poros_10m=0.12"
r.mapcalc "syield_10m=0.0002"
r.mapcalc "recharg_10m=0"

# run the model for a confined reservoir
r.gwflow -s solv=cg top=top_conf_10m bottom=bottom_10m \

phead=phead_10m status=status_10m hc_x=hydcond_10m \
hc_y=hydcond_10m q=well_10m s=syield_10m r=recharg_10m \
out=gwres_conf_10m dt=8640000 type=confined \
velocity=gwres_confvel_10m

d.rast.leg gwres_conf_10m

# run the model for unconfined reservoir
r.gwflow -s solv=cg top=top_unconf_10m bottom=bottom_10m \

phead=phead_10m status=status_10m hc_x=hydcond_10m \
hc_y=hydcond_10m q=well_10m s=poros_10m r=recharg_10m \
out=gwres_uconf_10m dt=8640000 type=unconfined \
velocity=gwres_uconfvel_10m

d.rast.leg gwres_uconf_10m

The output raster maps gwres_conf_10m and gwres2_uconf_10m represent the
piezometric head after time defined by the parameter dt, in our case 100 days
given in seconds. You can write a script to run the command with gradually
increasing dt to obtain a series of raster maps that shows the piezometric head
development over time and then view the resulting animation using xganim
(see the next section for a practical animation example). The groundwater
modules are under active development, so check the related manual page for
the latest enhancements and more complex examples (see also Gebbert, 2007).
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a                                                                       b

Fig. 5.11. Spatial pattern of a) sediment flow and b) erosion and deposition esti-
mated for spatially variable cover using the USPED model

5.5.2 Erosion and deposition modeling

To compute simplified erosion risk maps, we can use the widely applied Uni-
versal Soil Loss Equation (USLE), modified for complex terrain (see Mitasova
and Mitas, 2001). It is often referred to as USLE3D or the updated RUSLE3D.
The detailed equations and units are in Appendix A.2, here we show only the
basics needed for writing the related map algebra expressions. USLE estimates
annual soil loss by the following multiplication of empirical factors:

A = RKLSCP (5.3)

where A is soil loss, R is rainfall factor, K is soil erodibility, LS is a topo-
graphic factor, C is a cover factor, and P is a prevention measures factor (the
last three factors are dimensionless). You can learn more about the recent
developments in RUSLE at the associated Web site.9 The LS factor can be
modified for complex terrain by replacing the slope length, used in the origi-
nal equation, by upslope area (Moore and Burch, 1986; Mitasova et al., 1996;
Desmet and Govers, 1996; Moore and Wilson, 1992):

LS = (m + 1)
(

U

22.1

)m( sinβ

0.09

)n

(5.4)

where U [m] is the upslope area per unit width (measure of water flow, m2/m),
β is the slope angle in degrees, 22.1m is the length and 0.09 = 9% = 5.15◦

is the slope of the standard USLE plot, m = 0.4 and n = 1.3 are empirical
constants described in more detail in the Appendix. The difference between
the original LS factor based on slope length and its 3D modification is ex-

9 RUSLE Web site, http://www.ars.usda.gov/Research/docs.htm?docid=5971

http://www.ars.usda.gov/Research/docs.htm?docid=5971
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plained in more detail, in the relevant CERL report.10 When computing the
3D LS factor, we multiply the flow accumulation computed by r.flow by the
resolution to get the upslope contributing area per cell width and calculate
the Equation 5.4 using r.mapcalc:

g.region rural_1m -p
r.slope.aspect elev_lid792_1m slo=slope_1m asp=aspect_1m
r.flow elev_lid792_1m dsout=flowacc_1m
r.mapcalc "lsfac3d_1m=1.4 * exp(flowacc_1m*1./22.1,0.4)\

* exp(sin(slope_1m)/0.09,1.2)"

# assign special color table and display result
r.info lsfac3d_1m -r
r.colors lsfac3d_1m col=rules <<EOF
0 white
3 yellow
6 orange
10 red
50 magenta
100 violet

EOF
d.rast.leg lsfac3d_1m

Note that multiplication by the cell size equal to 1.0 in the r.mapcalc ex-
pression for lsfac3d_1m is not necessary, we keep it to illustrate that this
is required if different resolution is used. Before displaying the lsfac3d_1m
raster map, we have assigned it a special color table to account for its skewed
distribution.

Alternatively, we can use flow accumulation computed by r.terraflow
divided by resolution (i.e., accumterra_1m/1., because here the flow accumu-
lation output represents total upslope contributing area. The values of the
LS factor will be slightly different due to different flowrouting algorithm used
in r.terraflow and r.flow. The r.terraflow result will have lower values
on ridges due to dispersal flow and higher values in some concentrated areas
because it routes flow through depressions; overall it would be more suitable
for areas with prevailing dispersal flow, typical, for example, for vegetated
terrains.

The computation of slope length based RUSLE LS factor has been imple-
mented in r.watershed, but its application is suitable only to lower resolution
data (10m and more) because it internally uses integer (CELL) values that
at higher resolution create artificial flats. The output soil loss is multiplied by
100. We can apply it for a regional scale erosion risk estimate as follows:

# compute length-based LS for larger area at lower resolution
g.region swwake_30m

10 Mitasova et al., Terrain modeling and simulation,
http://skagit.meas.ncsu.edu/~helena/gmslab/reports/cerl99/rep99.html

http://skagit.meas.ncsu.edu/~helena/gmslab/reports/cerl99/rep99.html


160 5 Working with raster data

r.watershed elev_ned_30m thresh=50000 length=lsfac_rws
r.mapcalc lsfac_rwsfp=lsfac_rws/100.
r.colors lsfac_rwsfp rast=lsfac3d_1m
d.rast.leg lsfac_rwsfp

The resulting LS values are smaller than in our previous example, due to un-
derestimation of slope typical for this resolution and omission of concentrated
flow.

The R factor is not spatially variable in our study area and we can use a
constant R = 270 (4600 in SI units). For most areas, you can find the values
of annual and single-storm R in any USLE handbook or a related textbook
such as Haan et al. (1994). The soil erodibility factor K is already included
in the sample data set as a raster map soils_Kfactor. You can check its
values by running d.what.rast on the displayed map or by printing a table
using r.report soils_Kfactor. The values range from 0.15 to 0.28 in US
units, parking lot areas are assigned 0. If the R and K factors are not avail-
able, you can compute them using add-on modules11 r.usler, r.uslek from
annual precipitation data and soil texture, respectively. The C-factor maps
cfactorbare_1m and cfactorgrow_1m are also included in the data set. They
were computed by recoding the landcover raster map landcover_1m derived
from aerial photography. The first map handles C-factor in the agricultural
fields as mostly bare, while the second map considers vegetation cover typi-
cal for growing season (the recoding tables are provided in the ncexternal/
subdirectory of our test data set).

Finally, we can calculate the erosion risk (soil detachment) for the given
vegetation cover using r.mapcalc:

g.region rural_1m
r.mapcalc "soillossbare_1m=270. * soils_Kfactor * \

lsfac3d_1m * cfactorbare_1m"
r.mapcalc "soillossgrow_1m=270. * soils_Kfactor * \

lsfac3d_1m * cfactorgrow_1m"
r.colors soillossbare_1m col=rules <<EOF
0 220 255 220
5 yellow
40 orange
90 red
250 magenta
4000 violet

EOF
r.colors soillossgrow_1m rast=soillossbare_1m
d.erase
d.rast soillossbare_1m
d.rast soillossgrow_1m
r.univar soillossbare_1m
r.univar soillossgrow_1m

11 GRASS AddOns Web site, http://grass.gdf-hannover.de/wiki/GRASS_AddOns

http://grass.gdf-hannover.de/wiki/GRASS_AddOns
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# compare with land use
d.his h_map=soillossbare_1m i_map=ortho_2001_t792_1m

The resulting maps represent average annual soil loss rate at the center
of each grid cell for two scenarios: with agricultural fields mostly bare
and with the fields covered by some vegetation throughout the year. The
map soillossbare_1m shows severe erosion and potential gully formation
in the fields with the average annual erosion rate for the entire area 11.64
ton/(acre.year) computed by r.univar. Keeping the fields vegetated reduces
the average annual erosion to 2.20 ton/(acre.year), but the dirt roads, bare
ground and vineyard can still produce significant amount of sediment. The
orthophoto for this area ortho_2001_t792_1m shows that the fields are split
into strips with rotating crops to ensure that at least part of the field area
is always vegetated. Note that we have again used a special color table to
highlight the spatial pattern of the erosion rates.

The USLE model assumes detachment limited regime of sediment trans-
port that does not include deposition. The Unit Stream Power Based Ero-
sion/Deposition model (USPED, Mitasova and Mitas, 2001) estimates a sim-
plified case of erosion/deposition using the idea originally proposed by Moore
and Burch (1986). It combines the RUSLE parameters and upslope contribut-
ing area per unit width U to estimate sediment flow T :

T ≈ RKCPUm(sinβ)n, (5.5)

where the exponents m,n control the relative influence of water and slope
terms and reflect the impact of different types of flow (see more details in the
Appendix A.2). The net erosion/deposition D [ton/(acre.year] is computed as
a divergence of sediment flow T :

D = ∇ · (T s0) =
d(T cos α)

dx
+

d(T sinα)
dy

(5.6)

where α in degrees is the aspect. As an example, we compute the sediment
flow map sedflow using the parameters m = n = 1 and then the net ero-
sion/deposition using the equation 5.6 (Figure 5.11):

# compute sediment flow and its components in x, y directions
r.mapcalc "sedflow_1m=270.*soils_Kfactor*cfactorgrow_1m* \

flowacc_1m*sin(slope_1m)"
r.colors sedflow_1m rast=soillossbare_1m
d.rast sedflow_1m
r.mapcalc "qsx=sedflow_1m * cos(aspect_1m)"
r.mapcalc "qsy=sedflow_1m * sin(aspect_1m)"

# compute change of sediment flow in the x and y directions
# and then in the direction of flow using divergence
r.slope.aspect qsx dx=qsx_dx
r.slope.aspect qsy dy=qsy_dy
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r.mapcalc "erdep=qsx_dx + qsy_dy"
r.info -r erdep
r.colors erdep col=rules <<EOF
-15000 100 0 100 #dark magenta
-100 magenta
-10 red
-1 orange
-0.1 yellow
0 200 255 200 #light green
0.1 cyan
1 aqua
10 blue
100 0 0 100 #dark blue
18000 black

EOF
d.rast.leg erdep

# compute summary statistics
r.recode erdep out=erdep_class <<EOF
-1200:-50:-4:-4
-50:-5:-3:-3
-5:-1:-2:-2
-1:-0.1:-1:-1
-0.1:0.1:0:0
0.1:1:1:1
1:5:2:2
5:50:3:3
50:1500:4:4

EOF
# add labels (see report table below)
r.support erdep_class

r.sum erdep
SUM = -2374.473814

r.report erdep_class unit=p,h,a
[...]
| #| description | % | hectares | acres |
|-4| severe erosion . . .| 0.19| 0.101300| 0.25031|
|-3| high erosion . . . .| 1.34| 0.701600| 1.73365|
|-2| moderate erosion . .| 3.89| 2.042600| 5.04726|
|-1| low erosion . . . . |19.74| 10.366000| 25.61438|
| 0| stable . . . . . . .|61.32| 32.192000| 79.54643|
| 1| low deposition . . .| 8.40| 4.407600| 10.89118|
| 2| moderate deposition | 2.49| 1.307500| 3.23083|
| 3| high deposition . . | 1.29| 0.676900| 1.67262|
| 4| severe deposition . | 0.24| 0.126100| 0.31159|
| *|no data. . . . . . . | 1.10| 0.578400| 1.42922|
|---------------------------------------------------|
|TOTAL |100.00| 52.500000|129.7275|
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The resulting map shows a very rich pattern of erosion and deposition typical
for areas with complex land cover and topography. Red-orange-yellow areas
show erosion and blue shades represent deposition. The concentrated flow in
the valley has the highest erosion rates, about one magnitude lower erosion
is predicted in the agricultural fields. Not all of the eroded soil will be trans-
ported out of the fields as a substantial portion can be deposited directly in
the field concave areas and at the border of the field where water is slowed
down by grass (Figure 5.11). The model computes extremely high values in
few cells due to extremes in slope and flow accumulation change that are
often artifacts of the data or due to simplifications in the algorithm. Such
cells should be assigned the highest realistic erosion or deposition values. The
report shows that most of the area is stable (61%) or has a low rate of ero-
sion or deposition. Caution should be used when interpreting the results from
USPED, because the RUSLE parameters were developed for simple planar
fields and detachment limited erosion, while here we are applying them to
much more complex conditions.

Process-based water flow and erosion modeling Shallow overland flow
can be described by St. Venant equation for continuity of flow. The solver
based on path sampling method is implemented in the module r.sim.water,
see Mitas and Mitasova (1998); Mitasova et al. (2005c) for equations and de-
tailed explanation. The module computes overland flow depth or discharge
based on steady, spatially distributed rainfall excess (rainfall intensity minus
infiltration rate in [mm/hr]), elevation surface gradient given as (dx, dy), sur-
face roughness given by Manning’s coefficient, and overland flow infiltration
rate in [mm/hr]. The gradient allows us to include prescribed flow direction by
combining (dx, dy) derived from a DEM with (dx, dy) derived from line data
representing channels, ditches or pipes that are not captured by the DEM.
We illustrate its functionality in our rural area. For the sake of simplicity,
we consider uniform land use, soils and rainfall, and no infiltration rate for
flowing water:

# compute input raster maps for uniform land cover
# and uniform rainfall excess
g.region rural_1m res=2 -p
r.mapcalc man05=0.05
r.mapcalc infil0=0.
r.mapcalc rain50mmhr=50.

# calculate partial derivatives
v.surf.rst -d input=elev_lid792_bepts layer=0 \

elev=elev_lid792_2m slope=dx_2m aspect=dy_2m \
ten=15 smooth=1.5 segmax=25 npmin=100

# run the model
r.sim.water -t elevin=elev_lid792_2m dxin=dx_2m dyin=dy_2m \

rain=rain50mmhr infil=infil0 manin=man05 \
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depth=wdp_2m disch=disch_2m nwalk=400000 \
niter=500 outit=20 hmax=0.2 halpha=8.0 hbeta=1.0

d.rast.leg wdp_2m.0498
d.rast.leg disch_2m.0498

# animate the time series (requires Motif)
# click circle arrow to run a loop, snail to slow it down
xganim view1="wdp_2m*" view2="disch_2m*"

We have used v.surf.rst to compute the gradient (partial derivatives) and at
the same time, smooth the elevation surface. You can also use r.slope.aspect
and the provided DEMs to derive (dx, dy). We set the number of walkers
nwalk to approximately 2-3 per cell (it will run faster than with the default 2
million walkers). The results can be displayed by xganim to see the evolution
of overland flow represented as water depth in [m] and discharge in [m3/s].
You can see that there are several depressions with ponding water, the largest
is upstream from the road which behaves as a dam. To simulate water flow
below the road, we can combine the gradient derived from the DEM with
the gradient derived from the stream network as we show in the following
example:

# compute direction (aspect) of the given streams
v.to.rast streams out=streams_dir_2m use=dir

# compute stream dx,dy using direction and slope=2deg
r.mapcalc "dxstr_2m=tan(2.)*cos(streams_dir_2m)"
r.mapcalc "dystr_2m=tan(2.)*sin(streams_dir_2m)"

# compute combined DEM and stream dx,dy
r.mapcalc "dxdemstr_2m=if(isnull(dxstr_2m), dx_2m, dxstr_2m)"
r.mapcalc "dydemstr_2m=if(isnull(dystr_2m), dy_2m, dystr_2m)"

# run the model
r.sim.water -t elevin=elev_lid792_2m dxin=dxdemstr_2m \

dyin=dydemstr_2m rain=rain50mmhr inf=infil0 man=man05 \
depth=wdpstr_2m disch=dischstr_2m nwalk=400000 \
niter=500 outit=20 hmax=0.2 halpha=8.0 hbeta=1.0

d.rast.leg dischstr_2m.0498
xganim view1="dischstr_2m*" view2="disch_2m*"

Predefined gradient of water flow allows us to simulate water flowing “through”
the road, reducing the extent of flooding on the northern side of the road (for
illustration, see photos from storm events in this area here12). You can further
enhance the simulation by adding the impact of spatially variable landuse and
soil properties reflected in the Manning’s and rainfall excess maps, created by
recording the landcover and soils maps.

The resulting water depth maps can be used as input for modeling sedi-
ment transport and net erosion/deposition using the module r.sim.sediment.
12 Storm events photos,

http://skagit.meas.ncsu.edu/~helena/wrriwork/lakewh/photos.html

http://skagit.meas.ncsu.edu/~helena/wrriwork/lakewh/photos.html
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This module uses a generalization of sediment transport equations used in the
WEPP model (Mitas and Mitasova, 1998) and we will illustrate its function-
ality using simplified uniform soil and land cover conditions given by the
transport capacity coefficient[s], detachment capacity coefficient [s/m], Man-
ning’s coefficient, and critical shear stress in [Pa]. We run the simulation only
for the upper part of the watershed to avoid simulating the flooded areas and
we put it in the background so that we can display the transport capacity
map and transport capacity limited (TCL) erosion/deposition map, as these
two are computed immediately:

# set region to the upper part of the watershed
g.region s=s+290

# compute input transport capacity and detachment coef. maps
r.mapcalc tranin=0.001
r.mapcalc detin=0.001

# compute input critical shear stress
r.mapcalc tauin=0.01

# run the model, use last depth from previous run
g.copy rast=wdp_2m.00498,wdp_2m
r.sim.sediment elevin=elev_lid792_2m dxin=dx_2m \

dyin=dy_2m wdepth=wdp_2m detin=detin tranin=tranin \
tauin=tauin manin=man05 nwalk=600000 niter=600 \
tc=tcapacity et=erdepmax flux=sedflow erdep=erdepsimwe

# display these results after few seconds:
d.rast tcapacity
d.rast erdepmax

# display the final results
d.rast sedflow
d.rast erdepsimwe

The transport capacity map tcapacity in [kg/ms] has spatial pattern similar
to RUSLE3D while the TCL erosion/deposition map erdepmax in [kg/m2s]
will be close to the USPED result for uniform conditions. Note that to use
the same color table as for the USPED results, you will have to multiply
the r.sim.sediment result by 10000 (for more accurate conversion and com-
parison convert the units in either of the models). The sediment flow and
net erosion/deposition are results of sediment routing by water flow given by
wdp_2m. The resulting spatial pattern depends on the given parameters, rang-
ing between erosion almost everywhere (if tranin >> detin) to the result
simular to USPED (transport capacity limted erosion/deposition with tranin
<= detin). You can try to rerun the model by replacing detin=0.001 with
detin=0.0001 to see the effect (you should get much smaller area with depo-
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sition). If the results are too noisy, you need to use larger number of walkers
given by nwalk.

5.5.3 Final note on raster-based modeling and analysis

In addition to water and sediment flow modeling tools, GRASS also provides
a set of modules for computing maps representing rates of spread r.ros and
spread time r.spread designed to simulate spread of wildfires. You can learn
more about these modules from the manual and try them out using a data
set provided with the modules. Further examples of raster modules, including
time series analysis, map algebra, filtering, and color management can be
found in the Chapter 8 on Image Processing.

Several interesting modules are being developed as add-ons, for example,
a landscape evolution module r.landscape.evol (Ullah et al., 2007), set of
energy balance modules r.eb.*, biomass growth module r.biomass, and oth-
ers. Check the GRASS AddOns Web page for these modules and possible new
additions.

5.6 Working with voxel data

Although the support for 3D raster data is still rather limited, several new
tools were added for GRASS 6. You can now perform various conversions
between the 2D and 3D raster representation, for example convert a 3D raster
into a series of 2D raster maps that can be analyzed using the standard 2D
raster tools, or convert a set of 2D maps into a 3D raster. It is also possible
to create a 3D raster by binning vector point data (assigning points to 3D
raster cells). You can visualize the 3D rasters in nviz or export the result in
VTK format for a more sophisticated visualization using paraview (see also
Section 7.4). Here, we will use 2D horizontal slices to browse through the
volumes.

In the first example, we create a 3D raster from multiple return lidar data
by binning the points into the volume with 2m deep horizontal layers. We
then convert the volume to a set of 2D raster maps, each representing a set
of points captured at the respective elevation level:

# create volume from multiple return points (3D)
v.info elev_lidrural_mrpts
[...]
| B: 102.22768553 T: 153.0658283 |
[...]

g.region rural_1m res3=3 t=154 b=102 tbres=2 -ap3
d.erase
d.vect elev_lidrural_mrpts
v.to.rast3 elev_lidrural_mrpts out=elev_lid_mrvol col=Return
r3.stats elev_lid_mrvol
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#convert the volume to series of 2D maps
r3.info elev_lid_mrvol
r3.to.rast elev_lid_mrvol out=elev_lid_mrlev
d.slide.show elev_lid_mrlev across=6 down=5
xganim view1="elev_lid_mrlev_*"
d.erase -f

We have displayed the volume as a series of horizontal planes with values
representing the lidar return number allowing us to visually analyze returns
available at different elevations.

In the next example, we create a volume map with values representing
a soil property (in our case K-factor) by filling the volume below elevation
surface elev_lid792_1m with the values of K-factor from the raster map
soils_Kfactor:

g.region rural_1m
r.univar elevation
[...]
minimum: 103.973
maximum: 131.708
[...]

g.region rural_1m res3=3 t=132 b=102 tbres=2 -ap3
r.to.rast3elev -l soils_Kfactor elev=elev_lid792_1m \

out=soils_Kvol
r3.info soils_Kvol

# convert to horiz. slices and display
r3.to.rast soils_Kvol out=soils_Kvolslice
d.slide.show soils_Kvolslice
xganim view1="soils_Kvolslice*"
d.erase -f

Also, you can create a 2D raster as an intersection between a volume and a
plane or a complex surface:

# create a cutting plane and a cutting surface
r.plane name=cutplane dip=4 azimuth=120 easting=638600 \

northing=220350 elevation=115 type=float
d.rast cutplane
r.mapcalc "cutsurf=if(elev_lid792_1m>115, elev_lid792_1m-8, \

elev_lid792_1m-3)"
d.rast cutsurf
# increase ’z-exag’ for better visibilit
# increase ’z-exag’ for better visibilityy
nviz elev_lid792_1m,cutplane,cutsurf

# create 2D rasters as intersections with the volume
r3.cross.rast soils_Kvol elev=cutplane output=soils_Kcutpl
r3.cross.rast soils_Kvol elev=cutsurf output=soils_Kcutsurf
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d.rast soils_Kcutpl
d.rast soils_Kcutsurf

The cross-section with the plane soils_Kcutpl covers only a subarea of the
current region because part of the plane is above the elevation surface where
the volume is filled with NULLs.

Voxel calculator and summary statistics Creation of new volume
maps, reclassification, 3D analysis and modeling can be performed using the
3D version of the map algebra module r3.mapcalc. The module is similar to
r.mapcalc, therefore, we include only a small example where we reclassify the
soils K-factor volume map into two classes based on the K-factor value and
the depth and then compute the volume for each of the two classes:

g.region -p3
r3.univar soils_Kvol
r3.mapcalc "soilKlow_vol=if(soils_Kvol<0.24 && depth()<10,1,2)"
r3.stats soilKlow_vol nsteps=2
num | min<=value | value<max | volume | perc | cell count
1 1.00000 1.500000 5621276.395 38.23998 311847
2 1.50000 2.000000 4646029.185 31.60564 257744
3 * * 4432694.421 30.15438 245909

Volume analysis often requires a mask (for example, defined by bathymetry
if a temperature in lake volume is modeled). You can create a volume mask
based on the values in the 3D raster map soils_Kvol as follows:

# set volume MASK and see its effect
r3.mask soils_Kvol maskvalues=0.25-0.33
r3.to.rast soils_Kvol out=soils_Kvolslice_mask
d.slide.show soils_Kvolslice_mask
d.slide.show soils_Kvolslice
# remove volume MASK
g.remove rast3d=G3D_MASK

In the next chapter, we describe how to create volumes from 3D vector points
using trivariate interpolation. Then we will get back to volumes in the visu-
alization chapter and show how to view the volume data in 3D space. Voxel
support is still relatively new in GRASS and new capabilities are added, so
check the manuals for latest additions.
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Working with vector data

The vector data model is used for representation of geographic phenomena as
geometric objects composed of points, lines and areas. Point data represent
either a discrete feature at a given scale, such as a city, an archaeological site or
a hospital, or they are discrete samples of continuous fields such as data from
climatic stations, measured elevation points, or bore-hole data. Lines are used
for roads, railroads, streams, or utility networks, while areas can represent
soil types, land use categories, lakes, or zoning in urban areas. Vector data
are stored using their coordinates. In GRASS, the vector data model includes
the description of topology.

GRASS provides tools for management and analysis of vector maps in-
cluding the attributes that can be stored in a database management system.
GRASS vector map operations are always performed on the full map. If this
is not desired, the input map has to be clipped to the current region or a poly-
gon beforehand as we explain in the Section 6.5. Please refer to Sections 4.2
(data model) and 4.2.2 (data exchange) for the vector model description and
import/export of data.

6.1 Map viewing and metadata management

In this section, we describe how to display different types of vector maps and
manage their metadata. We again use our sample data set, so you should have
GRASS 6 opened with the LOCATION nc_spm (see Section 3.1.4).

6.1.1 Displaying vector maps

As we have already explained, the most efficient approach to display GRASS
raster and vector data is through GUI, so check for the latest release, as the
GUI is being updated frequently. To save space, we continue using the more
stable display in the GRASS monitor window, using the command d.vect.
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For example, to display the streams and overpasses in our region, run (see
Section 3.1.5 for display management):

g.region region=swwake_10m -p
d.mon x0
d.erase
d.vect streams col=blue
d.vect streets_wake

# display symbols
d.vect overpasses icon=extra/bridge size=15 fcol=red

The d.vect command displays the selected vector map in the current GRASS
monitor; in case that another map is already present, it will be overlayed
over the existing map. If you want to display only selected vector objects in
a map, you can use the cats parameter. The selection is done by category
number (vector ID), given as a single value or a comma-separated list. See
Section 4.2.1 for details about the vector model. More sophisticated selections
can be done with SQL statements using the where parameter which we explain
later in this chapter. Vector areas are automatically shown as filled polygons
with centroids. If you don’t define the color, the vector map will be displayed
in black/grey, so you need to have a non-black background or raster map
in your monitor to see it. Optionally, the border and polygon fill colors can
be changed from default grey to another color. To individually colorize the
polygons, there are two options. One is the random colorization, e.g. a colored
soils vector map is shown with:

# display areas with centroids (sized 2 pixels)
d.vect -c soils_wake size=2

# display areas without borders and centroids
d.vect -c soils_wake type=area

Alternatively, an existing column containing RGB definitions can be spec-
ified. The column is a variable character field (varchar) type containing
RRR:GGG:BBB values (e.g., 223:45:237 for purple).

To zoom or pan within the map, you can use d.zoom The zoom module is
controlled with the mouse buttons, the context menu is shown in the terminal
window see also (Section 3.1.5).

To display the vector map attributes, use d.vect with the display param-
eter, for example:

d.vect -c census_wake2000 disp=shape,attr attrcol=FIPSSTCO \
siz=5 lcol=black

Font size, colors, label marker etc., can be customized accordingly, in the
example above, we have set the size of the centroid symbol to 5 and the
color of the label to black. Type d.vect help to see all available options for
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customization. You can use the script d.slide.show with flag -v to display
all or selected vector maps:

d.slide.show -v mapsets=PERMANENT

Optionally, you can define a name prefix to see only selected maps matching
the prefix pattern. To learn how to view vector maps in 3D using the nviz
module, see Chapter 7.

Vector map legends Thematic vector maps can be created with
d.vect.thematic. Various theme types are supported and the legend can
be added in a second GRASS monitor. To illustrate the usage, we display
the total capacity of schools in the south-west Wake County as graduated
points overlayed over the census block map colored according to the number
of households:

g.region swwake_30m -p
d.erase
d.vect.thematic -l censusblk_swwake column=HOUSEHOLDS \

nint=6 color=yellow-cyan
d.vect.thematic -l schools_wake column=CAPACITYTO type=point \

size=10 nint=6 themetype=graduated_points

We have used a graduated color scheme from yellow to cyan for the census
block map and graduated icon sizes for school point data. Graduated line
widths can be used for lines and boundaries with associated attributes. We
have defined the numerical attribute to be mapped using parameter column
and the number of intervals for color scheme or symbol size by the parameter
nint.

Vector map charts To display charts based on vector data attributes, use
d.vect.chart. The charts are positioned with their lower edge on line centers
for vector lines, area centroids for vector areas, and at points for vector points
by default. We can use a chart to display monthly precipitation (30 year
normals) at the two stations located in the south-west Wake county as follows:

# set the region and display DEM, roads and lakes
g.region swwake_10m -p
d.erase
d.rast elevation
d.vect roadsmajor
d.vect lakes type=area fcol=cyan col=cyan

# display chart
d.vect.chart -c precip_30ynormals ctype=bar size=80 scale=0.6 \

column=jan,feb,mar,apr,may,jun,jul,aug,sep,oct,nov,dec \
color=cyan,cyan,yellow,yellow,yellow,green,green,green,\
blue,blue,blue,cyan
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We have used the flag -c to position the center of the chart at the given
points, increased its size and reduced its relative height using the parameters
size and scale and defined different colors for winter, spring, summer and
fall months. You can observe slight differences between the distribution of 30
year average monthly precipitation for these two meteorological stations.

6.1.2 Vector map metadata maintenance

Metadata play an important and often underestimated role in GIS data pro-
cessing. They are the key factor for data consistency and quality control,
especially in large GIS projects. Metadata describe the map’s origin (data
source), the producer, the map scale and other geographic references as well
as the time of production/modification and information on data accuracy. US
government data usually include a comprehensive, standardized metadata file.

As we have already explained in Section 3.1.4, we can display general in-
formation about a vector map, such as map title, creation date, scale, number
of categories, lines and areas, and boundary coordinates, with the command
v.info. To display basic metadata for a point, line or polygon vector map,
run:

v.info schools_wake
v.info streets_wake
v.info census_wake2000

The output includes the map title, production date, creator, vector level
(topology present or not), number of categories, points, lines, boundaries, cen-
troids, areas, islands (areas in areas), faces, kernels, projection, map bound-
ary coordinates, map scale, and further comments. The v.info command
can also display column types and names for a map. For example, the NC
soils_general map has the following columns in the attribute table:

v.info -c soils_general

The vector map history (information on how the map was generated) can be
retrieved as follows:

v.info -h soils_general

Most metadata for vector maps can be managed with v.support in the current
MAPSET:

# update scale information to 1:24000
v.support myvectmap scale=24000

# update organization
v.support myvectmap organization="OSGeo labs"
v.info myvectmap
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6.2 Vector map attribute management and SQL support

An attribute table, linked to the vector geometry, is usually generated for
each newly created vector map. The table must contain a column cat to store
the category numbers (the vector IDs) which connect the individual vector
objects to one or more attributes. Hence, each table row corresponds to a
category number. Several vector objects can be assigned to the same category
number (table row). Category numbers are maintained with v.category. For
more details, please read Section 4.2.1 or see the integrated manual:

g.manual databaseintro

To quickly see the contents of a vector map table, run v.db.select, for
example:

v.db.select roadsmajor

Attributes can be modified with the module v.db.update with a SQL
condition, or interactively through a database browser connected to the used
DBMS. Here are some recommendations for tools that can be used to manage
the attribute tables:

• DBF: OpenOffice.org Base (http://www.openoffice.org);
• MySQL: MySQL Administrator and MySQL Query Browser

(http://www.mysql.com/products/tools/;
• PostgreSQL: pgadmin3 (http://www.pgadmin.org/);
• SQLite: sqlitebrowser (http://sqlitebrowser.sf.net); OpenOffice.org

Base with sqliteodbc driver (see Appendix A.3 for setup details).

GRASS can be connected to various RDBMS and embedded databases.
It supports SQL (Structured Query Language) which is a computer language
used to create, retrieve, update, and delete data from relational database
management systems. GRASS unifies the different drivers in an abstraction
layer called DBMI – database management interface – to assist the user.
SQL queries are directly passed to the underlying database system. The set
of supported SQL commands depends on the RDMBS and selected driver.
Table 6.1 shows the available drivers in GRASS 6.2 and later.

DBMI driver Database site
dbf DBF files, http://shapelib.maptools.org/dbf_api.html
sqlite SQLite database, http://sqlite.org
pg PostgreSQL ORDBMS, http://postgresql.org
mysql MySQL RDBMS, http://mysql.org
mesql MySQL embedded database, http://mysql.org
odbc unixODBC (with various DBMS drivers), http://unixodbc.org

Table 6.1. List of available database drivers in GRASS (list may vary among various
binary distributions of GRASS)

http://www.openoffice.org
http://www.mysql.com/products/tools/
http://www.pgadmin.org/
http://sqlitebrowser.sf.net
http://shapelib.maptools.org/dbf_api.html
http://sqlite.org
http://postgresql.org
http://mysql.org
http://mysql.org
http://unixodbc.org
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6.2.1 SQL support in GRASS 6

Usually an attribute table name is identical to the connected vector map
name. Due to the SQL language definition, there are some constraints for
the selection of a vector map name. SQL does not support “.” (dots) in table
names. Supported table name characters are limited to [A-Za-z][A-Za-z0-9_]*.
A table name must start with a character, not a number. Text-string matching
requires the text part to be ’single quoted’. When run from the command
line, multiple queries should be contained in "double quotes", e.g.

g.region vect=schools_wake -p
d.erase

# show all schools in Wake County
d.vect schools_wake col=red icon=basic/circle siz=5

# show a subset of all elementary schools in Raleigh
d.vect schools_wake where="ADDRCITY=’Raleigh’ and GLEVEL=’E’"

Before looking into the details of the various SQL drivers in GRASS, a
general recommendation: to avoid the need of quoting column names in certain
SQL backends, it is a good idea to avoid using capital letters for column names.

The default DBMS connection settings in MAPSET are managed with
db.connect. By default, the DBF driver is used. Note that this command
does not check for valid settings. In case you define incorrect parameters, it
will be discovered only once you use the connection. For this reason, we always
use db.tables in the following section to test the settings.

DBF driver

If a DBF table has to be created manually, db.execute can be used or even a
spreadsheet software. Also db.copy can be used to transfer between different
DBMS engines. The DBF driver supports only a few SQL statements since
the DBF tables are intended for simple table storage. DBF column names are
limited to 10 characters (as defined in the DBF specifications).

As an example, we create a new table with column cat for integer numbers
and stype for character strings (additional supported type is double precision):

# define MAPSET DB connection as DBF (which is the default)
# use single quotes to avoid variable expansion in the shell
db.connect driver=dbf \

database=’$GISDBASE/$LOCATION_NAME/$MAPSET/dbf/’
# print current connection
db.connect -p
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# copy map from PERMANENT: converts (or keeps in) table to DBF
g.copy vect=roadsmajor,myroadsmajor
# show attribute connection
v.db.connect -p myroadsmajor

# show the DBF tables that can be modified (in current MAPSET)
db.tables -p

The current GRASS MAPSET is now configured to use the DBF driver with
the defined connection for attribute storage. The manual page is accessible
via g.manual grass-dbf.

SQLite driver

The SQLite driver is much more powerful than the DBF driver and it is
very simple to maintain (in fact, it is a file based SQL DBMS which does not
require any configuration nor a server). Instead of using a server based system,
SQLite databases are local files which are usually stored in the MAPSET. It is
a good idea to create a new MAPSET when using the SQLite driver in order
to manage all vector maps within this MAPSET with SQLite connection. We
suggest to always choose sqlite.db as database name in a MAPSET. After
creating the new MAPSET using g.mapset, the DBMS settings are defined
as follows:

# use single quotes to avoid variable expansion in the shell
db.connect driver=sqlite \

database=’$GISDBASE/$LOCATION_NAME/$MAPSET/sqlite.db’
db.connect -p

# copy map from PERMANENT, this converts table to SQLite
g.copy vect=roadsmajor,myroadsmajor
# show attribute connection
v.db.connect -p myroadsmajor

# show SQLite tables that can be modified (in current MAPSET)
db.tables -p

The SQLite database is created automatically when used the first time. If you
now copy an existing vector map with attribute table from another MAPSET
using g.copy, the attribute table will be automatically converted to SQLite
and imported into the sqlite.db file as defined above. The advantage of this
driver is that it offers rather full SQL support1 while no administration is
needed since the database is a local file. The manual page is accessible via
g.manual grass-sqlite.

1 SQL As Understood By SQLite, http://www.sqlite.org/lang_expr.html

http://www.sqlite.org/lang_expr.html
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PostgreSQL driver

The PostgreSQL driver can be used for server based storage of attributes.
Administrator privileges and password may be required for database creation
and access, please refer to the PostgreSQL documentation for details. We use
similar example as in previous cases (the PostgreSQL commands can be used
within or outside of a GRASS session):

# create a new database "nc_usa" using PostgreSQL command
createdb -h localhost nc_usa

# enter PostgreSQL to create a user (’nc_usa=#’ is the prompt)
psql -h localhost nc_usa
nc_usa=# CREATE USER grassuser ENCRYPTED PASSWORD ’my12sec!’;
nc_usa=# \q

# define GRASS connection
db.connect driver=pg database="host=localhost,dbname=nc_usa"
# db.login allows to enter the password from above
db.login user=grassuser
db.connect -p

# copy map from PERMANENT, this converts table to PostgreSQL
g.copy vect=roadsmajor,myroadsmajor
# show attribute connection
v.db.connect -p myroadsmajor

# show user modifiable PostgreSQL tables (in current MAPSET)
# (e.g. public.myroadsmajor)
db.tables -p

The current GRASS mapset is now configured to use the PostgreSQL driver
with the defined connection for attribute storage. The manual page is acces-
sible via g.manual grass-pg.

Database schemas are currently supported only by PostgreSQL connec-
tions. Schemas enable database objects to be grouped together in distinct
namespaces within the same database to achieve cross-database connectivity
(e.g. between different databases in a PostgreSQL database cluster). The de-
fault schema is the “public” schema which is used by GRASS. The default
schema can be set with db.connect. Note that the default schema will be
used by all db.* modules. The db.tables command returns table names as
“schema.table” if schemas are available in the database.

MySQL driver

An alternative DBMS for server based storage of attributes is MySQL. Both
standard and MySQL embedded database are supported. Permissions and a
password may be needed to modify tables, please refer to the MySQL docu-
mentation for details. We use the example with roads again:
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mysql -h localhost
# create new database "nc_usa" within MySQL (’mysql>’ is prompt)
mysql> CREATE DATABASE nc_usa;
mysql> CREATE USER ’grassuser’@’localhost’;
mysql> GRANT ALL PRIVILEGES ON *.* TO ’grassuser’@’localhost’;
mysql> SET PASSWORD FOR ’grassuser’@’localhost’ =

PASSWORD(’my12sec!’);
mysql> quit;

# define GRASS connection
db.connect driver=mysql database="host=localhost,dbname=nc_usa"
# db.login allows to enter the password
db.login user=grassuser
db.connect -p

# copy map from PERMANENT, this converts table to MySQL
g.copy vect=roadsmajor,myroadsmajor
# show attribute connection
v.db.connect -p myroadsmajor

# show available MySQL tables
db.tables -p

The current GRASS mapset is now configured to use the MySQL driver with
the defined connection for attribute storage. The manual page is accessible
via g.manual grass-mysql.

unixODBC driver

The unixODBC driver permits to connect GRASS to various DBMS including
database/spreadsheet software, especially from the MS-Windows world. The
settings have to be defined with ODBCConfig or a text editor modifying the
config file. Each ODBC database connection is given a name which is called
“DSN” (data source name). The DSN must be defined in $HOME/.odbc.ini (at
individual user level) or in /etc/odbc.ini for (for all users). Please refer to
the unixODBC documentation for details. The DSN is then used in GRASS
to establish the connection:

# define GRASS connection
db.connect driver=odbc database=myodbcdsn
# db.login allows to enter the password
db.login user=myname
db.connect -p

# copy map from PERMANENT, this converts table to ODBC DBMS
g.copy vect=roadsmajor,myroadsmajor
# show attribute connection
v.db.connect -p myroadsmajor
# show available ODBC linked tables
db.tables -p
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The current GRASS mapset is now configured to use the unixODBC driver
with the defined connection for attribute storage. The manual page is acces-
sible via g.manual grass-odbc.

Converting CSV files and spreadsheet tables to SQL

The import of external tables without geometry is easiest done with
db.in.ogr. It just requires the CSV file (comma separated) and an output
name, the MAPSET DBMI settings are used for database storage.

Alternatively, using OpenOffice.org “Base”, you can easily convert a spread-
sheet table into a true SQL database (PostgreSQL, MySQL etc). The proce-
dure is explained in the GRASS WIKI.2 You simply select the table contents
and then paste them into the OpenOffice.org DBMS driver in a graphical
dialog.

You can also convert tables on command line with OGR. To convert an ex-
ternal attribute table to a DBMS format supported by GRASS (e.g. SQLite),
you can use ogr2ogr. This tool also works if no geometry is present. We can
convert, for example, the CSV table wake_soil_groups.csv (Wake county
hydrologic soils groups) into SQLite format and add this new table into our
existing SQLite database file sqlite.db which is stored in our mapset (this
also works likewise for other DBMS drivers):

# convert CSV table into SQLite format and add as table in
# sqlite.db (adapt path to your settings, input file needs
# ’.csv’ extension)
ogr2ogr -update -f SQLite \

$HOME/grassdata/nc_spm/sqlite/sqlite.db wake_soil_groups.csv

# or simply
db.in.ogr wake_soil_groups.csv out=wake_soil_groups

This conversion works for any OGR supported vector format. When listing
the available tables, this new table appears, too:

db.tables -p

The wake_soil_groups table can be now joined to the attribute table of the
soils_wake map (DSL_NAME column) (see Section 6.2.1).

Map-table connections

There are several ways to find out if and how a vector map is connected to
one or many tables:

2 OpenOffice.org with SQL Databases,
http://grass.gdf-hannover.de/wiki/Openoffice.org_with_SQL_Databases

http://grass.gdf-hannover.de/wiki/Openoffice.org_with_SQL_Databases
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# show table connection(s) of a map
v.db.connect -p schools_wake
# show attribute column names and types of a map
v.info -c schools_wake

# show available tables in current mapset
db.tables -p
# describe details of a table
db.describe mysoils
# describe it in shortened form
db.describe -c mysoils

The v.db.connect can also be used to (re)define a link between a vector
map and a table that can be stored locally, or on a network server. By default,
the MAPSET-wide definition is used as defined by db.connect but maps can
be individually linked to different backends. We will show additional examples
later on with v.db.connect.

Attribute table maintenance and access control

Table maintenance can be done with SQL commands and db.execute. In the
common case that a table is connected to a vector map, there are special
vector commands which simplify maintenance tasks:

• to add a new column, use v.db.addcol;
• to remove a column from a table, use v.db.dropcol;
• to rename a column, use v.db.renamecol;
• to add a new table to a vector map, use v.db.addtable;
• to delete an entire table, run v.db.droptable (you have to activate the -f

flag to really remove the table connected to the map);
• to update a column, use v.db.update.

To learn to change a column type, refer to Section 6.2.2.

Access control Sometimes it is desired to grant read-only access to (at-
tribute) data. GRASS and the DBMS backends offer various solutions to
maintain access control:

• access to map: storing the map in a separate MAPSET (see Section 3.1.6
gives read-only access;

• access to attribute table:
– DBF: modification of file permissions at operating system level;
– SQL-DBMS: GRANT and REVOKE SQL commands to manage access on

database user level;
• complete map storage in spatial SQL database (PostGIS, MySQL, Ora-

cle etc.) including geometry: using v.external an external map can be
virtually linked into the current mapset in read-only mode.
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Attribute table joins

Attribute values are often stored as acronyms of longer words to save space.
Sometimes it is desired to add explanations into additional columns which
shall be merged from a separate legend table. This is done by a SQL join
clause which combines columns of one table to that of another to create a
single table. In this procedure, the values in a column are matched with those
of a column in another table and further column contents are transferred. In
GRASS, the v.db.join command performs simple table joins. As an example,
we want to merge the legend of points of interest extracted from the Geonames
database3 into the map table. The original table looks like this:

v.db.select geonames_wake
cat|GEONAMEID|NAME|ASCIINAME|ALTERNATEN|FEATURECLA|FEATURECOD...
24|4498303|West Raleigh|West Raleigh||P|PPL...
25|4487042|Raleigh|Raleigh|Raleigh,...|P|PPL...
32|4459467|Cary|Cary||P|PPL...
[...]

We can get the legend file geonames_features.csv from the ncexternal/ di-
rectory and import it. This example requires to use a SQL driver different
from DBF:

db.in.ogr geonames_features.csv out=geonames_features
db.tables -p
db.describe -c geonames_features

db.select geonames_features
FEATURECLASS|FEATSHORTDESCRIPTION|FEATLONGDESCRIPTION...
A|ADM1|first-order administrative division|a primary...
A|ADM2|second-order administrative division|a subdivision...
[...]

For the join itself, we want to use the FEATURECOD column of the map
to be joined to the column FEATSHORTDESCRIPTION of the imported table
geonames_features. To be able to modify the map table, we first copy the
map into our current MAPSET:

g.copy vect=geonames_wake,mygeonames_wake

# note: DBF driver not supported for join
v.db.join mygeonames_wake col=FEATURECOD \

otab=geonames_features ocol=FEATSHORTDESCRIPTION

# query new column
v.db.select mygeonames_wake \

col=NAME,FEATLONGDESCRIPTION,POPULATION

3 Geonames Web site, http://www.geonames.org

http://www.geonames.org
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NAME|FEATLONGDESCRIPTION|POPULATION
West Raleigh|populated place|338759
Raleigh|populated place|276093
Cary|populated place|103945
[...]

The table now contains the legend columns and we can display the points of
interest along with the text description:

g.region vect=mygeonames_wake -p
d.erase
d.vect streets_wake
d.vect -c mygeonames_wake icon=basic/pushpin
d.vect mygeonames_wake disp=attr attrcol=FEATLONGDESCRIPTION

This shows the map with textual labels instead of the abbreviations. If you
prefer to perform joins in a graphical way, for example, OpenOffice.org “Base”
supports this for various SQL backends (see also Section 6.2).

6.2.2 Sample SQL queries and attribute modifications

In this subsection, we show a series of SQL statements to illustrate SQL usage
for GIS related tasks. Note that we have written all SQL keywords in capital
letters for better readability, but there is no need to do so. The examples are
based on the North Carolina data set. A good tutorial to learn SQL queries is
the PostgreSQL documentation (note that MySQL and SQLite dialects may
slightly differ, but our examples below should work everywhere, many of them
even with the DBF driver).4

SQL selection examples In this example, we select all attributes from
a table where “COUNTY” column values are equal to ’WAKE’. The db.*
commands require to have the map in the current mapset if the DBF or the
SQLite drivers are used. For this, we first copy the map from the PERMA-
NENT MAPSET into our current MAPSET. Note that the v.db.* commands
are able to search in any mapset since the map-DBMS connection is used to
find the attached table.

g.copy vect=boundary_municp,mybnd_mun
echo "SELECT * FROM mybnd_mun WHERE COUNTY = ’WAKE’"|db.select

# combine with second condition
echo "SELECT * FROM mybnd_mun WHERE COUNTY = ’WAKE’ AND \

CENSUSTYPE <> ’Village’" | db.select

4 PostgreSQL documentation, http://www.postgresql.org/docs/

http://www.postgresql.org/docs/


182 6 Working with vector data

SQL subquery expressions example In this example, we want to select
vector objects from a list of given items (note: does not work for DBF driver):

v.db.select schools_wake where="ADDRCITY IN (’Apex’, ’Cary’)"

SQL pattern matching example In this example, we want to select vector
objects with attributes that matching certain text patterns:

# match exactly number of characters (here: 2)
# (note: does not work for DBF driver)
v.db.select geology where="GEO_NAME LIKE ’Za__’"

# define wildcard (any length)
v.db.select geology where="GEO_NAME LIKE ’Z%’"

Delete vectors by attribute selection example Sometimes maps con-
tain unwanted vector objects. In addition to editing of the geometry with a
digitizer, these vectors can also be selected by attributes through a SQL state-
ment and “deleted” from the map by reverse selection to a new map. We want
to reduce the schools map to only the small schools:

# check what to delete (find all big schools)
v.db.select schools_wake where="CAPACITYTO > 300"

# perform reverse selection, save to new map
v.extract -r schools_wake out=small_schools_wake \

where="CAPACITYTO > 300"
v.db.select small_schools_wake

With the first command we check for the correctness of the SQL statement, the
resulting attribute rows should be the deletion candidates. Then we execute a
reverse selection with the -r flag which will extract all vectors except for those
matching the where statement. The new map contains all remaining vector
objects, here, the small schools.

Null handling example This example illustrates NULL handling in SQL.
First, we check whether the map mylakes has any NULLs in the column
named FTYPE. Then we selectively display lakes without (blue) and with
NULL (red) to find out which type is undefined. You will see that the lakes
missing FTYPE attribute are wetlands along streams so we will replace NULL
with the landuse type WETLAND:

# copy the map into your MAPSET and check for NULL
g.copy vect=lakes,mylakes
v.db.select mylakes
v.db.select mylakes where="FTYPE IS NULL"

# display the lakes, show undefined FTYPE lakes in red
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g.region swwake_10m
d.erase
d.vect mylakes where="FTYPE NOT NULL" type=area col=blue
d.vect mylakes where="FTYPE IS NULL" type=area col=red

# replace NULL with FTYPE WETLAND
v.db.update mylakes col=FTYPE value=WETLAND \

where="FTYPE IS NULL"
v.db.select mylakes

Column type converting example (type casts) A column type cast is a
conversion from one SQL data type to another. Such conversions are possible
under certain circumstances, if the content of a column is also representable
in a different column type. For example, numeric values can be sometimes
stored in a character type column. To work with such numbers, we can add
a new numeric column and convert the character numbers to true numbers.
In the map geodetic_pts, the point elevation is stored in a character type
column called Z_VALUE which we want to type cast into a new double precision
column zval (note: CAST() is not supported by DBF driver, so you need to
use SQLite, PostgreSQL or MySQL to run this example):

v.info -c geodetic_pts
# copy map into current mapset
g.copy vect=geodetic_pts,mygeodetic_pts
v.db.addcol mygeodetic_pts col="zval double precision"

# the ’z_value’ col contains ’N/A’ strings, not to be converted
v.db.update mygeodetic_pts col=zval \

qcol="CAST(z_value AS double precision)" \
where="z_value <> ’N/A’"

v.info -c mygeodetic_pts
v.db.select mygeodetic_pts col=Z_VALUE,zval

# fix 0 in ’zval’ to NULL (orig. ’N/A’ entries in ’Z_VALUE’)
echo "UPDATE mygeodetic_pts SET zval=NULL WHERE zval=0" \

| db.execute
v.db.select mygeodetic_pts col=Z_VALUE,zval

The new column zval now contains double precision elevation values needed
to perform numerical operations or interpolation.

SQL updates with character substitution Sometimes, the field values of
character columns are not formatted in the desired way. For example, the col-
umn describing GRASS vector colors needs to be formatted as RRR:GGG:BBB.
We assume to have a map with colors coded slightly differently, in our example
as RRR-GGG-BBB. With SQL functions it is possible to create a new column and
update it to the values of the adjacent column including character substitution
on the fly (not supported by DBF driver):
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v.db.select mymap col=RGB_COLOR
RGB_COLOR
230-000-077
255-000-000
204-077-242
[...]

We add a new column with length of 11 characters and update it to the
modified color values (we name it the standard GRASS color column name):

v.db.addcol mymap col="GRASSRGB varchar(11)"
# substr() extracts numbers, ’||’ operator appends strings
echo "UPDATE mymap SET GRASSRGB = (substr(RGB_COLOR,1,3)\

||’:’||substr(RGB_COLOR,5,3)||’:’||\
substr(RGB_COLOR,9,3))" | db.execute

v.db.select mymap col=RGB_COLOR,GRASSRGB
RGB_COLOR|GRASSRGB
230-000-077|230:000:077
255-000-000|255:000:000
204-077-242|204:077:242
[...]

The new column GRASSRGB is now understood by d.vect -a.

Complex SQL expression examples In this example, we perform on the
fly computation while updating a column to a new value. We bulk-define the
maximum speed for the entire road network, then increase it selectively for
multi-lane roads:

# copy map into current mapset for editing
g.copy vect=roadsmajor,myroadsmajor

# add a column and predefine its values with 55mph
v.db.addcol myroadsmajor col="speedmax double precision"
v.db.update myroadsmajor col=speedmax value=55
v.db.select myroadsmajor

# increase speedmax to 70mph for multilane roads

# a) example for SQL statement and db.execute
echo "UPDATE myroadsmajor SET speedmax=speedmax+15 \

WHERE MULTILANE=’yes’ " | db.execute

# b) alternatively, use v.db.update
v.db.update myroadsmajor col=speedmax where="MULTILANE=’yes’" \

value="speedmax+15"
v.db.select myroadsmajor
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SQL expressions with on the fly computation can also be used directly in
a command. In the following example, we want to highlight the stations with
annual precipitation greater than 50in using blue symbol while all the other
stations are shown in grey. The data are provided in mm so we will do on the
fly conversion to inches:

g.region nc_500m -p
v.info -c precip_30ynormals
d.erase
d.vect precip_30ynormals disp=shape icon=basic/box
d.vect precip_30ynormals disp=shape where="annual*0.03937>50" \

icon=basic/circle fcol=blue

You can see that the stations with high precipitation totals are on the coast
and in the mountains while the piedmont area gets less rain.

6.2.3 Map reclassification

Vector maps can be reclassified in a similar way as raster maps. The module
v.reclass reclassifies vectors according to results of SQL queries or to a value
in an attribute table column. Alternatively, a reclass rule file can be specified.
The module is used in a similar way as r.reclass. As an example, we reclassify
the counties of the points of interest map geonames_NC into several categories
according to population. To understand the precise wording of the attributes,
we first look at the attribute table (the command prints it to the terminal):

# fetch all counties
v.db.select geonames_NC \

where="POPULATION<>0 and FEATURECOD=’ADM2’"

An ASCII file countypop.cls containing the reclass rules can be written
with any text editor. It contains:

cat 1
WHERE FEATURECOD=’ADM2’ AND POPULATION=0
cat 2
WHERE FEATURECOD=’ADM2’ AND POPULATION>0 AND POPULATION<1000
cat 3
WHERE FEATURECOD=’ADM2’ AND POPULATION>=1000 AND POPULATION<10000
cat 4
WHERE FEATURECOD=’ADM2’ AND POPULATION>=10000 AND POPULATION<100000
cat 5
WHERE FEATURECOD=’ADM2’ AND POPULATION>=100000 AND POPULATION<500000
cat 6
WHERE FEATURECOD=’ADM2’ AND POPULATION>=500000

This rules file we save under countypop.cls is applied to the map to generate
a new reclassified vector map.
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v.reclass geonames_NC rules=countypop.cls out=geonames_NC_recl
v.category geonames_NC_recl op=report
Layer: 1
type count min max
point 104 1 6
line 0 0 0
[...]

In a second pass, we have to add a new attribute table to the new map
geonames_NC_recl. We generate a single column to store a text label for each
category number (ID):

# add new table with one column
v.db.addtable geonames_NC_recl col="popclass varchar(50)"

# insert values into table
v.db.update geonames_NC_recl col=popclass value="unknown" \

where="cat=1"
v.db.update geonames_NC_recl col=popclass value="very low" \

where="cat=2"
v.db.update geonames_NC_recl col=popclass value="low" \

where="cat=3"
v.db.update geonames_NC_recl col=popclass value="medium" \

where="cat=4"
v.db.update geonames_NC_recl col=popclass value="high" \

where="cat=5"
v.db.update geonames_NC_recl col=popclass value="very high"\

where="cat=6"

Finally, we can verify the result and display the reclassified map:

# verify
v.db.select geonames_NC_recl
v.info geonames_NC_recl
d.erase
d.vect nc_state type=area
d.vect -c geonames_NC_recl where="popclass<>’unknown’"

With v.what.vect (see Section 6.4.1), this classification could be transferred
into the map boundary_county into a new column. In case of area maps, it
may be necessary to dissolve the boundaries between areas with an identical
attribute. See Section 6.5.3 for details.

6.2.4 Vector map with multiple attribute tables: layers

Features in a vector map may represent more than a single type of information,
for example, a road can also be a field boundary. GRASS vector format makes
it possible to create several vector map “layers” by linking the map geometry
to more than one external attribute table. The category number (vector ID)
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is used to link each object to attribute table rows. All category numbers are
stored both in the vector geometry file as well as in the “cat” column (integer
type) in each attribute table. The category number is used to look up an
attribute assigned to a vector object and vice versa. At user level, category
numbers can be assigned to vector objects with the v.category command or
generated with v.to.db.

In order to assign multiple attributes in different tables to vector ob-
jects, each map can be assigned multiple sets of category numbers. This is
achieved by assigning more than one layer to the vector map, managed with
the v.db.connect command. The layer number determines which table will
be used for attribute queries. For example, a cadastral vector area map can
include a layer 1 with an attribute table containing landuse descriptions main-
tained by department A while layer 2 is assigned to an attribute table con-
taining owner descriptions maintained by department B. Each set of category
numbers starts with 1; they do not have to be continuous.

6.3 Digitizing vector data

A paper map can be converted to digital form by manual digitizing. In general,
there are two ways to interactively digitize a map:

• using a digitizing board, or
• digitizing heads-up (on screen).

In the first case, the map is placed on the digitizer board, which provides a
special digitizing mouse. The corners are selected by a mouse click and their
respective coordinates are entered using the keyboard. This process is called
“registering a map”. Then the lines and points on the map are digitized using
a mouse. The advantage of this method is that the user always sees the entire
map. However, the high cost of the equipment and the possibility that the
map could be shifted during the digitizing, if it is not properly mounted,
are significant disadvantages. Furthermore, the paper map must be free of
distortions to prevent displacements.

On-screen digitizing requires a scanned and geocoded raster map that
is displayed in the GRASS monitor. All features will be digitized using the
mouse. It is not necessary to register such a map as it is already geocoded. The
advantage of this method is the possibility to zoom in and thus achieve an im-
proved accuracy. Apart from an access to a scanner, no additional equipment
is needed. The major disadvantage is the more difficult orientation on the
map. The following section deals only with heads-up digitizing using mouse.

6.3.1 General principles for digitizing topological data

To explain the digitizer module, we consider an example of vectorizing features
from a scanned topographic map. We assume that the map was scanned, accu-
rately geocoded and imported into GRASS in raster format (see Section 4.1.4
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on geocoding scanned maps). Although it may be possible to automate the
vectorization of a simple raster map using r.to.vect (see Section 5.3.1), prob-
lems often arise from overlapping lines, dots, map signatures etc. and manual
digitizing is necessary.

There are few general recommendations for digitizing map features which
can minimize potential accuracy problems. The recommendations are mostly
based on the fact that to make the map readable some features are exaggerated
at a given scale compared to their actual size:

• Line features should be digitized along their center-line, e.g. along the
center of a road;

• Area features should be digitized by following the center-line of area
boundary lines. An area centroid should be placed in the approximate
center of the area;

• Point features should be digitized at the center of the object, e.g. a point
in the center of a map symbol representing the point feature or at the
reference point of such a symbol;

• The points defining the line or polygon boundary should be selected at
a density that is sufficient for preserving the geometry of the digitized
features.

General rules for digitizing in topological GIS When working in a
topological GIS such as GRASS, following certain rules is recommended, in
order to benefit from the topological features of the software. The following
rules apply to the vector data (from GRASS 6 Programmer’s Tutorial, GRASS
Development Team, 2006):

• Arcs (vector line primitives) should not cross each other (i.e., arcs which
would cross must be split at their intersection to form distinct arcs);

• Arcs which share nodes must end at exactly the same points (i.e., must be
snapped together using the snapping function of the digitizing module);

• Common boundaries should appear only once (i.e., should not be digitized
twice);

• Areas must be explicitly closed. This means that it must be possible to
complete each area by following one or more boundaries that are connected
by common nodes, and that such tracings result in closed areas. Areas need
a centroid to become valid areas;

• It is recommended that area features and linear features be placed in
separate vector maps. However, if area features and linear features must
appear in one map, common boundaries should be digitized only once. An
area edge that is also a line (e.g., a road which is also a field boundary),
should be digitized as an area edge to complete the area. The area feature
should be labeled as an area. Additionally, the common boundary arc
itself (i.e., the area edge which is also a line) should be labeled as a line
to identify it as a linear feature.

Now we explain the digitizing process in detail.
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6.3.2 Interactive digitizing in GRASS

Interactive digitizing is done by v.digit, we will use it to digitize unpaved
roads and other features based on the provided orthophoto as follows (Fig-
ure 6.1):

g.region rast=ortho_2001_t792_1m
v.digit -n newmap bg="d.rast ortho_2001_t792_1m; \

d.vect streets_wake col=red"

The -n flag is needed if you are going to create a new map. We have defined
the background map(s) using the bgcmd parameter. Alternatively, they can
be defined in the menu system (Open settings icon) of v.digit. Figure 6.1
shows the digitizer window with attribute form and GRASS monitor. After
selecting one or more background maps, you can close the Settings window.
By clicking the Redraw icon, everything will be shown. Usually an attribute
table is desired for the new vector map. In the Open settings dialog, Table tab,
columns can be defined. The cat column is used as ID column, other columns
can be added (Add new column). For this, the column name and type have to
be specified. The table is then created with the Create table button. We are
now ready to start the digitizing procedure.

Digitizing vector points, lines and areas Once a vector is digitized,
v.digit will query by default for a new record in the attribute table via a
form. If no attribute table is desired, deactivate the Insert new record into table
in the main digitizer window. The digitizing is started by choosing the icon
for the appropriate object type (point, line, boundary, or centroid). For now,

Fig. 6.1. Digitizing with v.digit
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Fig. 6.2. Digitizing common area boundaries in a topological GIS

we assume that you want to digitize a line. Now switch over to the GRASS
monitor, and start to draw the line using the mouse by clicking on the points
representing the line with the left mouse button. Generally, we recommend
making an extensive use of the zoom function which can improve the digitizing
accuracy significantly. The pan (panning) function allows us to move the map
into any direction without changing the zoom level.

The mouse menu is shown in the digitizer window, the buttons provide
different functions such as drawing nodes and lines, removing the latest drawn
node and finishing/omitting a line. This requires a bit of experience but you
will quickly feel familiar with the concept. This way, you can digitize line by
line (or just vector points). Topologically correct vectors have a different color
(green) than incorrect ones (red).

When intersecting lines or connecting to lines, a node has to be inserted
at the intersection. This is done by breaking the existing line which you want
to cross or connect to. To break a line, click on the Split line icon and select
the position on the line where to insert a node. You can now snap other
lines to this node which is explained next. When working with polygons, it is
important to digitize common boundaries of adjacent areas only as a single
line (see Figure 6.2). GRASS will automatically assign the common boundary
to both areas. Never digitize a common area edge as two parallel lines!

Note that the digitizing tool in QGIS comes with a similar look and feel
as the GRASS’ v.digit.

centroid

vector
open

area successfully closedverticesline

nodes

Snapping

Fig. 6.3. The node snapping function in GIS
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Snapping of nodes Node snapping is necessary when digitizing a line
which consists of several parts, or when closing a vector area. As mentioned
above, closing areas is mandatory because only then is GRASS able to es-
tablish vector topology. A great help is the built-in snapping function. When
two nodes are close to each other (depending on the current snapping thresh-
old), they will be moved into the same node and reduced to one node (see
Figure 6.3). The Move vertex icon provides this functionality. The snap radius
is defined in the Open settings window, Settings tab. You can select between
screen pixel threshold and map units threshold. The snapping threshold should
be chosen appropriately for the map scale.

In general, reasonable values for snapping thresholds depend on the map
scale, such as:

• 1:5000 - 1:10000: Snap distance 1-2m on ground
• 1:10000 - 1:25000: Snap distance 2-5m on ground
• 1:25000 - 1:50000: Snap distance 5-10m on ground

Common digitizing problems and solutions A common digitizing prob-
lem is that area boundaries are not closed or lines intended to be connected
(“polylines”) are broken. Lines too short and not reaching another traverse line
are called “undershoot”, lines too long which cross another line without having
a node at the intersection are called “overshoot” (see Figure 6.4). To fix these
problems, you should use the snapping function. Note that snapping is also
implemented in additional vector modules such as v.clean and v.edit. Poly-
lines can be created with v.build.polylines and, for all or selected vectors
with v.edit (connect tool).

Post-Digitizing issues Maps containing intersecting vectors without
nodes at the line intersections are called “spaghetti maps” which are topo-
logically incorrect. To resolve this problem, the module v.clean can be used
(see Figure 6.5 illustrating the functionality) which inserts nodes at the line
intersections. The result is written to a new map. Optionally, erroneous vec-

Undershoot

solution: v.clean/rmdanglesolution: v.clean/snap,break tool

Overshoot

Fig. 6.4. “Overshoots” and “undershoots” in vector maps
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node insertednode is missing

at intersection

v.clean
problem resolved

problemvector

tools: snap,break

Fig. 6.5. Correction of “spaghetti digitizing”

tor objects can be stored into a separate error map for inspection. Additional
functionality is “pruning” which can be used to remove excessive nodes from
a map. Use it with care as you can oversimplify complex areas/polygons to
squares or triangles if you remove too many nodes.

GRASS also provides a tool for non-interactive vector editing v.edit that
can be used from command line. It provides a broad range of options for
feature selection and modification. We use it in subsections below, for example
for vector feature moving and reverse deletion in the Section 6.5.3. A new
generalization tool is under development.

6.4 Vector map queries and statistics

In this section, we explain various possibilities to query vector maps, including
interactive and automated attribute and geometry reports as well as cross-map
queries (vector-vector and vector-raster maps).

6.4.1 Map queries

To get a list of the vector map attributes (category numbers and attributes),
optionally with length or area sizes, use v.report:

# display ZIP code area sizes in hectares
v.report zipcodes_wake option=area units=hectares

The command allows us to query line lengths and area sizes of vector features
when run with the parameter units. The map type, either line or area, has
to be provided with parameter option.

You can interactively query vector data in a GRASS monitor with mouse.
The module d.what.vect allows you to query vector objects in one or more
maps. As an example, we query the zipcode map and the census map:
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g.region vect=zipcodes_wake -p
d.erase
d.vect -c zipcodes_wake
d.vect census_wake2000 type=boundary
d.what.vect map=zipcodes_wake,census_wake2000

d.vect schools_wake
d.what.vect -x schools_wake

The mouse context menu is shown in the terminal window. The query form
shows two tabs in this case, one for each queried map. The result can be shown
in the GRASS terminal if the command is used with the flag -x.

The module v.what noninteractively retrieves area information from poly-
gons queried by a list of coordinates, and optionally the attributes, when used
with the flag -a. As an example, we query two points in the censusblk_swwake
map:

# query census data at two given points
v.what -a censusblk_swwake \

east_north=636982.5,218057.8,638012.2,224919.1

The module reports areas for the polygons which include the given coordi-
nate pairs and the area attributes. To easily get coordinates from screen, use
d.where.

A more sophisticated way to query vector maps is to upload the results to
the attribute table of the base map. The command v.what.vect allows us to
upload attribute values from a vector map queried at points given in a base
vector point map into the attribute table of this base map. The base map has
to be in the current MAPSET to be modifiable. In our example, we first copy
the original map overpasses to our current mapset, then add a column to
its attribute table and fill this column with values queried from the geology
map:

# create own copy, add column, fill with geology
g.copy vect=overpasses,myoverpasses
v.db.addcol myoverpasses column="geology varchar(10)"
v.what.vect myoverpasses qvect=geology column=geology \

qcolumn=GEO_NAME

# display overpasses loacted in areas in green
d.vect streets_wake col=grey
d.vect myoverpasses icon=extra/bridge size=10
d.vect myoverpasses disp=shape where="geology=’CZig’" \

col=green siz=10 icon=extra/bridge
v.db.select overpasses

The new map myoverpasses now contains a column geology which was pop-
ulated with values from the map geology using its column GEO_NAME.

Hybrid queries transfer raster cell values to a vector map (e.g., to update
a polygon attribute) with v.what.rast. For example, we can transfer the
elevations from a DEM to the points given by myschools_wake map:
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g.copy vect=schools_wake,myschools_wake
v.db.addcol myschools_wake column="elevation double precision"
# set region to raster map for query
g.region rast=elevation -p
v.what.rast myschools_wake rast=elevation column=elevation

# verification
v.info -c myschools_wake
v.db.select myschools_wake column=NAMELONG,elevation

The height above sea level for each school is now stored in the new column
elevation of map myschools_wake. Note that several schools are outside of
the elevation map extent and therefore without the elevation value.

6.4.2 Raster map statistics based on vector objects

To calculate basic univariate statistics from a raster map, individually for vec-
tor polygons, the command v.rast.stats can be used. Internally, the vector
map will be rasterized according to the raster map resolution. Then univariate
statistics are calculated per vector category number using the raster map and
the results automatically uploaded to the vector map attribute table. New
columns are generated in the attribute table if not already present.

Since the vector map table will be modified, it needs to be in the current
MAPSET. In our example, we calculate and upload elevation statistics to the
zipcodes_wake map:

g.copy vect=zipcodes_wake,myzipcodes_wake
g.region vect=zipcodes_wake res=500 -p
v.rast.stats vect=myzipcodes_wake rast=elev_state_500m \

colprefix=elev
v.info -c myzipcodes_wake

# display zipcodes with given elevation properties
d.vect myzipcodes_wake disp=shape type=boundary
d.vect myzipcodes_wake disp=shape type=area \

where="elev_mean<100" fcol=green
d.vect myzipcodes_wake disp=shape type=area \

where="elev_range>70" fcol=brown

Nine new columns were added to the attribute table with the given prefix
elev (number of cells, minimum, maximum, range, mean, standard deviation,
variance, coefficient of variation, sum of values). The relevant values were
computed from the raster map based on the vector polygon areas. The new
attributes were then used to display the zipcodes with mean elevation less
than 100m (green) and zipcodes that have quite varied topography with the
elevation range greater than 70m (brown).

If you have a vector points map and you want to compare values of its
attribute with values from a raster map at these points, you can use v.sample.
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As an example, we compare geodetic control locations which were obtained
through tower triangulation surveys, traverse surveys and Global Position-
ing System (GPS) surveys to an elevation raster map to evaluate the differ-
ences. The module v.sample is used to retrieve heights from the raster map
elevation at the positions of the geodetic points and to calculate the height
differences. The geodetic point map attribute table is extended and updated
accordingly. We use the vector map geodetic_swwake_pts which is a subset of
the map geodetic_pts (but with numeric zval column type, see Section 6.2.2
for how this was done):

g.region swwake_10m -p
d.erase
d.rast elevation
d.vect streets_wake
d.vect geodetic_swwake_pts fcol=cyan icon=basic/circle

v.sample geodetic_swwake_pts col=zval rast=elevation \
out=elev_geod_diffs

v.db.select elev_geod_diffs where="pnt_val <> 0"
cat|pnt_val|rast_val|diff
26709|139.42|139.0857|-0.334307
26713|102|103.1191|1.119095
26751|100.53|100.5164|-0.013559
[...]

d.vect elev_geod_diffs where="diff<-1. AND pnt_val <> 0" \
size=10 fcol=blue icon=basic/circle

d.vect elev_geod_diffs where="diff<-10 AND pnt_val <> 0" \
size=12 fcol=red icon=basic/circle

The resulting vector map includes the elevation values pnt_val from the input
vector point map geodetic_swwake_pts, elevation rast_val sampled from the
DEM elevation and their differences diff. By running v.db.select for all
data points that had non-zero elevation at the given points, you can see that
the differences are quite large. We have used d.vect with SQL statement to
display the points with differences larger than 1m in blue and 10m in red. The
three red points are apparently on top of buildings the large differences in the
blue points are mostly caused by unsufficient vertical resolution (1m), low
accuracy or location on structures not represented in the DEM. Additional
error (around 0.2m) is due to different vertical datums (NGVD29 for the
points and NAVD88 for the DEM). Apparently, this set of geodetic points
cannot be used for evaluation of the DEM accuracy, accurate elevation points
can be obtained from the NC Geodetic Survey (http://www.ncgs.state.nc.
us/).

http://www.ncgs.state.nc.us/
http://www.ncgs.state.nc.us/
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6.4.3 Point vector map statistics

Simple statistical analysis of vector points can be performed with several
GRASS modules. For more sophisticated spatial statistics and geostatistics
tools, it is recommended to take the advantage of the bridge between GRASS
and R, as described in Chapter 10, as well as by Bivand (2000, 2007), or a link
with gstat described in the same chapter.

Basic univariate statistics can be computed using v.univar. For example,
for the elevation differences in geodetic points that we have generated above,
we get:

v.univar elev_geod_diffs type=point col=diff where="pnt_val<>0"
number of features with non NULL attribute: 217
number of missing attributes: 46
number of NULL attributes: 0
minimum: -74.2899
maximum: 1.54707
range: 75.837
mean: -1.58393
mean of absolute values: 1.71452
population standard deviation: 6.94657
population variance: 48.2548
population coefficient of variation: 4.38566
sample standard deviation: 6.96263
sample variance: 48.4782
1st quartile: -0.984299
median (odd number of cells): -0.375536
3rd quartile: -0.12679
90th percentile: 0.177383

The negative mean and median values indicate that the geodetic points have
elevations slightly shifted above the DEM surfaces, the median value is close
to the difference between the vertical datums. As we have explained above, the
large minimum value is due to the given point location on top of a building.
Please refer to Appendix A.1 for a list of basic statistical equations used to
compute these measures.

Further statistical analysis can be performed using additional GRASS vec-
tor points commands, such as v.normal which supports computation of up
to 15 different normality tests for a selected point attribute. The module
v.qcount provides a test for complete spatial randomness using a quadrat
method. Note that the commands do not include SQL support.

6.5 Geometry operations

In this section, we explain in detail how geometry operations are performed
in GRASS. Since GRASS is a topological GIS, some special rules apply and,
at the same time, capabilities to analyze spatial relationships specific to topo-
logical GIS are provided.
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6.5.1 Topological operations

Topological operations are used to verify and enforce data integrity. At the
expense of speed, data quality can be ensured and topologically broken data
sets can be repaired. The topological vector model is explained in greater de-
tail in Section 4.2.1. It is fundamentally different from the “Simple Features”
model, which does not support topological operations. Digitizing data in the
Simple Features model is error-prone when editing polygons or joining and
connecting segments at nodes. In the topological GRASS vector model, er-
roneous vectors such as gaps/slivers or overshoots are immediately identified
and related features remain intact.

Topological description and map cleanup You can retrieve topological
statistics for all vector types in a map with v.info (use the -t to get it in
script style):

v.info -t soils_wake
nodes=137682
points=0
lines=0
boundaries=136379
centroids=47156
[...]

By default, GRASS 6 always builds the topology after vector map import,
creation or modification. If it needs to be re-built, the v.build module is
used. It optionally allows to copy the erroneous vector objects into a separate
map for inspection. Topology can be visually inspected by d.vect:

g.region rural_1m -p
d.erase
# show topology
d.vect streets_wake disp=shape,topo

The map display takes some time since we are looking at small subset of a large
and complex vector map. The d.vect command shows the line category num-
bers and nodes. Topological errors can be corrected either manually within
v.digit (see Section 6.3.2) or, to some extent, automatically with v.clean or
v.edit.

Vector line directions Vector directions are defined by the original dig-
itizing direction (e.g., from first node to last node on a line). The d.vect
module has an option to display the line direction with a small arrow:

g.region rural_1m -p
d.erase
# show vector native directions
d.vect streets_wake disp=shape,dir
d.vect streams disp=shape,dir col=blue

The example shows the digitizing directions for streams and road network.
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Line split/join, node insertion and segment extraction Vector lines
which are unnecessarily split into segments can be joined into polylines with
v.build.polylines. To do the opposite, long lines can be split at given dis-
tances with v.split and v.segment. While v.split uses a maximum distance
to insert new nodes, the v.segment command permits to explicitely define the
positions where lines should be broken into segments. The module v.segment
creates new points or segments along the line (i.e., the orthogonal side offset
is zero by default; an offset leads to a point apart from the original line or
to a parallel segment). Nodes can be displayed using the module d.vect with
parameter display=shape,topo. As an example, we insert 1km nodes into the
railroads map:

g.region swwake_10m
d.erase
v.split railroads out=myrailroads_split length=1000
d.vect myrailroads_split disp=shape,topo

To illustrate the use of v.segment, we extract a segment from the ’NC-54’ road
which is being road repaired. The base map roadsmajor contains, however,
some labeling errors which we have to fix first:

# road repair along ’NC-54’
g.region vect=roadsmajor -p
d.erase

# show line, road name, direction (to find the initial node)
d.vect -c roadsmajor disp=shape,attr,dir attrcol=ROAD_NAME

# two segments of ’NC-54’ are unlabeled
d.erase
d.vect roadsmajor
d.vect roadsmajor where="ROAD_NAME=’NC-54’" col=green
d.vect roadsmajor disp=attr attrcol=MAJORRDS_
# these segment IDs in MAJORRDS_ column are: 120 and 41

We observe that two segments are unlabeled. This needs to be fixed for the
later road selection by attribute:

# work on own map copy
g.copy vect=roadsmajor,myroadsmajor
v.db.update myroadsmajor col=ROAD_NAME value="NC-54" \

where="MAJORRDS_=120"
v.db.update myroadsmajor col=ROAD_NAME value="NC-54" \

where="MAJORRDS_=41"

d.vect myroadsmajor where="ROAD_NAME=’NC-54’" col=green

# extract ’NC-54’ road
v.extract myroadsmajor out=road_nc_54 where="ROAD_NAME=’NC-54’"
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g.region vect=road_nc_54
d.erase
d.vect -c road_nc_54 disp=shape,dir,cat

At this point we are able to extract the line segment between 1622m and
3470m measured from the beginning of line 221:

# Format: type segment_ID line_ID start_offset end_offset
echo "L 1 221 1622 3470 0" | v.segment road_nc_54 \

out=road_nc_54_seg
d.vect road_nc_54_seg disp=shape,dir col=red width=2

The map road_nc_54_seg now includes the road segment under repair. To
feed the start/end coordinates of this segment to a GPS based navigation
system, they can be extracted with v.to.db:

v.to.db -p road_nc_54_seg option=start
v.to.db -p road_nc_54_seg option=end

Using m.proj the resulting NC State Plane Metric coordinates can be trans-
formed into latitude-longitude coordinates or other projections:

# reproject the start node of the segment
v.to.db -p road_nc_54_seg option=start
cat|x|y|z
1|630984.675539017|226893.364917116|0
[...]

echo "630984.68 226893.36" | m.proj -o
78d45’48.341"W 35d47’42.387"N 0.000

Likewise you can reproject the end node (option=end) and use this for a GPS
or other application.

Vertices/nodes extraction Vertices or nodes (vertices at the end of a line)
can be extracted with v.to.points using the -v or -n flag, respectively. In
our example, we extract nodes from the railroads map modified earlier in this
section into a separate vector point map:

g.region swwake_10m
d.erase
v.to.points -n myrailroads_split out=railroads_nodes
d.vect railroads
d.vect railroads_nodes fcol=green siz=10 icon=basic/marker

If the vertices on the lines are farther apart than what you need for your
application (as it is sometimes the case when they are manually digitized)
you can interpolate additional vertices along the line by setting the dmax
parameter to the maximum distance between the points that you want to
achieve. As an example, we interpolate additional points between the vertices
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along the lines given in the map railroads so that the points are at most 50m
apart:

g.region swwake_10m -p
d.vect railroads

# output all vertices, then compute new ones at 50m max dist.
v.to.points -v railroads out=rail_vertices
v.to.points -vi railroads out=rail_vertpts50m dmax=50

# zoom into a small section of the railroad map
d.zoom
d.vect railroads_nodes fcol=green siz=20 icon=basic/marker
d.vect rail_vertices siz=10 col=red width=2
d.vect rail_vertpts50m siz=5 col=blue icon=basic/circle

# check attributes in layer 2 for the first 10 points
v.info rail_vertices
v.info -c rail_vertices layer=2
v.db.select rail_vertices layer=2 where="cat<10"
cat|lcat|along
1|1|0
2|1|182.821656
3|1|278.128115
[...]

v.db.select rail_vertpts50m layer=2 where="cat<10"
cat|lcat|along
1|1|0 #original
2|1|45.705414 #inserted
3|1|91.410828 #inserted
4|1|137.116242 #inserted
5|1|182.821656 #original
6|1|230.474886 #inserted
7|1|278.128115 #original
[...]

The output of v.info shows two dblinks because the output vector map in-
cludes two layers (see Section 6.2.4). Layer 1 holds the category and attributes
of the input lines; in layer 2 each point has its unique category and attribute
lcat for the category of the input line and along for the actual distance of the
given point from line’s start. When you compare the values of actual distances,
you can see that the vertices are preserved and the distances between the in-
serted points are adjusted to fit the between the vertices. If no flag is given
and no dmax is set, the module outputs points interpolated along the lines
with approximately 100m distances without the original vertices (equivalent
to running the command with -i flag and dmax=100) – we do not recommend
these two options as they often produce pairs of points that are very close
to each other. For a precise method to set milestones along vector lines, you
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may use a Linear Reference System (see Section 6.6.2) which separates logical
nodes from physical nodes.

Analysis of adjacency and common boundaries Adjacent polygons
can be found by v.to.db (sides option). This is done by uploading the cate-
gory numbers of the left/right polygons of shared boundaries to the attribute
table linked to the vector geometry as a second layer (see Section 6.2.4). We
show an example for the boundary_municp map. First, we add a second layer
(the first layer will be copied as is to the new map) and attach a new table to
this new second layer:

# add boundary categories into geometry as the layer 2
v.category boundary_municp out=mymunicp layer=2 type=boundary \

option=add

# add a new table with left/right column to the layer 2
v.db.addtable mymunicp layer=2 col="left integer,right integer"

Next, we upload categories of left/right polygon the new table:

v.to.db mymunicp option=sides col=left,right layer=2 \
type=boundary

To verify the result, we look at the table and the map and then display in
green all polygons without shared boundary:

# select layer and set the region to display the map
v.db.select mymunicp layer=2
g.region swwake_30m -p
d.erase

# display polygon category numbers
d.vect mymunicp disp=shape,cat

# display left and right side category numbers
# and polygons without shared boundaries
d.vect mymunicp disp=attr layer=2 attrcol=left lcol=blue yref=top
d.vect mymunicp disp=attr layer=2 attrcol=right lcol=yellow \

yref=bottom
d.vect mymunicp layer=2 where="left=-1 OR right=-1" col=green

You may need to zoom into areas with crowded polygons to read all category
numbers.

Analysis of distances Distances between vector objects are calculated
with v.distance. For example, you can calculate distances of given points,
stored as GRASS vector points, to the nearest vector line. We illustrate this
functionality by computing the distances of schools to the closest road, given
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in a vector map. The individual distances can be just printed and/or can be
stored as a new vector map (connecting lines):

g.region swwake_30m -p
d.erase
d.vect streets_wake col=grey
fcol=red icon=basic/marker siz=12
d.vect schools_wake col=red fcol=red icon=basic/marker siz=12

v.distance -p from=schools_wake to=streets_wake out=connectors\
upload=dist column=dist

d.vect connectors col=blue width=2

The resulting connectors map could be now patched into the streets map to
connect the schools to the street network. In general, these connectors do not
correspond to the real school driveways, they are just the shortest connections
between schools represented by points and the streets network. Note that for
vector network map preparations, point to network connections can be done
much easier with v.net (connect tool).

Vector geometry type conversion The v.type module can be used to
convert between different vector types, if such conversion is possible. For ex-
ample, boundaries can be converted to lines and vice versa (see e.g., Subsection
6.7), likewise centroids can be changed from/to points. Vector line data can
be transformed to vector points using v.to.points. You can transform only
the point features (nodes) from your vector map, or all vertices that define
the vector lines (see the example in Section 6.5).

Adding missing centroids Vector lines, when converted to boundaries,
require a centroid in each closed boundary to form topologically an area.
Missing centroids can be added to areas with v.centroids. For area attributes,
centroids are used as label points.

Random and spatially perturbed points Randomly distributed vector
points can be generated by v.random. Unlike the result of r.random, these
vector points will include only the coordinates and no attributes. Those can
be added with v.db.addtable and v.db.update or the query tools (see Sec-
tion 6.4.1).

g.region rural_1m -p
d.erase
v.random -z out=randpts_3m n=500 zmin=1 zmax=100
v.info randpts_3m
d.vect randpts_3d siz=2

If needed, the spatial position of vector points can be randomly perturbed
with v.perturb by adding a variable spatial deviation to the east and north
coordinates using either a uniform or normal delta value. If the distribution
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is uniform, only one parameter, the maximum, is needed. For a normal distri-
bution, two parameters, the mean and standard deviation, are required. Such
perturbation can be useful to analyze the impact of horizontal error on inter-
polation or to render synthetic objects such as tree placements more natural
(e.g., with the v.trees3d from the GRASS AddOns Wiki site). As an exam-
ple, we spatially shift random sample points derived from a lidar-based DEM
elev_lid792_randpts uniformly by 3m:

g.region rural_1m -p
d.erase
v.perturb elev_lid792_randpts out=elev_lid792_pertpts par=3
d.vect elev_lid792_randpts siz=2
d.vect elev_lid792_pertpts siz=2 col=red
v.db.select elev_lid792_randpts where="cat<10"
v.db.select elev_lid792_pertpts where="cat<10"

You can see that the new set of points has the same elevation values stored
as attribute value, but their horizontal locations are shifted 3m.

6.5.2 Buffering

Buffers and circles (around points) can be generated with v.buffer. Half-
side buffers are generated with v.parallel, or v.segment, with positive buffer
value for the right side and negative for the left side in native vector direction.
For example, to create a 400m buffer stored as vector area run:

g.region swwake_10m
d.erase
v.buffer schools_wake out=schools_buff_400m buff=400
d.vect schools_buff_400m
d.vect schools_wake icon=basic/marker col=red

You can see that the overlapping buffers were merged into single polygons;
database query can be used whether these clustered schools are of the same
type (e.g., elementary) or serve different student populations (e.g. middle and
high schools).

The second example shows how to create parallel lines to the lines in the
input map, in our case railroads:

# display railroad lines with line direction
d.vect railroads disp=shape,dir

# compute paralel lines to the right and left
v.parallel railroads out=myrailroads_parr dist=200
v.parallel railroads out=myrailroads_parl dist=-200
d.vect myrailroads_parr col=red
d.vect myrailroads_parl col=blue
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You can see that there are few segments that were digitized in opposite di-
rection that the segments before and after them, causing the parallel line to
”jump“ to the other side. You can select the offending segments and flip their
direction using v.edit to avoid this problem.

6.5.3 Feature extraction and boundary dissolving

Vector objects can be extracted based on attribute selection using SQL rules
with v.extract. We have already used this command in Subsection 6.2.2 and
in 6.5.1 It also allows us to dissolve common boundaries, although the mod-
ule v.dissolve does the same in an easier way. Objects can be selected and
deselected by a mouse box using graphical extractor in the GRASS monitor
d.extract. To select/delete vector objects by coordinates and a given dis-
tance, you can use v.edit.

To extract vector objects from a vector map, you can run v.extract with
either the desired category(ies) listed by the parameter list or a where SQL
statement. This will extract the selected vectors into a new map. Optionally,
common boundaries can be dissolved with the -d flag. As an example, we
extract the municipality Cary from the map boundary_municp into a new
vector map:

# check column names first
v.info -c boundary_municp
v.extract boundary_municp out=cary where="TEXT_NAME = ’Cary’"
g.region vect=cary -p
d.erase
d.vect -c cary

The new vector map contains only the selected areas. You can dissolve com-
mon boundaries when adjacent polygons have the same category by using
the command with the flag -d. However, this requires to also use the new
parameter to assign a unique category number to the selected areas.

Alternatively, the v.dissolve command allows to dissolve common bound-
aries based on attributes found in the specified column. As an example, we
dissolve the map of NC counties to a NC state map. Since no column with
common value exists, we copy the map into our mapset, add a new column
state and fill it with the value “NC” in all rows. The state column is then
used for dissolving:

g.copy vect=boundary_county,mycounties
v.db.addcol mycounties col="state varchar(2)"
v.db.update mycounties col=state val="NC"
v.dissolve mycounties out=mync_state col=state

g.region vect=mync_state -p
d.erase
d.vect mync_state
d.vect mycounties type=boundary col=orange
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Note that the resulting boundary extends approximately 36km into the At-
lantic ocean. You can use SQL to delete the ocean area from the mycounties
map before dissolving the boundaries (its category number is 4). In order to
populate a database table from vector features such as geometric properties,
use v.to.db. It calculates the values and uploads them to the attribute table.

Selective vector removal As a way of selecting/deleting vector objects by
coordinates and radius or box, you can use v.edit. As an example, we want to
reduce the map zipcodes_wake to the area around Raleigh while selecting only
complete polygons. Since the command extracts all vector objects in the given
threshold (distance from center to selection box boundary), also incomplete
areas will be saved into the resulting map. So we extract in a further step only
the complete areas:

g.region vect=zipcodes_wake
d.erase
d.vect zipcodes_wake

g.copy vect=zipcodes_wake,myzipcodes_tmp
# take position for center of selection
d.where
# reverse deletion
v.edit -r myzipcodes_tmp coord=642730,224640 thresh=5000 \

tool=delete

# extract only complete areas
v.extract myzipcodes_tmp out=myzipcodes type=area
d.vect myzipcodes fcol=red
v.db.select myzipcodes

Due to the reverse deletion, all polygons which do not match the query are
deleted and the polygons of interest are kept.

6.5.4 Patching vector maps

New vector maps can be created by combining existing vector maps with
v.patch. If the table structures are identical (same column names and types),
also the attributes are transferred to the new table. Any vectors that are
duplicated among the maps being patched together (e.g., border lines) will
have to be edited or removed after v.patch is run. Such editing can be done
automatically using v.clean (tool=snap,break,rmdupl).

If several adjacent maps where combined (merging of tiles, e.g. with
v.patch) then dissolving in order to remove tile boundaries requires an extra
step since duplicated boundaries must be removed first:

# remove duplicated tile boundaries
v.clean tiles out=tiles_clean tool=snap,break,rmdupl thresh=0.1
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# dissolve based on column attributes
v.dissolve tiles_clean output=tiles_dissolved col=mycolumn

6.5.5 Intersecting and clipping vector maps

Besides visual overlay of maps on the screen, you sometimes need to combine
two vector maps and store the result into a new map, or perform spatial op-
erations based on content of two maps. The module v.overlay provides this
functionality for area maps, the v.select module for point and line maps. In-
tersection, union, merging, and clipping of vector maps is not a trivial task. For
example, when intersecting, internally new vectors have to be generated, be-
cause for each new intersecting vector existing lines have to be broken and new
nodes have to be inserted (compare Figure 6.5). Please note that in GRASS,
all vector modification tools ignore the current geographic region settings and
always operate on the full map. The map boundaries are extracted from the
vector file headers. When intersecting maps, tables are joined accordingly.

Intersecting two area maps Intersecting area (polygon) maps has two
effects depending on the input data: either you want to use one map as a
mask to cut out a spatial subsection from the second map or you want to
intersect both maps to a single map. We illustrate the differences with two
examples (which are somewhat synthetic):

To mask vector maps based on this method, you may digitize a mask
area with v.digit or generate it with other tools (for a box, v.in.region is
convenient). The mask area should be labeled with a category number (e.g.
1). The vector areas will determine the boundary of the final vector map. The
module v.overlay produces a new map that contains all the vector data from
the binput map that fall into the extent of the vector mask map given as map
ainput. To perform a clip by polygon operation (vector mask), use the AND
operator:

g.region vect=census_wake2000 -p

# create circular vector mask as "cookie cutter"
echo "642600|224640" | v.in.ascii out=mypoint
v.buffer mypoint out=mycircle buffer=10000

d.erase
d.vect -c census_wake2000 siz=2
d.vect -c mycircle

v.overlay ain=mycircle bin=census_wake2000 out=vover_and_mask \
op=and

d.erase
d.vect -c vover_and_mask
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v.overlay/OR v.overlay/AND

Fig. 6.6. Possible results of intersecting vector data using v.overlay with OR and
AND operators

The resulting map vover_and_mask contains the subsection of the
census_wake2000 map restricted to the area covered by mycircle. We
re-use the resulting map vover_and_mask to show intersection of two vector
maps, each including several polygons (you can zoom into the circle area to
better see the results):

v.overlay ain=vover_and_mask bin=boundary_municp \
out=vover_and_map op=and

d.erase
d.vect -c vover_and_map siz=2

The resulting map vover_and_map contains the part of boundary_municp
intersected with census_wake2000 but restricted to the area covered by
vover_and_mask. The areas with no-data (outside municipialities) become no-
data in the resulting vector map.

Another operator is OR which performs union of two maps. Figure 6.6
illustrates the difference between the AND and the OR operator. We use the
same module again with the same maps:

v.overlay ain=mycircle bin=zipcodes_wake out=vover_or op=or
v.overlay ain=mycircle bin=census_wake2000 out=vover_or op=or
d.erase
d.vect -c vover_or

The resulting map vover_or contains the map census_wake2000 unified with
the map mycircle. The polygons that are intersected with the circle boundary
are split into two new polygons.

To copy features from either ainput or binput but not those from ainput
overlayed by binput, use the XOR operator:
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v.overlay ain=mycircle bin=censusblk_swwake out=vover_xor op=xor
d.erase
d.vect -c vover_xor siz=2

The resulting map vover_xor contains the map censusblk_swwake and
mycircle, except for the area covered by their intersection.

The fourth operator is NOT which copies features from ainput not overlayed
by features from binput:

v.overlay ain=mycircle bin=censusblk_swwake out=vover_not op=not
d.erase
d.vect -c vover_not siz=2

The resulting map vover_not contains the map with area covered by mycircle
except for the area covered by censusblk_swwake.

When performing intersect operations, we need to keep in mind that if we
plan to use the data assigned to the original polygons (e.g. population) we
need to ensure that the polygons that we need to use are preserved in their
original shape and size. A good example is the map censusblk_swwake that
was clipped from a larger map using the coordinates of the swwake_10m region
by ogr2ogr while preserving the entire polygons that fall at least partially
within this region. When using v.overlay you need to make sure that the
ainput map is sufficiently large to preserve the desired polygons.

Intersecting areas and lines/points: point in polygon To select lines
or points which fall within an area, we an use the v.select module. As an
example, we calculate which points of interest can be seen from the new
skyscraper built in downtown Raleigh (see Section 5.4.4 for calculation of
the line of sight map tower_165_los):

g.region rast=tower_165_los -p
# create a binary viewshed map and convert it to vector map
r.mapcalc "tower_165_losbin=if(tower_165_los)"
r.to.vect -s tower_165_losbin out=tower_165_los feat=area

# first map must be point map
v.select ain=poi_names_wake bin=tower_165_los out=tower_poi
d.erase
d.his h=tower_165_los i=elevation_shade
d.vect streets_wake
d.vect tower_165m siz=10 col=orange icon=basic/marker
d.vect tower_poi icon=basic/circle fcol=yellow
d.vect tower_poi disp=attr attrcol=class

The v.select command intersects the vectorized line of sight area with the
points of interest and extracts the visible points to a new map. You could now
do another selection for directional view sectors to prepare the descriptions
on top of the skyscraper for visitors.
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6.5.6 Transforming vector geometry and creating 3D vectors

Geocoding of unreferenced CAD drawings and other vector maps using ground
control points can be done with v.transform. We have already explained the
procedure in Section 4.2.3.

Another usage of this command is re-scaling. Sometimes, the vector geom-
etry is stored with inconsistent units, for example heights may be stored in
feet while the horizontal coordinates are in meters (as is sometimes the case
with US GIS data). In the following example, we rescale the z coordinates
of the lidar points stored in the elev_lidrural_mrptsft map from feet to
meters:

v.transform elev_lidrural_mrptsft out=myelev_lidrural_mrpts \
zscale=0.3048006096012192

# report map 3D spatial extension
v.info -g elev_lidrural_mrptsft
[...]
top=502.183472
bottom=335.391998

v.info -g myelev_lidrural_mrpts
[...]
top=153.065828
bottom=102.227686

The vertical range of the converted lidar points now matches the metric eleva-
tion model range. With v.sample differences can be sampled and calculated.

Extruding from 2D to 3D vectors GRASS supports various methods to
change 2D to 3D geometry in case that original true 3D vector data are not
available. 2D vector polygons (e.g. house footprints) can be extruded to 3D
block structures using v.extrude:

# set region to tile792 where we have both DEM and planimetry
g.region rast=el_D792_6m -p

Fig. 6.7. Buildings extruded from 2D and positioned on top of DEM
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# extract buildings, based on original DXF data set
v.extract P079215 out=bldg_resid where="layer=’BLDG_RESID_BL’"
v.extract P079215 out=bldg_cmcl where="layer=’BLDG_COMMER_BL’"

# add height of the building
v.extrude -t bldg_resid out=bldg_resid_3d height=10 \

elev=el_D792_6m
v.extrude -t bldg_cmcl out=bldg_cmcl_3d height=15 \

elev=el_D792_6m

You can visualize the resulting 3D vector buildings on top of digital terrain
model using nviz, as we did for the cover of this book (see Figure 6.7, see also
Chapter 7):

# set the region to area used on the book cover
g.region rural_1m -p
nviz elev_lid792_1m col=ortho_2001_t792_1m \

vect=bldg_resid_3d,bldg_cmcl_3d
# use "Vector lines/3D Polygons" panel to set building colors

To show the extruded 3D buildings in external software such as Google Earth
or NASA WorldWind, we can export the vector maps into KML format using
v.out.ogr. However, this requires that the building map is first reprojected
into a latitude-longitude location to match the projection used in these soft-
ware packages. See Section 3.3.2 for details how to use v.proj accordingly.
Alternatively, you can use ogr2ogr to reproject the map.

In general, GRASS is able to handle even more complex 3D geometries
than just blocks, but these data are usually generated in CAD software. Such
CAD drawings can then be imported and geocoded if needed.

Adding DEM-derived elevation to 2D vector maps You can modify
2D vector points, lines or areas to 3D with v.drape by extracting the elevation
values from a digital elevation model or other raster surface. In this example,
we convert a 2D vector line to a 3D line:

g.region rast=elevation -p
v.drape busroute_a rast=elevation method=bilinear \

out=busroute_a_3d
v.info busroute_a_3d

The new map busroute_a_3d now includes elevation data for the bus route.
Slopes for each segment can be calculated and uploaded to the attribute ta-
ble with v.to.db (slope option) after splitting into shorter segments with
v.split. This type of 3D route analysis may be of interest for bicycle tour
planning, too. You can also visualize the 3D vector map in nviz (see Chap-
ter 7).
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Converting point data elevation attributes to z-coordinate Vector
point maps with elevation stored as attributes can be converted to real 3D
geometry (from (x,y) and z as attribute to (x,y,z) geometry) using v.in.db.
In this example, we create a new 3D map from the 30 years precipitation
normals map precip_30ynormals. The procedure requires to upload the x
and y coordinates as attributes to the table, and then re-import a new map
from the updated table with the z-coordinate set to the attribute elev:

g.copy vect=precip_30ynormals,precip_30ynormals_tmp
v.info -c precip_30ynormals_tmp
v.db.addcol precip_30ynormals_tmp \

col="x double precision, y double precision"
v.to.db precip_30ynormals_tmp option=coor col=x,y

db.tables -p
# we assume that the table name corresponds to input map name
v.in.db precip_30ynormals_tmp out=myprecip_30ynormals \

x=x y=y z=elev key=cat
v.db.select myprecip_30ynormals

We can now remove the superfluous ’x’ and ’y’ columns from the table:

v.db.dropcol myprecip_30ynormals col=x
v.db.dropcol myprecip_30ynormals col=y
v.info -c myprecip_30ynormals
v.db.select myprecip_30ynormals
v.info myprecip_30ynormals
g.remove vect=precip_30ynormals_tmp

The new map myprecip_30ynormals now contains 3D geometry.

6.5.7 Convex hull and triangulation from points

Triangulation and point-to-polygon conversions can be done with v.delaunay,
v.hull, and v.voronoi. To generate an outer convex boundary for a set of
points, the convex hull , we can use the v.hull module. As an example, we
generate the convex hull map from schools map of Wake county schools_wake,
to compare it with the extent of municipalities and the county boundaries:

v.hull schools_wake out=schools_wake_hull
g.region vect=schools_wake_hull -p
d.erase
d.vect boundary_municp fcol=yellow type=area col=yellow
d.vect schools_wake icon=basic/circle
d.vect schools_wake_hull col=blue type=boundary width=2
d.vect boundary_county type=boundary col=red

# find out why hull and county boundary have big gap NW and SW
d.vect lakes type=area fcol=cyan col=cyan
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The resulting vector area schools_wake_hull shown in blue follows the SW-
NE shape of the county boundary with the largest gaps in the north-west and
south-west corners where large water reservoirs are located and development
is limited.

We can generate Voronoi polygons for the Wake schools to show the dis-
tribution and shape of nearest neighbor areas for the given distribution of
schools. For illustration, we also generate Delaunay triangulation to show the
relationship between its triangles and Voronoi polygons:

v.voronoi schools_wake out=schools_vor
g.region swwake_10m
d.vect -c schools_vor type=area
d.vect schools_wake icon=basic/circle siz=10 fcol=yellow
d.vect streets_wake

# show relation between Voronoi and Delaunay triangulation
v.delaunay schools_wake out=schools_del
d.erase
d.vect -c schools_del type=area
d.vect schools_vor type=boundary

The Voronoi polygons can be combined with streets and census data to assign
students to schools close to their home.

6.5.8 Find multiple points in same location

Sometimes maps contain multiple points in same location within a given hor-
izontal resolution. This is common for data acquired by real time kinematic
GPS surveys, lidar maps and others. Here we describe a procedure for count-
ing the number of such points, taking advantage of the multi-layer concept
(see Section 6.2.4). Note that for this kind of analysis, you have to use a SQL
driver other than DBF. We generate a few replicated points for this example
(note that the survey data usually come in cm or mm and to count the repli-
cated points within 1m resolution, you would have to convert the coordinates
to integer meters):

# generate 3 + 2 points in the same locations
echo "637885|225271|1
637885|225271|2
637885|225271|3
637810|224885|4
637810|224885|5" | v.in.ascii out=multi_pts

# we set region to map, enlarged by 100m for better view
g.region vect=multi_pts n=n+100 s=s-100 w=w-100 e=e+100
d.erase
d.vect multi_pts
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# look at attributes
v.db.select multi_pts

# remove duplicates from map
v.clean multi_pts out=multi_simple tool=rmdupl

At this stage, a one-to-many relationship remains between geometry and at-
tributes. We can now verify the category numbers which are defining the link
between vector object and attribute. Since we use the map with one point per
position, we effectively assign an individual ID (category number) to each of
the points:

v.category multi_simple op=report
LAYER/TABLE 1/multi_simple:
type count min max
point 5 1 5
[...]
all 5 1 5

The idea is now to add a second layer which carries different attributes, in
this case the point count per position:

# add second layer with 1 cat/point
v.category multi_simple out=multi_sl layer=2

# create and link new table to layer 2
v.db.addtable multi_sl layer=2 \

columns="cat integer, count integer"
v.info -c multi_sl layer=2

# check layer 1 attributes
v.db.select multi_sl
cat|int_1|int_2|int_3
1|637885|225271|1
2|637885|225271|2
3|637885|225271|3
4|637810|224885|4
5|637810|224885|5

# check layer 2 attributes
v.db.select multi_sl layer=2
cat|count
1|
2|

The table connected to layer 2 is not yet populated with values. We use the
SQL count() function to count the number of features in the original map for
each category (this is not supported by the DBF driver):
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v.to.db multi_sl option=query layer=2 qlayer=1 column=count \
qcolumn="count(*)"

v.db.select multi_sl layer=2
cat|count
1|3
2|2

# print number of points in map
d.vect multi_sl layer=2 disp=shape,attr attrcol=count

This shows the points and the number of points falling into the same position.

6.5.9 Length of common polygon boundaries

Land use management and planning tasks may require information about the
length of common boundaries shared by neighbouring polygons in various
types of vector maps. As an example, we perform this task using the Census
map of Wake county:

# display the map and create your own modifiable copy
g.region vect=census_wake2000 -p
d.erase
d.vect census_wake2000
g.copy vect=census_wake2000,cens2000wake

The underlying idea is that we are retrieving the IDs (category numbers)
of the polygons left and right from each boundary and store them into the
attribute table linked to a new layer 2 which we add to the map. For this,
we first generate an ID (category) for each boundary in vector geometry that
will be later used to attach a second attribute table:

v.category cens2000wake out=cens2000wake2 layer=2 \
type=boundary option=add

The planned table structure will then be:

cat_boundary|cat_left_polyg|cat_right_polyg|length_boundary

A boundary may consist of several vectors. As we only want one category per
boundary, we will use a sides check to keep the same category number also
for multi-line boundaries. Next we create a new attribute table and link it to
the new layer 2 of the vector map:

v.db.addtable cens2000wake2 layer=2 \
col="left integer,right integer,length double precision"

Now we perform the query of the polygon/boundary relationships and store
it into the attribute table linked to layer 2. This will provide us with unique
categories for the boundaries, allowing us to calculate the lengths and update
the related attribute table column:
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v.to.db cens2000wake2 option=sides col=left,right layer=2
v.to.db cens2000wake2 option=length col=length layer=2

We can now check the new attribute table containing the boundary lengths,
and graphically verify the result, for example by measuring the boundary with
category number 125:

v.db.select cens2000wake2 layer=2
d.vect cens2000wake2 cat=125 layer=2 col=red type=boundary
d.zoom
d.measure
LEN: 12968.22 meters
...

v.db.select cens2000wake2 layer=2 where="cat=125"
125|47|48|12969.214886

The result is reasonably close to our manual screen measure and acceptable
since interactive screen measureements are usually not very precise.

Retrieving neighbors of vector polygons The same procedure can be
used to retrieve the neighbors of a given polygon. The resulting table linked
to the second layer contains all relevant information. For example, to find the
zip code neighbors of Cary 27511, we perform the following steps:

v.category zipcodes_wake out=zipwake_cat layer=2 type=boundary\
option=add

v.db.addtable zipwake_cat layer=2 \
col="left integer,right integer"

v.to.db zipwake_cat option=sides col=left,right layer=2

# find category number for Cary 27511
v.db.select zipwake_cat where="ZIPNUM=27511"
cat|WAKE_ZIPCO|PERIMETER|ZIPCODE_|ZIPCODE_ID|ZIPNAME|ZIPNUM|...
34|595719341.254|135382.61154|40|10|CARY|27511|...
[...]

# find related neighbor polygon category numbers
v.db.select zipwake_cat where="left=34 OR right=34" layer=2 \

col=left,right
left|right
-1|34
17|34
-1|34
[...]

The returned values are the neighbor polygon category numbers which can
be matched to the names in layer 1. A negative number indicates that no
neighbor was found.
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6.6 Vector network analysis

GRASS provides support for vector network analysis, an important tool for
routing, search for a closest facility along the route, travel directions and time,
and calculation of service areas. The analysis is based on graph theory and
topology. A graph or vector network consists of a set of nodes (also called
centers) which are connected by edges. The latter are represented by vector
lines in GRASS.

6.6.1 Network analysis

Network analysis covers a set of methods which are implemented in GRASS
as follows:

• Vector network maintenance: v.net;
• Shortest path: d.path and v.net.path;
• Traveling salesman (round trip): v.net.salesman;
• Allocation of sources (create subnetworks, e.g. police station zones):

v.net.alloc;
• Minimum Steiner trees (star-like connections, e.g. broadband cable con-

nections at mimimum costs): v.net.steiner;
• Iso-distances (from centers): v.net.iso.

It is important to note that network analysis is based on heuristic algorithms
which means that probably only a suboptimal solution is found (tradeoff be-
tween finding an optimal solution and limiting the computational time to
search for it). Vector lines directions are defined by the digitizing direction
(see Section 6.5.1). Both backward and forward directions are supported as all
network modules provide parameters that allow us to assign attribute columns
defining the costs to move along the forward and backward direction. Blocked
direction is represented by negative cost (e.g., one way roads, street closure
due to maintenance). You can find practical examples for network analysis
modules in the related manual pages.

To reduce computational time for our example, we create a subset of the
Wake county street map for the Raleigh area and its close neighborhood, using
the census_wake2000 map:

g.region vect=census_wake2000 -p
d.erase
d.vect census_wake2000
d.vect census_wake2000 disp=cat

v.extract census_wake2000 out=census_raleigh list=1-33
v.select ain=streets_wake bin=census_raleigh \

out=streets_rlgh op=overlap
g.region vect=streets_rlgh
d.erase
d.vect streets_rlgh

We will use this “lean” vector map in our following examples.
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Iso-distances and iso-chrones maps While staying in a downtown
Raleigh hotel near -78.638259E, 35.77465N (found with GPS), we seek a nice
park within walking distance. We first convert our GPS position to current
LOCATION coordinates (here: NC State Plane metric):

# east north
echo "-78.638259 35.77465" | m.proj -i
[...]
642306.78 224657.80 0.00

We now digitize the starting point as node and merge it into the streets map:

echo "642306.78|224657.80|1" | v.in.ascii out=myhotel

In order to be able to navigate from this vector point on the network, we have
to connect it with an additional vector line. We can selectively connect within
a threshold, so we first determine the distance of the hotel GPS position to
the network:

v.distance -p from=myhotel to=streets_rlgh upload=dist \
column=dist

from_cat|dist
1|13.249617
[...]

The hotel point is already very close to the network. To connect it to the
closest street, we run the network maintenance tool v.net and create a new
map streets_net which then contains the network and the point as node on
layer 2:

v.net streets_rlgh points=myhotel out=streets_net \
op=connect thresh=30

g.region vect=myhotel n=n+500 s=s-500 w=w-500 e=e+500 -p
d.erase
d.vect streets_net col=green
d.vect streets_rlgh
d.vect myhotel col=red icon=basic/pushpin

The hotel point is now connected to the network.
As final preparation step, we assign costs to navigate on the network. As

pedestrians, we dislike to walk along dangerous streets and we want to avoid
highways altogether. The existing maximum speed information helps us to
easily assign costs in a new cost column (you can also distinguish between
backward and forward moving by simply generating two different columns).
We penalize the big streets by assigning them high cost:

v.db.addcol streets_net col="navcost double precision"
v.db.update streets_net col=navcost val=100 \

where="SPEED <= 25"
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v.db.update streets_net col=navcost val=100000 \
where="SPEED > 25"

g.region vect=myhotel n=n+2000 s=s-2000 w=w-2000 e=e+2000 -p
d.erase
d.vect streets_net col=green where="navcost=100"
d.vect streets_net col=red where="navcost=100000"
d.vect myhotel col=red icon=basic/pushpin size=15

In case of separate backward and forward cost columns, use the display of
native vector directions to assign the directions properly (see Section 6.5.1).

Now the vector network is ready to navigate. We define a set of walking
distances to make it easier to choose the nearest park. The parameter ccats
allows you to calculate the iso-distance map only for selected nodes (centers).
To simplify the request, since we have only one center, we can just specify a
large range to use it:

# the hotel point is on nlayer 2
# specify range of center cats (easier to catch all centers)
v.net.iso in=streets_net out=streets_net_iso ccats=1-1000000 \

nlayer=2 costs=200,400,600,800 afcolumn=navcost

The column afcolumn is not only used for forward movements but also for bi-
directional movements. This calculation may take a while depending on how
complex the network graph is. Once the result is generated, we can create a
report and show the iso-chrones map:

v.category streets_net_iso option=report
# ... reports 5 categories.

The network is categorized as:
cat distance from point
1 0 - 200
2 200 - 400
3 400 - 600
4 600 - 800
5 > 800

To see the result, you can run (we select a FreeType font, see Section 7.1.1):

d.erase
d.font FreeSansBold
# show high traffic streets to be avoided
d.vect streets_net col=grey where="navcost=100000" width=4

# show colorized iso-distance network
d.vect streets_net_iso col=green cats=1 width=4
d.vect streets_net_iso col=yellow cats=2 width=4
d.vect streets_net_iso col=orange cats=3 width=3
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Fig. 6.8. Iso-distances map from the hotel starting point to nearest parks

d.vect streets_net_iso col=red cats=4 width=3
d.vect streets_net_iso col=grey cats=5 width=2
d.vect myhotel col=red fcol=green icon=basic/pushpin size=15

To find a park, we look at the points of interest map and select all parks
therein:

d.vect geonames_wake where="FEATURECOD=’PRK’" fcol=green \
icon=basic/diamond bgcol=white bcol=black lsize=10 \
yref=bottom xref=left

d.vect geonames_wake disp=attr attrcol=NAME fcol=green \
where="FEATURECOD=’PRK’" bgcol=white bcol=black lsize=10 \
yref=bottom xref=left

The resulting map (see Figure 6.8 shows that the parks “Nash Square” and
“Moore Square” are within the walking distance from the hotel under the
defined conditions.

Shortest path maps A common vector network analysis task is shortest
path routing with the goal to find an optimal routing on the network according
to given constraints such as traffic density (attributes stored in a PostgreSQL
server could be automatically updated in real-time), road closure, landscape
attractiveness or other. While using d.path is rather straightforward, we ex-
plain the v.net.path command which also saves the result.
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As an example, we want to calculate the shortest path between two hos-
pitals to transport a patient. First we display the streets map and add the
vector points map hospitals to the view:

g.region vect=streets_net -p
d.erase
d.vect streets_net
d.vect hospitals fcol=red icon=basic/diamond
d.vect hospitals disp=attr attrcol=NAME

In the next step, we connect the hospital nodes to the network on layer 2 in
a given threshold:

v.net streets_rlgh points=hospitals out=streets_hnet \
op=connect thresh=200

d.erase
d.vect streets_hnet col=red
d.vect streets_rlgh

The next step is to assign navigational costs to the streets. We use the inverse
of the speed limit multiplied by a factor to obtain the costs:

v.db.addcol streets_hnet col="navcost double precision"
v.db.update streets_hnet col=navcost val="1.0/SPEED * 100."
v.db.select streets_hnet col=navcost,speed

Then we can calculate the shortest path between two given nodes. The patient
has to be transported from the Dorothea Dix Hospital to the Rex Hospital
Hospital. Before calculating the shortest path, we need to find the node cat-
egory numbers of these two hospitals:

d.erase
d.vect streets_hnet layer=2
d.vect streets_hnet layer=2 disp=cat
# Rex: 8; Dorothea Dix: 5

# ID as first number, then cat1 and cat2
echo "1 8 5" | v.net.path streets_hnet out=spath \

afcolumn=navcost

d.vect streets_hnet
d.vect spath col=red width=2

The map shows the shortest path on the network according to the costs and
distance. Care must be taken to use vector maps which do not contain nodes
at vector intersections where bridges are (as in this example). Using v.edit,
superfluous nodes can be removed from 2D maps to obtain a perfect shortest
path map.
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6.6.2 Linear reference system (LRS)

A Linear Reference System (sometimes also called dynamic segmentation)
uses linear features and distance measured along those features to position
objects or events. It is useful for the management of roads (e.g., for geocoding
of accidents), pipelines, and other linear systems. LRS is a double referenced
system which gives the possibility to preserve most of the existing referenced
points (mileposts) or linear events if modifications are needed due to real world
changes. For example, if a street is modified, most of the milestones along the
street are preserved and new milestones may be inserted only in the modified
section of the street. The same can be done in LRS since it supports the
addition/removal of mileposts in relative distance to the existing mileposts.

GRASS provides a set of LRS commands: v.lrs.create to create the lin-
ear reference system, v.lrs.label to create stationing on LRS, v.lrs.segment
to create points/segments from LRS, and v.lrs.where to find the line ID and
real km+offset for given points in vector map using linear reference system.

We illustrate LRS with a public transportation exercise using the
“Wolfline” bus data for the NC State University bus service. To process the
data, we need to use a real SQL driver for attributes management to take
advantange of more sophisticated SQL queries which are not supported by
the DBF driver. For this task, we create a new MAPSET wolfline_lrs in
the nc_spm LOCATION and select SQLite as driver:

# in new MAPSET wolfline_lrs
db.connect driver=sqlite \

database=’$GISDBASE/$LOCATION_NAME/$MAPSET/sqlite.db’
db.connect -p
db.tables -p
# ... should not show any tables.

To start, we display the available bus route data:

# several bus lines available
g.region vect=busroutesall -p n=n+100 s=s-100
d.erase
d.vect -c busroutesall

# bus stops for all lines
d.vect -c busstopsall icon=basic/triangle

# look at the attributes
v.db.select busstopsall

In our example, we will work with the bus route 1 (Avent Ferry Rt.). Lat-
est map and schedule, including real-time location of the buses, are available
online.5 In the NC data set, the bus route 1 is already available as a sep-
5 Route 1 “Avent Ferry Rt.” map and schedule,
http://www.gotriangle.org/Bus/ncsuMapsAndSchedules.html

http://www.gotriangle.org/Bus/ncsuMapsAndSchedules.html
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arate busroute1 map, but we have to extract the related bus stops from
busstopsall. To use the SQL capabilities of SQLite, we copy the vector maps
into the current mapset. During this procedure the attribute tables are con-
verted from the original DBF format (as provided in the LOCATION nc_spm)
to SQLite format in the current mapset:

g.copy vect=busroute1,route1
g.copy vect=busstopsall,stopsall

# verify map-database connections for SQLite connection
v.db.connect -p route1
v.db.connect -p stopsall

We use v.extract with a SQL query to extract the bus stops of route 1, by
applying pattern matching to the ROUTES column of the attribute table of the
map stopsall (see Section 6.2.2). As mentioned, this requires the SQLite or
other DBMS driver (not DBF):

# check the selection and extract stops to a new map
v.db.select stopsall \

where="ROUTES LIKE ’%1%’ AND ROUTES NOT LIKE ’%11%’"
v.extract stopsall out=stops1 \

where="ROUTES LIKE ’%1%’ AND ROUTES NOT LIKE ’%11%’"

To simplify the milepost definition (here: the bus stops order) for LRS, we
build a polyline from the lines in map route1 using v.build.polylines. This
removes nodes along the route and allows us to create a single vector line:

v.build.polylines route1 out=route1tmp

# substitute old ’route1’ with new map (but we lose the table)
v.category route1tmp out=route1 op=add --o
g.remove vect=route1tmp

As the next step, we prepare input maps for LRS, by adding an integer column
to indicate to which route the bus stop belongs to and defining the order
(optionally offsets) of the bus stops:

# add column to link the route with the bus stop
v.db.addtable route1 col="lid integer"
v.db.update route1 col=lid val=1
v.db.select route1
cat|lid
1|1

v.db.addcol stops1 col="lid integer"
v.db.update stops1 col=lid val=1
v.db.select stops1
cat|ROUTES|UPDATED|STREET_1|STREET_2|CAMPUS|...
7|1,5,7a,8,9,A,B|2006/11/14|Dan Allen Dr.||North|...
[...]
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# define the order, offsets of the bus stops, preparing table
v.db.addcol stops1 col="start_mp double precision, \

start_off double precision, end_mp double precision,\
end_off double precision"

# check direction of the vector line for the bus stops order
g.region vect=route1 n=n+100 s=s-100 -p
d.erase
d.vect route1 disp=shape,dir,topo col=grey lcol=blue
d.vect stops1 disp=attr attr=cat size=10 bgcolor=white
d.vect stops1 icon=basic/circle fcol=green

We see that the bus stops are not perfectly located on the bus route (for
cartographic reasons, as they are also associated with other routes). This can
be later addressed since the LRS tools permit to define a threshold to assign
a point to a line.

Note that the intersection in the route1 map influences the vector di-
rection. Some effort is needed to get the order right according to the vector
topology. We update segment per segment. The map contains three segments;
and there is no node in the line intersection. To query points for their category
numbers, use d.what.vect.

The bus route 1 is oriented from vector map nodes n1 to n2. Next we
update the attribute column start_mp to indicate order of the bus stops along
the bus tour:

# from node n1 to n2 - line cat 1
v.db.update stops1 col=start_mp where="cat=7" val=1
v.db.update stops1 col=start_mp where="cat=13" val=2
v.db.update stops1 col=start_mp where="cat=14" val=3
v.db.update stops1 col=start_mp where="cat=22" val=4
v.db.update stops1 col=start_mp where="cat=83" val=5
v.db.update stops1 col=start_mp where="cat=30" val=6
v.db.update stops1 col=start_mp where="cat=55" val=7
v.db.update stops1 col=start_mp where="cat=56" val=8
v.db.update stops1 col=start_mp where="cat=82" val=9
v.db.update stops1 col=start_mp where="cat=58" val=10
v.db.update stops1 col=start_mp where="cat=38" val=11
v.db.update stops1 col=start_mp where="cat=37" val=12
v.db.update stops1 col=start_mp where="cat=36" val=13
v.db.update stops1 col=start_mp where="cat=35" val=14
v.db.update stops1 col=start_mp where="cat=34" val=15
v.db.update stops1 col=start_mp where="cat=103" val=16
v.db.update stops1 col=start_mp where="cat=31" val=17
v.db.update stops1 col=start_mp where="cat=29" val=18
v.db.update stops1 col=start_mp where="cat=24" val=19
v.db.update stops1 col=start_mp where="cat=28" val=20
v.db.update stops1 col=start_mp where="cat=96" val=21
v.db.update stops1 col=start_mp where="cat=27" val=22
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v.db.update stops1 col=start_mp where="cat=60" val=23
v.db.update stops1 col=start_mp where="cat=10" val=24
v.db.update stops1 col=start_mp where="cat=9" val=25

# verify route
v.db.select route1
cat|lid
1|1

# verify stops
v.db.select stops1 \

col=cat,ROUTES,start_mp,start_off,end_mp,end_off,lid
cat|ROUTES|start_mp|start_off|end_mp|end_off|lid
7|1,5,7a,8,9,A,B|1||||1
9|1,4,5,7a,9,A,B|25||||1
...
96|1,5,7,7a,8,8a,9,A,B|21||||1
103|1,A|16||||1

The data are now almost prepared to build the LRS. If you would run the
v.lrs.create command now, it would report that the bus stop with category
number 30 is not in the right order. The reason is that it is closer to the
line segment between stops 29 and 103 than to the segment between stops
55 and 63 to which it really belongs to. GRASS offers a special tool for this:
v.edit which supports direct vector editing on a map via command line. With
d.measure we can roughly estimate the shift in East and South direction to
shift this bus stop onto the related vector segment. This does not have to be
perfect since v.lrs.create will operate with a threshold. With d.measure we
find out that we have to roughly shift 18m to East and 12m to South. For
v.edit, we select the “move” tool and the category number of the vector we
want to modify:

v.edit stops1 tool=move cats=30 move=18,-12

# redraw to verify updated map
d.redraw

Since the bus stops are not perfectly located on the route, we have to define a
reasonable threshold to capture all bus stops. To find the maximum distance
that we will use later as a threshold, we run v.distance:

# find maximum distance between bus stops and route1
v.distance from=stops1 to=route1 upload=dist column=dummy -p
# the highest reported value is 44.819408m

# the "start_mp" column is used to indicate the bus stops order
v.lrs.create in_lines=route1 points=stops1 out=route1_lrs \
err=lrs_error lidcol=lid pidcol=lid rstable=route1_lrs thre=45

# the error map should be empty
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# verify new LRS table
db.select route1_lrs

Now we have a complete linear reference system that we can display as follows:

d.erase
# show route and nodes
d.vect route1 disp=shape,topo col=grey lcol=blue
d.vect stops1 icon=basic/circle fcol=green

# show bus stop numbers (bottom right labels)
d.vect stops1 disp=attr attr=cat size=10 bgcolor=white \

lcol=green yref=top
# show milepost numbers (top right labels)
d.vect stops1 disp=attr attr=start_mp size=10 bgcolor=white \

lcol=red yref=bottom

The green numbers show the bus stop numbers (equal to node category num-
bers), the blue numbers show the increasing milepost numbers which indicate
the bus route direction. Depending on the GRASS monitor size, you will have
to zoom to better identify the number labels.

Querying the LRS We can now query the linear reference system. For
example, we are interested in how far it is to the next bus stop. We can
get our current position from our GPS or GPS-enabled cellphone (or simply
d.where):

# these coordinates can be retrieved via GPS
echo "638632|224857" | v.in.ascii out=position

g.region vect=route1 n=n+100 s=s-100 -p
d.erase
# show route and nodes
d.vect route1 disp=shape,topo col=grey lcol=blue
# show bus stop numbers (bottom right labels)
d.vect stops1 disp=attr attr=cat size=10 bgcolor=white \

lcol=green yref=top
# show milepost numbers (top right labels)
d.vect stops1 disp=attr attr=start_mp size=10 bgcolor=white \

lcol=blue yref=bottom
# show markers
d.vect stops1 icon=basic/circle fcol=green
d.vect position col=red icon=basic/marker size=20

v.lrs.where line=route1_lrs point=position rstab=route1_lrs
pcat|lid|mpost|offset
1|1|6.000000+134.532728
[1] points read from input
[1] positions found
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# check to which bus stop the milepost 6 belongs to
# a) get corresponding bus stop number "upstream"
v.db.select stops1 col=cat,start_mp where="start_mp=6"
cat|start_mp
30|6

# b) get next bus stop number along the tour
v.db.select stops1 col=cat,start_mp where="start_mp=7"
cat|start_mp
55|7

The corresponding bus stop numbers are 30 from which the bus is coming
and 55 the next stop in direction of the tour. Our position is 134.5m after bus
stop 30.

The LRS table contains even more information:

db.select sql="SELECT * FROM route1_lrs WHERE start_mp=6"
rsid|lcat|lid|start_map|end_map|start_mp|start_off|\

end_mp|end_off|end_type
6|1|1|1946.147074|2411.275995|6|0|7|0|2

Relevant entries are: start_map (here: 1946.1m) which is the distance in map
units from the beginning of the vector line to the milepost found before the
queried position in LRS direction; start_mp (here: 6) which is the milepost
before the queried position in LRS direction; end_mp (here: 7) which is the
next milepost to be reached; and end_map which is the distance in map units
from the beginning of the vector line to the milepost found before the queried
position in LRS direction.

We finally want to figure out if we are closer to bus stop 30 or 55:

# what is the distance between bus stop 30 and 55
db.select sql="SELECT (end_map - start_map) as dist_30_55 \

FROM route1_lrs WHERE start_mp=6"
dist_30_55
465.128921

%HM3 overflow - can we skip the spaces? not sure about sql rules
# distance from our position to bus stop 55 (MP 7)
db.select sql="SELECT (end_map - start_map - 134.5) as \

dist_to_55 FROM route1_lrs WHERE start_mp=6"
dist_to_55
330.628921

In the first db.select call, we subtract the real world distances from the
beginning of the vector line to the two mileposts from each other to obtain
their distance. In the second command, we subtract our actual offset from
milepost 6 (bus stop 30). The result shows, that we are much closer to bus
stop 30 than bus stop 55. All queries could be put into a script for routine
operations.
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Visualization of the LRS The bus route LRS can be visualized in a
dedicated way as follows:

v.lrs.label route1_lrs rstable=route1_lrs labels=labels \
col=red size=50 xoffset=100 output=route1_lrs_labels

g.region vect=route1 n=n+100 s=s-100 -p
d.erase
d.vect route1_lrs
d.vect route1_lrs_labels col=grey type=line
d.vect stops1 disp=attr attr=cat size=10 bg=white lcol=green \

yref=bottom
d.vect stops1 icon=basic/circle fcol=green
d.labels labels

# simple PNG output
d.out.file route1_lrs format=png res=2
display route1_lrs.png

Once the LRS is established, various tasks can be accomplished, including
adding a new milepost or relocating a bus stop.

6.7 Vector data transformations to raster

We have already explained how to convert existing raster data (points, lines,
areas) to vector data. This can either be done manually by digitizing in
v.digit or by an automated procedure using r.to.vect for discrete geom-
etry features or by r.contour for continuous fields, as described in the Sec-
tion 5.3.1. Here we focus on transformation from vector to raster maps. This
transformation is useful, for example, for performing map algebra – a task
that is easily done in the raster model. Also the speed of data processing (at
the price of lower spatial precision) is much higher in the raster model.

Depending on the type of geographic phenomenon that the vector maps
represent, we distinguish two types of transformation from vector to raster
model:

• for geometric features (points, lines, areas), we use direct transformation
from vectors to raster lines/areas;

• for continuous fields (points, isolines, contours), we need spatial interpo-
lation to transform from vector lines to raster representation.

Figure 6.9 shows an overview of available conversion techniques.

Direct transformation of vector data to raster data The module
v.to.rast generates a raster map from an input vector map by assigning
the vector data values/attributes or their function to the corresponding grid
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Fig. 6.9. Methods for transforming and interpolating vector data to raster data

cells, an operation sometimes called binning. Transformation of vector objects
to raster cells depends on the current resolution. The resolution settings can
be defined with g.region using the res (resolution) parameter. You may try
different resolutions to see the effect. You have several choices to assign vector
data values/attributes to the resulting raster map. The source of raster values
can be (options for use parameter):

• attr: read values from attribute table (with column parameter);
• cat: use category values (i.e, vector IDs);
• val: use specified value (with value parameter);
• z: use z coordinate (points or contours only);
• dir: output as flow direction (lines only).

For discrete geometric features, the transformation of vector points to
raster is also performed with v.to.rast. It creates an output raster map with
the selected point attribute value in a cell where the point is located, while
inserting NULLs elsewhere. If more than one point falls into one raster cell,
the module will continue to read the points and the last imported point value
will determine the cell value. Lines and areas are transformed likewise:

g.region swwake_10m -p

# points: use point elevation
v.info -c geodetic_swwake_pts
v.to.rast geodetic_swwake_pts out=geodetic_swwake_pts \

use=attr col=zval

# lines: use category number
v.to.rast roadsmajor out=roadsmajor use=val

# areas: use attribute column
v.info -c zipcodes_wake
v.to.rast zipcodes_wake out=zipcodes_dbl use=attr col=ZIPNUM
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# areas with labels
g.region swwake_30m -p
v.to.rast geology out=geology_30m use=attr layer=1 \

type=point,line,area col=GEOL250_ID labelcolumn=GEO_NAME

As a special case, we show how to extract boundaries from a vector map and
convert them to raster lines. We must first run v.category to add category
numbers to the boundary type because boundaries are usually without cate-
gory numbers and the module v.extract works only with objects that have a
category number. After extraction, we convert the boundary type to line type
to ensure topological consistency:

g.region vect=soils_wake -p
v.category soils_wake output=soils_bnd_cats type=boundary
# extract boundaries only
v.extract soils_bnd_cats output=soils_bnds type=boundary
# vector type conversion
v.type soils_bnds out=soils_lines type=boundary,line

d.erase
d.vect soils_lines

Then we can transform the resulting vector lines map to raster (we use the
-a align flag to the desired resolution, see Section 4.1.2):

g.region -pa res=30 vect=soils_lines
v.to.rast soils_lines out=soils_borders use=cat
d.erase
d.rast soils_borders

As before, we define the target raster resolution before converting the vector
map to raster. The resulting raster map soils_borders contains only the
rasterized outlines of the soils areas.

Generating raster density map from vector point data You can com-
pute a raster density map from vector point data using a moving 2D isotropic
Gaussian kernel with v.kernel. As an example, we will compute the density
map for schools in the Wake county:

g.region vect=schools_wake res=30 -p
d.erase
v.kernel schools_wake out=schoolskernel stddev=800 mult=10000
d.rast schoolskernel
d.vect schools_wake icon=basic/circle
d.vect roadsmajor

The highest density of schools is in central and east Raleigh with some clus-
ters of schools in subsurbs with elementary and middle schools on neighboring
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campuses. The sstdev parameter effectively controls the smoothness of the
map, for example, at 100m the resulting map has narrow local maxima prac-
tically at each school site.

6.8 Spatial interpolation and approximation

Spatial interpolation transforms vector points or isolines representing contin-
uous phenomena, such as elevation or temperature to the raster representa-
tion using a function which passes through or close to the given points. The
function that passes exactly through the given points is used for interpola-
tion; when this condition is relaxed and the function passes close to the given
points (for example, if we are working with noisy data), we describe it as ap-
proximation. Because there exists an infinite number of functions which fulfill
one of these requirements, additional conditions have to be imposed, leading
to a large number of different interpolation and approximation techniques.
GRASS offers interpolation and approximation functions which are based on
conditions of locality (Voronoi polygons, inverse distance weighted method)
and smoothness (splines). The methods based on geostatistical concepts can
be applied by taking advantage of the link with the Open Source geostatistical
tools (see Chapter 10). It is important to keep in mind that different methods,
and often even the same method with different parameters, can produce quite
different surfaces (see for example, Figures 6.10, 6.11). A good knowledge of
the modeled phenomenon is needed to evaluate which one is closest to reality.
Statistical measures of accuracy do not always ensure that the properties of
the interpolated surface are adequate representation of the behavior of the
modeled phenomenon.

6.8.1 Selecting an interpolation method

GRASS provides several different methods for interpolation of raster surfaces
from vector point or isoline data (Figure 6.10). Depending on the method,
the surface can be interpolated directly from vector data, or the vector data
must be first transformed to raster points or lines and interpolated with the
related raster module. The following modules can be used:

• v.voronoi converts vector point data to vector polygons and it can be
used for vector to raster conversion in special cases (e.g., for qualitative
data) when the resulting raster map should have only those discrete values
assigned to the points. The resulting “surface” is a discontinuous, rasterized
version of Voronoi polygons (see Figure 6.10 a).

• v.surf.idw and r.surf.idw is based on inverse distance weighted inter-
polation (IDW, Figure 6.10 b). Isolines need to be transformed to vector
points or rasterized beforehand (see Appendix A.1 for equations);
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Fig. 6.10. Interpolation methods available in GRASS and the resulting surfaces: a)
v.voronoi generated discontinuous surface from randomly distributed point data;
b) v.surf.idw applied to point data, note the small peaks and pits around the data
points; c) r.surf.contour, specially designed for rasterized contours; d) v.surf.rst
applied to thinned contour data

• r.surf.contour requires conversion of contours or isolines to raster lines
and then it linearly interpolates between contour lines (Figure 6.10 c);

• r.surf.nnbathy is a surface interpolation program, which uses “nn” – a
natural neighbor interpolation library.6 It is available from the GRASS
AddOns Wiki;

• v.surf.rst interpolates the raster surface directly from the vector point
or isoline data using the regularized spline with tension method (RST, see
Section 6.8.3 and Appendix A.1, Figure 6.10 d).

Before interpolating in GRASS, it is necessary to set the resolution of the
resulting raster map with g.region (see Section 4.1.2). To highlight the prop-
erties and behavior of various interpolation and approximation functions in
the following sections, we have selected a resolution of the resulting raster map
that is much higher than the distance between the given points or contours
(2m compared to 10m-20m). In practical applications, it is recommended to
6 “nnbathy” Web site, http://www.marine.csiro.au/~sakov/

http://www.marine.csiro.au/~sakov/
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use a resolution that is close to the data density to minimize the possible
artifacts in the resulting surface.

Voronoi polygons This method is suitable for transformation of qualitative
vector point data to vector polygons or to a raster map when the condition
of continuity is not required. Each point attribute is simply assigned to all
cells within its natural neighborhood defined by a Voronoi polygon (Fortune,
1987). The module v.voronoi generates these polygons as a vector map with
each polygon carrying the point attribute. You can then transform this vector
map to a raster using v.to.rast, resulting in a surface composed of discontin-
uous, horizontal patches (see Figure 6.10 a). The procedure, using the random
samples of NC elevation data in the rural subregion given by the vector map
elev_lid792_randpts, is performed as follows:

# compute and display the polygons with 2 pixel centroids
g.region rural_1m res=2 -p
d.erase
v.voronoi elev_lid792_randpts out=elev_vor
d.vect -c elev_vor siz=2

# convert to raster and display with standard elevation color
v.info -c elev_vor
v.to.rast elev_vor out=elev_vor_2m col=value
r.colors elev_vor_2m col=elevation
d.rast elev_vor_2m
d.vect elev_lid792_randpts siz=2

# check the result using aspect
r.slope.aspect elev_vor_2m aspect=asp_vor_2m
d.rast asp_vor_2m

The resulting raster map depends on the spatial distribution of input data.
For example, the raster surface generated from contour points would be quite
different from the one generated from randomly distributed samples of the
same surface used in our example (Figure 6.10a). The figure clearly demon-
strates that Voronoi polygons are not a good choice for continuous fields, but
they may be appropriate for numerous applications in ecosystem studies or
geomarketing.

Inverse distance weighted average (IDW) This approach calculates the
value for each grid point as a weighted average of values at the n closest points
(Burrough and McDonnell, 1998), see the equation in Appendix A.13. In the
GRASS module v.surf.idw, weights are inversely proportional to a power
p = 2 of distance and the default n = 12. It is a simple approach, however, the
results are less accurate compared to other methods such as splines, kriging
or multiquadrics (Mitas and Mitasova, 1999). Often the method does not
reproduce the local shape implied by data and produces local extrema at the
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data points (Figure 6.10 b), also noticeable as small circular contours around
the given points. The module is useful for rough interpolation of smaller data
sets, especially at lower resolutions, when the density of points is higher than
the density of the resulting grid points. We illustrate the method using random
points generated from the lidar-based DEM elev_lid792_randpts:

# set resolution and find column name where z is stored
g.region rural_1m res=2 -p
v.info -c elev_lid792_randpts
v.surf.idw elev_lid792_randpts out=elev_idw_2m col=value
r.colors elev_idw_2m col=elevation
d.erase
d.rast elev_idw_2m

# check the interpolated elevation surface using aspect map
r.slope.aspect elev_idw_2m aspect=asp_idw_2m
d.rast asp_idw_2m
d.vect elev_lid792_randpts siz=2 col=red

You can see that the resulting surface is continuous over most of the area
(compare with the Voronoi polygon representation), although it is quite noisy
with small peaks and pits around the given points and discontinuous patches in
areas with larger gaps in the data. Increasing number of points for computing
the average from n=12 to n=24 or reducing the resolution leads to a smoother
surface but you may start losing some detail.

As an alternative, we can convert the input vector points to raster
point representation and use the raster version of the IDW implementation
(r.surf.idw) that also offers computation of predictive error using cross-
validation when run with the flag -e. See the next section for details about
cross-validation. We need to convert the data to centimeters using r.mapcalc
to avoid steps in the resulting surface that is computed as integer raster map:

g.region rural_1m res=2 -p
v.info -c elev_lid792_randpts
v.to.rast elev_lid792_randpts out=el_lid792_randpts col=value
r.mapcalc "el_lid792_randpts100=100.*el_lid792_randpts"
r.surf.idw el_lid792_randpts100 out=el_ridw_2m100
d.erase
d.rast el_ridw_2m100

# check the interpolated elevation surface using aspect map
r.mapcalc "el_ridw_2m=el_ridw_2m100/100."
r.slope.aspect el_ridw_2m aspect=asp_ridw_2m
d.rast asp_ridw_2m

# perform cross-validation
r.surf.idw -e el_lid792_randpts100 out=el_ridwer_2m100
r.mapcalc el_ridwer_2m=el_ridwer_2m100/100.
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r.colors el_ridwer_2m col=differences
d.rast el_ridwer_2m
r.univar el_ridwer_2m

Without the multiplication, the result would be an integer raster with a noisy
contour-like aspect map. A map computed in centimeters does not have this
artifact but shows small peaks or pits in the data points. The module uses an
efficient search for the neighboring grid points and also supports interpolation
of data in geographic coordinates (latitude-longitude). The cross-validation
results show that the maximum predictive error can be as much as 1m in
some points but overall the interpolation is statistically very accurate with
mean absolute error less than 2cm and RMSE less than 4cm.

Linear interpolation between contours The module r.surf.contour is
specially designed for interpolation from isolines or contours and requires the
vector lines map to be converted to a raster lines map using v.to.rast. To
interpolate the raster surface, we run r.surf.contour with the name of the
raster lines map and a name for the resulting raster surface. The module has
not yet been upgraded to support floating point data output, but we can avoid
potential steps in the resulting surface by converting the elevation input from
meters to centimeters. In our example (Figure 6.10c), we first generate the
raster contour map using the 1m interval contours elev_lid792_cont1m and
then run the interpolation:

g.region rural_1m res=2 -p

# convert vector lines to raster and multiply by 100
v.to.rast elev_lid792_cont1m out=el_lid792_cont1m_2m col=level
r.mapcalc "el_lid792_cont1m_2m100=100.*el_lid792_cont1m_2m"

# interpolate the DEM and convert back to meters
r.surf.contour el_lid792_cont1m_2m100 out=el_rcont_2m100
r.mapcalc "el_rcont_2m=el_rcont_2m100/100.0"
d.erase
r.colors el_rcont_2m col=elevation
d.rast el_rcont_2m

# check the result using aspect map
r.slope.aspect el_rcont_2m aspect=asp_rcont_2m
d.rast asp_rcont_2m
d.vect elev_lid792_cont1m col=white

The module linearly interpolates the elevation at a given cell from the uphill
and downhill contour values and you may be able to see slight discontinuities
perpendicular to the contours in our resulting aspect map. To obtain good
results, make sure that the contour lines extend to the edge of the current
region and there are no disjointed contour lines. Since a flood fill algorithm is
used, the running time grows exponentially with the distance between contour
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lines. Without the conversion to centimeters, the result would be an integer
raster map with step-like pattern, but the contours reflected in the aspect
map would be smoother than the result from r.surf.idw.

Natural neighbor Natural neighbor interpolation is implemented in add-
on module r.surf.nnbathy. It uses “nn” – a natural neighbor interpolation
library and allows the user to define breaklines such as stream lines or ridges
as 2D lines without the need to define their elevation.7 It is available from the
GRASS AddOns Wiki.

Regularized Spline with Tension (RST) The RST method computes
the values at grid points using a function which simulates a thin flexible plate
passing through or close to the data points (Figure 6.10 d). It is the most gen-
eral and accurate method currently available in GRASS but it may require
tuning of parameters to achieve optimal accuracy. Optionally, it also computes
topographic parameters and partial derivatives of the modeled surface. The
bivariate (2D) version is called v.surf.rst and the trivariate (3D) version is
v.vol.rst. There is also a quad-variate experimental version available (e.g.,
for 3 spatial dimensions and time) called v.volt.rst for those who are inter-
ested in development of multivariate interpolation capabilities. The method,
its properties and examples are described in more detail in the following sec-
tions.

6.8.2 Interpolation and approximation with RST

The v.surf.rst module runs with both vector point and vector isoline data;
internally, all lines are converted to vector points and interpolated using
the same algorithms. To interpolate DEM from the elevation random points
elev_lid792_randpts and from the contours elev_lid792_cont1m, you can
simply run the module with its default parameters (Figures 6.11 a, 6.10 d).
We will also output the aspect map so that we can visually check the result-
ing elevation surface geometry. The computation may take a few minutes, but
you can run it in background by using & at the end of the command (in the
Section 6.8.5 we explain how to speed-up the computation when data are ho-
mogeneously distributed, in the example below we set segmax=30 npmin=140).
The module optionally computes topographic parameters, so we can compute
the aspect directly and use it to check the surface geometry:

# interpolate from points
g.region rural_1m res=2 -p
v.info -c elev_lid792_randpts
v.surf.rst elev_lid792_randpts elev=elev_rstdef_2m zcol=value\

aspect=asp_rstdef_2m segmax=30 npmin=140
d.erase

7 nnbathy Web site, http://www.marine.csiro.au/~sakov/

http://www.marine.csiro.au/~sakov/
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d.rast elev_rstdef_2m
d.rast asp_rstdef_2m

# change the color table to grey aspect
r.colors asp_rstdef_2m col=aspect
d.rast asp_rstdef_2m
d.vect elev_lid792_randpts siz=2 col=red

While the results may be satisfactory for many applications, it is worth ex-
ploring additional capabilities provided by this module, including tuning the
character of the resulting surface, computation of topographic parameters and
speeding up the computation using segmentation parameters.

When interpolating from contour data (vector lines) that were obtained by
scanning or computed from a dense TIN (Triangulated Irregular Network) or
a high resolution raster, it is important to recognize that the density of points
along the lines is often very high (in our case 1 point per 1-2m) while the
contours are usually much farther apart (in our case 10m or more), and there
may be large areas between contours (especially in flat terrain) without any
data (we have a 90m section without contours on the top of the hill). This
type of strongly heterogeneous spatial distribution of data points presents
substantial challenge for most interpolation methods, which tend to create
waves or steps along the isolines. Reducing the number of points on the lines
(for example, by increasing the dmin parameter in v.surf.rst), adding points
between the contours, and tuning the interpolation parameters (e.g., lowering
tension for v.surf.rst or increasing the number of points for IDW) helps to
minimize the problem. We reduce the density of points on contour lines in
the following example by setting the dmin parameter to 3m, so that all points
closer to each other than 3m are eliminated (see more in Section 6.8.5):

# interpolate from contours
g.region rural_1m res=2 -p
v.surf.rst elev_lid792_cont1m elev=elev_rstcontd_2m zcol=level\

aspect=asp_rstcontd_2m dmin=3
d.erase
d.rast elev_rstcontd_2m
r.colors asp_rstcontd_2m col=aspect
d.rast asp_rstcontd_2m
d.vect elev_lid792_cont1m col=yellow

The use of 3m minimum distance between the given points reduces the number
of points used for interpolation from over 40000 to little less than 10000, closer
to the 6000 points used for the interpolation from points. In spite of this
reduction, you can see visible square pattern on the top of the hill where we
have the largest area without data points. We will discuss its elimination in
Section 6.8.5.
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6.8.3 Tuning the RST parameters: tension and smoothing

To take the full advantage of the v.surf.rst module, understanding the prin-
ciples behind the method is important. The mathematical description is given
in the Appendix A.1; here we provide only a verbal description with illustra-
tions. The RST function minimizes a specific measure of surface smoothness
(also called smoothness seminorm or roughness penalty) and simulates a flex-
ible sheet forced to pass through the data points while minimizing its energy
(Mitas and Mitasova, 1999; Wahba, 1990; Talmi and Gilat, 1977). Properties
of this function can be controlled by the tension and smoothing parameters.

Tension parameter Tension tunes the surface from a stiff plate to an elas-
tic membrane (Figure 6.11, Mitasova and Mitas, 1993). For very high ten-
sion, the surface resembles a rubber sheet with cusps at the data points (Fig-
ure 6.11 c). For low tension, the surface behaves like a stiff (hard to bend)
plate, creating a very smooth surface (Figure 6.11 b). Due to its stiffness, it
can overshoot in the areas of sharp gradient change (especially if zero smooth-
ing is used); if the interpolated values exceed the range of given values over
15%, the program gives a warning and increase in tension or smoothing is
suggested.

The role of the tension parameter can be also interpreted as a control
of the range over which the given point influences the resulting surface. For
high tension, each point influences only its close neighborhood and the surface
goes rapidly to trend between the points. This may create cusps around the
data points (Figure 6.11 c) or steps along the contours (Figure 6.14). With
very low tension, each point has a long range of influence, so it is suitable for
interpolation of areas with relatively flat terrain with data points spaced far
apart. On the other hand, it may cause visible segments in large data sets (see
Section 6.8.5 for a solution). The default input parameters try to adjust the
tension to a suitable value based on the analysis of the data point density;
however, to fully optimize the tension a more complex procedure based on
cross-validation may be used (see Section 6.8.4).

To explore the impact of tension (Figure 6.11), you can interpolate ele-
vation surfaces from the random point elevation data with different tension
parameters. We also compute an aspect map so that we can visually check
the surface geometry:

g.region rural_1m res=2 -p
v.surf.rst elev_lid792_randpts elev=elev_rstt10_2m \

asp=asp_rstt10_2m zcol=value ten=10 seg=30 npmin=140
v.surf.rst elev_lid792_randpts elev=elev_rstt160_2m \

asp=asp_rstt160_2m zcol=value ten=160 seg=30 npmin=140

# check the interpolated elevation surface using aspect maps
r.colors asp_rstt10_2m col=aspect
r.colors asp_rstt160_2m col=aspect
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a                                                                  d

b                                                                  e

c                                                                f

Fig. 6.11. Tuning the geometry of interpolated surface by tension and smoothing
parameters: a) default values of tension=40, smoothing=0.1; b) tension=10, smooth-
ing=0.1: smooth surface with low level of detail useful for modeling major trends; c)
tension=160, smoothing=0.1: surface with cusps in data points but smooth in be-
tween; d) tension=40 and smoothing=0.0: surface passes exactly through the data
points (result close to the one with default parameters, but overshoots are possible);
e) tension=40 and smoothing=10.0: surface is very smooth and does not pass ex-
actly through each data point; f) tension=40 and smoothing is 0.1 for z > 113 and
10.0 for z < 113
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N

500m

 a                              b                                   c     

Fig. 6.12. RST interpolation of a beach surface surveyed by Real Time Kinematic
GPS: a) given data points; b) default parameters in v.surf.rst; c) anisotropic ten-
sion with angle theta=160 degrees and scaling scalex=0.25

d.erase
d.rast asp_rstt10_2m
d.rast asp_rstt160_2m
d.vect elev_lid792_randpts siz=1 col=red

You can compare these results to the surface computed with the default ten-
sion=40 and smoothing=0.1 in our first example in the Figure 6.11 a.

Because the tension parameter is scale dependent, it can have different
values in different directions, supporting modeling of anisotropic surfaces and
volumes (Figure 6.12, Hofierka et al., 2002). Two additional parameters, angle
and scale, were added to v.surf.rst in GRASS 6 for computation of surfaces
with uniform anisotropy, where the new parameters theta and scalex repre-
sent the direction and ratio (scaling) of the anisotropic features.

Smoothing parameter The functionality of smoothing can be illustrated
using springs attached to the “pins” representing data points. The higher the
smoothing the “softer” the springs and the more is the surface allowed to
deviate from the data point in its effort to minimize its energy, that means
we perform approximation rather than interpolation. GRASS implementation
supports spatially variable smoothing parameter – each point can have differ-
ent softness of its spring. The interpolation function will pass exactly through
the data points that have smoothing set to zero. Uniform smoothing is given
as a constant parameter smooth, while variable smoothing is given as a float-
ing point attribute in the vector point map. Smoothing is important when
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using low tension to prevent overshoots, as well as for removing noise which
may be present in data.

To explore the impact of smoothing, we can interpolate three surfaces from
our random vector points using the default tension ten=40 and the smoothing
set to a) smo=0, b) smo=10, and c) to spatially variable values (Figure 6.11.
We then compare the root mean square deviation rmsdevi for each surface,
computed from the differences between the given point elevations and the
elevations in the resulting surface at the same point. The value of rmsdevi
can be retrieved from the history file using r.info (see also Subsection 6.8.4):

v.surf.rst elev_lid792_randpts elev=elev_rstsm0_2m zcol=value \
asp=asp_rstsm0_2m smo=0

v.surf.rst elev_lid792_randpts elev=elev_rstsm10_2m zcol=value \
asp=asp_rstsm10_2m smo=10

# compare the standard deviation printed as rmsdevi
# smoothing is zero (interpolation)
r.info elev_rstsm0_2m
[...] rmsdevi=0.000000

# default smoothing 0.1 (close to interpolation)
r.info elev_rstdef_2m
[...] rmsdevi=0.047771

# smoothing 10 (approximation)
r.info elev_rstsm10_2m
[...] rmsdevi=0.956931

r.colors asp_rstsm0_2m col=aspect
d.rast asp_rstsm0_2m
r.colors asp_rstsm10_2m col=aspect
d.rast asp_rstsm10_2m

The standard deviation increases with the increasing smoothing parameter
and the effect of smoothing is clearly reflected also on the aspect maps. We can
use the SQL support to add variable smoothing to our point data, for example,
we can use low smoothing 0.1 for elevations > 113 and higher smoothing 10.0
for elevations < 113:

# add variable smoothing parameter to input data
g.copy vect=elev_lid792_randpts,myelev_randpts
v.db.addcol myelev_randpts col="smooth double precision"
v.info -c myelev_randpts
v.db.update myelev_randpts col=smooth val=10. wher="value<113."
v.db.update myelev_randpts col=smooth val=0.1 wher="value>113."
# verify
v.db.select myelev_randpts
# compute the elevation surface and aspect
v.surf.rst myelev_randpts elev=ele_rstsmvar_2m zcol=value \

scol=smooth asp=asp_rstsmvar_2m
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# check the result
r.colors asp_rstsmvar_2m col=aspect
d.erase
d.rast asp_rstsmvar_2m
d.vect elev_lid792_cont1m where="level = 113" col=red

The resulting DEM has a rougher surface in areas with elevation greater than
113m, while the surface with lower elevation is much smoother (Figure 6.11 f).

The current implementation of the RST method links the smoothing and
tension parameters in such a way that the smoothing automatically increases
when tension is lowered (see more details in Mitasova et al., 2005a). This ap-
proach reduces the potential for overshoots when low tension is used. Some
examples of cases when we need to use low tension are in the Section 6.8.6
about topographic analysis with RST. We will later discuss how we can use
the tension and smoothing parameters to control the level of detail in the
resulting surface and minimize artificial features such as waves along contours
or overshoots. The tension and smoothing parameters can be selected empir-
ically, based on the knowledge of the modeled phenomenon, or automatically
by minimization of the predictive error estimated by a cross-validation proce-
dure (Mitasova et al., 1995; Hofierka et al., 2002) described in the following
section.

6.8.4 Estimating RST accuracy

Several measures can be used to estimate accuracy of spatial interpolation.
The module v.surf.rst computes deviations of the resulting surface from
the given vector points that can be output to a vector point map devi for
further analysis. For example, you can compare the deviations of the surfaces
generated by the RST default settings (smoothing 0.1) and with a smoothing
of 10 by adding the output of the deviation map to interpolation and then
computing the summary statistics as follows:

g.region rural_1m res=2 -p

# compute elevation raster and deviations vector point map
v.surf.rst elev_lid792_randpts el=elev_rstdef_2mb zcol=value \

devi=elev_rstdef_devi
v.surf.rst elev_lid792_randpts el=elev_rstsm10_2mb zcol=value \

smo=10 devi=elev_rstsm10_devi

We can now compute the statistics for deviations for the two values of smooth-
ing:

# smoothing 0.1
v.info -c elev_rstdef_devi
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v.univar elev_rstdef_devi col=flt1 type=point
[...]
Number of values: 5874
Minimum: -0.079855
Maximum: 0.078443
Range: 0.158298
Mean: 2.95603e-05
Arithmetic mean of absolute values: 0.0072427
Variance: 0.000115238
Standard deviation: 0.0107349
Coefficient of variation: 363.153

r.info elev_rstdef_2mb
[...]
rmsdevi=0.047771

# smoothing 10 (approximation)
v.info -c elev_rstsm10_devi
v.univar elev_rstsm10_devi col=flt1 type=point
[...]
Number of values: 5874
Minimum: -0.770713
Maximum: 1.646673
Range: 2.41739
Mean: 0.00276214
Arithmetic mean of absolute values: 0.128166
Variance: 0.032859
Standard deviation: 0.18127
Coefficient of variation: 65.6269

r.info elev_rstsm10_2m
[...]
rmsdevi=0.956931

# compute and display deviations maps using same color table
v.surf.rst elev_rstdef_devi elev=elev_rstdef_devi zcol=flt1
v.surf.rst elev_rstsm10_devi elev=elev_rstsm10_devi zcol=flt1
r.colors -n elev_rstsm10_devi col=differences
r.colors elev_rstdef_devi rast=elev_rstsm10_devi
d.erase
d.rast.leg elev_rstdef_devi
d.rast.leg elev_rstsm10_devi

Note that the rmsdevi computed by v.surf.rst and the standard deviation
output from v.univar are computed differently. The first is computed from
differences between the given elevation data and the resulting surface, while
the second is computed using the mean value of differences and their values
in the given points. They are equal if the mean value of differences is zero
(it should be close to zero if smoothing is unbiased). When you compare
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the range and the mean of absolute values of differences you can clearly see
that the surface with the lower smoothing is closer to the data points than
the surface with the high value of smoothing. The deviations maps show areas
where smoothing has “eroded” elevation as red (mostly ridges and the elevated
section of the road), and where it was filled-in as blue (mostly valleys and the
bottom of the pond). We have used the flag -n to revert the default color
scheme in the color table differences to get the negative values of deviations
show in red. Your values of deviations may be slightly different from those
published here because your input map, generated by a random procedure,
will be slightly different, too. In addition to the root mean square deviation
written into the history file of the computed raster map, you can also check
the minimum and maximum of the given and interpolated values to measure
the level of smoothing. Note that the interpolated minimum and maximum
values can be higher or lower than those at the given points, especially if the
interpolation is performed outside of the area covered by the input data set.
The contents of the history file can be retrieved by r.info.

The predictive error of the RST interpolation for the given set of parame-
ters can be estimated by a cross-validation procedure (Mitasova et al., 1995;
Hofierka et al., 2002). The method is based on a procedure that removes one
data point at a time, performs interpolation for the location of the removed
point using the remaining samples, and calculates the residual between the ac-
tual value of the removed data point and the approximated value for this point
obtained from the remaining samples. This procedure is repeated until every
sample has been, in turn, removed. The overall performance of the interpola-
tor is then evaluated as the root-mean of squared residuals. Low root-mean-
squared error (RMSE) indicates an interpolator that is likely to give more
reliable estimates in the areas between the data points. The cross-validation
can also be used to find optimal interpolation parameters by minimizing the
RMSE (Mitasova et al., 1995; Hofierka et al., 2002) or by identifying areas that
need more samples. To perform cross-validation, run the module v.surf.rst
with the flag -c (we have set npmin and segmax to lower values, to speed-up
the computation, see Section 6.8.5):

# perform cross-validation (no raster output)
v.surf.rst -c elev_lid792_randpts zcol=value \

cvdev=elev_rstdef_cv npmin=120 segmax=25
v.univar elev_rstdef_cv col=flt1 type=point
[...]
Number of values: 6000
Minimum: -0.682364
Maximum: 1.561201
Range: 2.24357
Mean: 0.000827084
Arithmetic mean of absolute values: 0.0368782
Variance: 0.00506539
Standard deviation: 0.0711715
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  a                                                         b

Fig. 6.13. Segmented processing using quadtrees: segments adjust to the number
of points given by parameter segmax: a) segmax=25, b) segmax=40

# compute raster map of predictive errors
v.surf.rst elev_rstdef_cv elev=elev_rstdef_cv zcol=flt1
r.colors -n elev_rstdef_cv col=differences
d.rast.leg elev_rstdef_cv
d.vect elev_rstdef_cv siz=2

The mean of absolute values of the cross-validation error as well as the stan-
dard deviation are much smaller than the published accuracy of the lidar data
(0.15m) and the mean value is close to zero, so there is no bias. However, there
are few locations where the cross-validation error is high, indicating that at
these locations additional points would be useful. The highest values of pre-
dictive error are in location with a single point surrounded by unsampled area
and with rapidly changing surface – the pond is a good example. On the book
Web site you can find a script to easily compute the cross-validation error for
a range of parameters that can be used to find the optimal values.8

6.8.5 Segmented processing

Digitized contours or lidar elevation data sets can have over million data
points with the resulting DEMs with thousands of rows and columns. To
support processing of such large data sets, v.surf.rst and v.vol.rst were
implemented with a segmented processing procedure (Mitasova et al., 2005a).
The segmented processing is based on the fact that splines have local behav-
ior, i.e., impact of data points which are far from a given location diminishes
rapidly with increasing distance (Powell, 1992). The segmentation uses a de-
composition of the studied region into rectangular segments with variable size
dependent on the density of data points (Figure 6.13), using quadtrees for 2D

8 Script to calculate cross-validation error, http://www.grassbook.org/, Code ex-
amples of 3rd Edition

http://www.grassbook.org/
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and octtrees for 3D interpolation (Mitasova et al., 1995). For a given segment,
the interpolation is carried out using the data points within this segment and
from its neighborhood, selected automatically depending on their spatial dis-
tribution (Mitasova et al., 2005a). Because the tension inversely controls the
range of influence of data points, this approach requires large neighborhoods
to achieve smooth connection of segments for very low tension. The number
of points in the segment is controlled by segmax, the number of points used
for interpolation (within the segment and its neighborhood) is controlled by
npmin. Default values for these parameters usually work, in case that the seg-
ments are visible, npmin should be increased. Note that while v.surf.idw uses
12 given points for computation of a single grid value (that means each grid
point is computed using an independent function), the approach in v.surf.rst
uses at least npmin points (the default is npmin=300) for computation of tens
or hundreds of grid points within a given segment (that means, all points
within a segment are computed using the same function). If the points are
dense and homogeneously distributed (for example as is often the case with
lidar data), both segmax and npmin can be set to lower values, leading to sub-
stantially faster computation. You can compare the computational time using
the following examples (remember that you can run your slow computation
in background by putting & at the end of the command) :

g.region rural_1m res=2 -p

# set layer=0 because elevation is stored as z-coord.
v.surf.rst elev_lid792_bepts elev=elev_rst_fast layer=0 \

asp=asp_rst_fast tree=segments_n120 npmin=120 segm=25
v.surf.rst elev_lid792_bepts elev=elev_rst_slow layer=0 \

asp=asp_rst_slow tree=segments_n300
d.erase
d.rast asp_rst_fast
d.vect segments_n120
d.vect elev_lid792_bepts siz=1
d.rast asp_rst_slow
d.vect segments_n300

# check the differences between the resulting raster maps
r.mapcalc "diffelevseg=elev_rst_slow-elev_rst_fast"
r.univar diffelevseg
[...]
minimum: -0.49794
maximum: 0.27153
range: 0.76947
mean: -0.000387165
mean of absolute values: 0.0102965
[...]

You can see that the computation is much faster when smaller segments are
used, while the mean absolute value of differences between the two DEMs
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is only 1cm, over one magnitude less than the vertical accuracy of this set
of lidar data (15cm in open areas, 60cm in areas with vegetation); however,
there are locations where the difference is relatively high (see the min and max
difference). To get practically the same result, you need to adjust the tension
according to the ratio of the normalization factors that are derived from the
average size of segments Mitasova et al. (2005a) and that are used to rescale
the coordinates to ensure numerical stability. Use r.info to find the value of
the normalization factor dnorm and decrease the tension for the interpolation
with smaller segment by multiplying it by the ratio dnorm2/dnorm1, in our
case, tadjusted = 40. ∗ (52.1498/82.4561) = 25.298:

r.info elev_rst_slow
[...] dnorm=82.456082 [...]

r.info elev_rst_fast
[...] dnorm=52.149805 [...]

v.surf.rst elev_lid792_bepts elev=elev_rstt25_fast \
asp=asp_rstt25_fast layer=0 treefile=segments_n120 \
npmin=120 segmax=25 ten=25.298

# check the differences between the resulting raster maps
r.mapcalc "diffelevsega=elev_rst_slow-elev_rstt25_fast"
r.univar diffelevsega
[...]
minimum: -0.0412674
maximum: 0.0512772
range: 0.0925446
mean: 2.62179e-05
mean of absolute values: 0.000205665
[...]

To learn more about segmentation, see also Mitasova et al. (2005a).
The high density of points typical for the modern mapping technologies,

leads to substantial oversampling, therefore, we can further speed up the com-
putation by reducing the number of data points to the minimum necessary
for a given level of detail (size of the features we want to preserve), accuracy
and resolution. The density of points used for interpolation in v.surf.rst
is controlled by the parameter dmin representing the minimum distance al-
lowed between the data points – points that are closer to each other than
this distance are considered identical and not included into interpolation. We
have already used this parameter to reduce the number of points on contours,
you can explore its effect by interpolating, for example a 5m resolution DEM
from the vector map elev_lid792_bepts (set the region to this map to get a
big enough DEM and use dmin=5 to reduce the number of points, along with
segmax=25 and npmin=120).

Interpolating from contours We have already explained that it is useful
to reduce the number of points on the contour lines to improve the distribution
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of points by increasing the dmin parameter. You have also seen that in a larger
area with sparse contours (such as the flat top of the hill in our test area),
rectangular segments may become visible, especially in the aspect map. While
the error in the elevations due to the segments is usually negligible, it is not
acceptable for shaded maps (see Section 7.1.2). The problem can be eliminated
using two step interpolation. First interpolate the surface using v.surf.rst. If
segments are visible, generate additional points sparsely but homogeneously
distributed over the elevation surface using r.random. Transform the contours
to vector points using v.to.points and merge with the vector points map
generated by r.random using the module v.patch. Finally, interpolate this
merged vector points map using v.surf.rst. The surface should be without
segments. We have already interpolated the first surface elev_rstcontd_2m
from contours in the Section 6.8.3. Here we add the random points and re-
interpolate the surface to remove the visible segments:

g.region rural_1m res=2 -p
# generate random points and patch them with contours
# converted to points
r.random elev_rstcontd_2m n=300 vector_out=elev_add300_pts
v.to.points elev_lid792_cont1m out=elev_lid792_contpts
v.info -c elev_add300_pts
v.info -c elev_lid792_contpts

# we need the same column name for patching
v.db.renamecol elev_add300_pts col=value,level
v.patch -e elev_lid792_contpts,elev_add300_pts out=el_contpts
d.erase
d.rast asp_rstcontd_2m
d.vect el_contpts
v.db.select el_contpts

# reinterpolate new DEM
v.surf.rst el_contpts elev=elev_rstcontptsd_2m zcol=level \

asp=asp_rstcontptsd_2m dmin=3
d.rast asp_rstcontptsd_2m

The resulting map does not have any visible segments.

6.8.6 Topographic analysis with RST

We have already explained computation of topographic parameters from raster
DEMs using r.slope.aspect (see Section 5.4) which computes the topo-
graphic parameters at a grid point using the elevation at this point and its
3 × 3 neighborhood. This approach works well for smooth surfaces where local
polynomial approximation is adequate. However, for high resolution data, the
small neighborhood may not be sufficient to adequately capture the geometry
of topographic features and the resulting map may represent the geometry
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a                                                          b    

Fig. 6.14. Profile curvature draped over 1m resolution DEM computed from con-
tours: a) with tension too high pattern follows contours, b) lower tension leads to
pattern reflecting main terrain features

of noise or sampling pattern instead. The module v.surf.rst allows us to
compute the topographic parameters simultaneously with the computation of
elevation surface directly from data points using the partial derivatives of the
RST function and principles of differential geometry (Mitasova and Hofierka,
1993; Mitasova et al., 2005a). The explicit form of the RST derivatives can
be found in Appendix A.1. Entire segment that includes tens or hundreds of
grid cells is used to compute the RST function and its derivates, allowing us
to capture geometry of much larger features than the standard, raster-based
methods. We can also use the smoothing parameter to reduce noise that often
makes extraction of surface geometry difficult and the tension parameter to
tune the level of detail of the topographic features. The module computes
slope, aspect, profile and tangential curvatures (see Appendix A.1 for equa-
tions), or first and second order partial derivatives that can be used to compute
additional parameters, such as slope or curvature in a given direction.

Topographic parameters are used for wide range of analyses and as inputs
for modeling and planning. Here we show how to use these parameters for
visual inspection of surface geometry and identification of artifacts, that can
negatively influence results of modeling or lead to misleading results of anal-
ysis. We have already used simultaneous computation of aspect to evaluate
the surfaces; in the following example, we use the contour data as input and
compute the slope and profile curvature along with the elevation surface:

g.region rural_1m res=2 -p
v.surf.rst elev_lid792_cont1m zcol=level dmin=3 npmin=250 \

el=elev_rstcontd_2mt slo=slp_rstcontd_2m pc=pc_rstcontd_2m
d.erase
d.rast.leg slp_rstcontd_2m
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d.rast.leg pc_rstcontd_2m
d.vect elev_lid792_cont1m

When we run v.surf.rst with the default parameters the resulting surface
has waves along contours that are reflected by changing convex and concave
shape along each contour except for the most steep areas (Figure 6.14). This
means that the tension is too high and the curvatures follow the pattern of
contours that can lead, for example, to a false pattern of erosion and depo-
sition, see Mitasova et al. (1996). The geometry of the resulting surface thus
reflects the geometry implied by the distribution of data points rather than
real terrain (we will illustrate a similar effect for lidar data in the next sec-
tion). To minimize this bias we can lower the tension from the default value
of 40 to 10:

g.region rural_1m res=2 -p
v.surf.rst elev_lid792_cont1m zcol=level el=elev_rstct10_2m \

slo=slp_rstct10_2m asp=asp_rstct10_2m pcur=pc_rstct10_2m \
tcu=tc_rstct10_2m ten=10 dmin=3 npmin=250

d.rast.leg pc_rstct10_2m
d.vect elev_lid792_cont1m
d.rast.leg tc_rstct10_2m

We will lose some detail, but we will also reduce the artificial patterns, as you
can see by overlaying the profile curvature with contours (Figure 6.14). You
can further explore the results by displaying the DEM using the nviz module
and draping the computed topographic parameters and contours over it (see
Section 7.3).

Landscape processes have multiscale character and different processes are
dominant at different scales, so it is sometimes useful to extract topographic
features and patterns at different levels of detail. In v.surf.rst, this can
be achieved by changing tension and smoothing (lower tension and higher
smoothing produces smoother topography with curvatures representing main
features, higher tension captures more detail and smaller features).

6.9 Working with lidar point cloud data

Point cloud data, as a new type of representation of 3D surfaces, are usually
produced by airborne or on-ground laser scanning, also known as Light De-
tection and Ranging (lidar, http://www.lidarmap.org/lidar/). The data
are often provided as sets of very dense (x, y, z) points or in a more complex,
public file binary format called LAS (see http://www.lasformat.org/) that
may include multiple returns as well as intensities. In this section, we will
explain how to perform basic lidar data processing and analysis, first creating
elevation surfaces with given properties from pre-processed bare ground data,
followed by more complex feature extraction.

http://www.lidarmap.org/lidar/
http://www.lasformat.org/
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Lidar point data create almost continuous coverage of the mapped surface
(Figure 6.15) and lower resolution surfaces can be rapidly created by on-fly
import and conversion from points to raster using the r.in.xyz module (a
method often called binning) as we have shown in the Section 4.1.3. This tool
also provides useful capabilities for analysis of point cloud data properties by
computing the number of points per grid cell (useful for selecting an appropri-
ate resolution), or range of values, standard deviation, coefficient of variation
(helpful when assessing the need for smoothing) and other statistics. You can
eliminate some of the most extreme outliers by using the filter method range
for the z-values and preprocess the data for interpolation by computing the
mean elevation for high resolution grid cells that are then used as input points
for interpolation (see the example in the module’s manual page). We will il-
lustrate the application of this module using the preprocessed bare ground
data available for our area and provided in the ncexternal/ directory in a file
BE3720079200WC20020829m.txt:

g.region rural_1m res=2 -p

# compute a raster map representing number of points per cell
r.in.xyz BE3720079200WC20020829m.txt out=lid_792_binn2m meth=n
23162 points found in region
d.erase
d.rast.leg lid_792_binn2m
r.report lid_792_binn2m unit=p
0 .... 82.36
1 .... 17.64
2 .... 0.01

These are older (2001) lidar data acquired from relatively high altitude, so
their density is a little bit lower than what is currently common. At 2m reso-
lution, 82% of cells have no points and only 17% have a single point, indicating
that our data points are farther apart than 2m. We need to reduce the reso-
lution to 6m to get at least one point per cell for most of our study area:

g.region rural_1m res=6 -ap
r.in.xyz BE3720079200WC20020829m.txt out=lid_792_binn6m meth=n
d.rast.leg lid_792_binn6m
r.report lid_792_binn6m unit=p
0 .... 8.05
1 .... 35.79
2 .... 46.59
3 .... 8.89
4 .... 0.68

# compute raster maps representing mean elevation for each cell
r.in.xyz BE3720079200WC20020829m.txt out=lid_792_binmean6m \

meth=mean
d.rast.leg lid_792_binmean6m
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# compute range and variation
r.in.xyz BE3720079200WC20020829m.txt out=lid_792_binrange6m \

meth=range
d.rast.leg lid_792_binrange6m
r.in.xyz BE3720079200WC20020829m.txt out=lid_792_binvar6m \

meth=coeff_var
d.rast.leg lid_792_binvar6m
d.vect streets_wake
d.vect lakes type=boundary
d.vect streams

At 6m resolution most cells have at least one or two points but there are
still many gaps, so interpolation is needed to create DEM. Range map
lid_792_binrange6m shows that at 6m resolution we may lose important
smaller features as several 6m cells have points with elevation differences more
than 1m. Coefficient of variation map overlayed by the road, stream and lake
maps shows that the highest variation is in locations with sharp change in
elevation such as along the edges of the pond and elevated road with culvert
under it. To compute the full coverage, high resolution (1m) DEM you can ei-
ther import the points through r.in.xyz, convert from raster to vector points
using r.to.vect and interpolate by v.surf.rst as suggested in the manual
page for the r.in.xyz module or you can import the data as vector points us-
ing v.in.ascii and interpolate them directly. The data can be imported with
elevation stored as attribute or as a third z-coordinate (see the manual for
more details). If the data set including its topology does not fit into memory
(roughly if you have half million points and 1GB RAM memory available) use
the flags -tbzr to skip building topology and creating a table, store elevation
as z-coordinate and import only data in the current region, if desired.

We will use the bare ground lidar data from the above example to illustrate
the import and interpolation of high resolution DEM. At the same time, we
will also work with the multiple return data set provided in the vector point
map elev_lidrural_mrpts. First we import and display the data and check
their elevation using conversion to raster by v.to.rast:

# find how many points (number of lines) with system tool
wc -l BE3720079200WC20020829m.txt
319214 BE3720079200WC20020829m.txt

# we import only points in the rural area without building
# topology and using z-coordinate for elevation
g.region rural_1m -p
v.in.ascii -ztbr BE3720079200WC20020829m.txt \

out=elev_lidrural_bepts z=3
[...]
Skipping 296052 of 319214 rows falling outside of current reg.

# display bare ground and multiple return points over orthophoto
d.rast ortho_2001_t792_1m
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d.vect elev_lidrural_bepts siz=2 col=red
d.vect elev_lidrural_mrpts siz=1 col=green

# build topology so that we can use all vector tools
# we can do it because our number of points is small
v.build elev_lidrural_bepts
v.info elev_lidrural_pts

# check the imported data by creating low resolution DEM
g.region res=6 -ap
v.to.rast elev_lidrural_bepts out=elev_lidrural_6m use=z
v.to.rast elev_lidrural_mrpts out=elev_lidrural_mr6m use=z
d.rast elev_lidrural_6m
d.rast elev_lidrural_mr6m

You can see that the bare ground data are missing points in the areas with
buildings, forest and the pond; multiple return data have more complete cov-
erage and include top of buildings and trees, but they too do not capture
water as there is no return on water surfaces (Figure 6.15.

Computing a high resolution DEM and topographic parameters To
compute a high resolution DEM, we set the resolution to 1m and use approx-
imation with RST (Figure 6.11) – don’t forget to set lower npmin and segmax
for faster computation:

g.region rural_1m -p
# send command to background
v.surf.rst elev_lidrural_bepts elev=elev_lidrural_1m \

asp=asp_lidrural_1m pcu=pc_lidrural_1m tcu=tc_lidrural_1m \
npmin=120 segmax=25 layer=0

v.surf.rst elev_lidrural_mrpts elev=elev_lidruralmr_1m \
asp=asp_lidruralmr_1m pcu=pc_lidruralmr_1m \
tcu=tc_lidruralmr_1m npmin=120 segmax=25 layer=0

Percent complete: WARNING:
Overshoot -- increase in tension suggested.
Overshoot occures at (8,631) cell
The z-value is 158.649880,zmin is 103.512798,zmax is 153.0655

# when the jobs have finished
d.erase
d.rast elev_lidrural_1m
d.rast pc_lidrural_1m
d.rast elev_lidruralmr_1m
d.rast pc_lidruralmr_1m
d.vect elev_lidrural_mrpts siz=1

The resulting surface is very rough and there is a strong influence of the scan-
ning pattern visible in the tangential curvature map. The multiple return data
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Fig. 6.15. Multiple return lidar point cloud: a) displayed in 3D by nviz (first return
lighter color, second return darker color); b) 3D points: zoomed into the forested
area; c) lidar returns and land use: no return from water, first return above ground
from buildings, multiple returns in forest, and first return on ground in open areas;
d) DSM from first return points; e) DEM from bare ground points; orthophoto is
draped over the surface for reference

interpolation gives warning about overshoots that are due to sharp change in
the surface gradient along buildings or trees (Figure 6.16). The surface is best
viewed using the 3D visualization tool nviz described in the next chapter and
used in the Figure 6.15, here we just use elevation and curvature to evaluate
the surface geometry. The next example shows how to smooth the surfaces
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a                                                                 b

c                                                                  d

e                                       f                                       g

Fig. 6.16. Topographic analysis from first return lidar data using RST: a) slope,
b) aspect, c) profile curvature, and d) tangential curvature

and extract topographic parameters at a desired level of detail, by changing
the tension and smoothing parameters:
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g.region rural_1m -p
v.surf.rst elev_lidrural_bepts elev=elev_lidruralt15_1m \

asp=asp_lidruralt15_1m pcu=pc_lidruralt15_1m \
tcu=tc_lidruralt15_1m npmi=120 seg=25 lay=0 ten=15 smo=1.

v.surf.rst elev_lidrural_mrpts elev=elev_lidruralmrt15_1m \
asp=asp_lidruralmrt15_1m pcu=pc_lidruralmrt15_1m \
tcu=tc_lidruralmrt15_1m npmi=120 seg=25 lay=0 ten=15 smo=1.

# when the jobs have finished
d.erase
d.rast elev_lidruralt15_1m
d.rast pc_lidruralt15_1m
d.rast tc_lidruralt15_1m
d.rast elev_lidruralmrt15_1m
d.rast pc_lidruralmrt15_1m
d.vect elev_lidrural_mrpts siz=1

When you compare the profile and tangential curvatures with our previous
example, you can see that only the main features of terrain geometry are cap-
tured with lower tension and the pattern is very different from the pattern of
data sampling (Figure 6.16). You can use the curvatures to approximately out-
line the forested areas and structures, because these areas have substantially
higher curvatures than open terrain surface:

d.rast ortho_2001_t792_1m
d.rast -o pc_lidruralmrt15_1m val=-2.--0.10
d.rast -o pc_lidruralmrt15_1m val=0.020-1.0

# for comparison display result with higher tension
d.erase
d.rast -o pc_lidruralmr_1m val=-2.--0.08
d.rast -o pc_lidruralmr_1m val=0.1-1.0

The curvatures obtained with lower tension lead to more complete bound-
ary definitions but would require further thinning. The higher tension result
provides sharper boundaries but with more gaps. This lidar data set does not
provide sufficiently dense data for accurate extraction of buildings and further
processing would be needed to improve the building geometry.

Using multiple return lidar data In the previous examples, we have
computed bare ground DEM (no buildings or vegetation) using preprocessed
point data and a digital surface model (DSM) from multiple return data that
includes also buildings and vegetation and is useful, for example, for visibility
analysis (Figure 6.15. We can also use the multiple return lidar data to sepa-
rate buildings and vegetation from the DEM using a new module set (Brovelli
et al., 2004). These lidar tools follow the following concept for multiple return
data:
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• if more than one return is found at a given location, then there are first
and last return points;

• if only one return is found at a given location, then this point is considered
as last point.

Due to these assumptions, last points are more likely to be ground points.
Our data set includes each return (pulse) as a separate 3D point and ground
points where only single return is found are assigned first return attribute –
some preprocessing is therefore needed to fulfill the assumptions used in the
lidar processing modules. We use the results of per cell statistical analysis
performed by r.in.xyz to extract the first return points that have only single
return and merge them with the last return points to create a preliminary
bare ground point data set that can be used with the following procedure.

The general workflow is as follows: Outlier detection is done
with v.outlier on both the first and last return data. Then, with
v.lidar.edgedetection, edges are detected from last return data. The
buildings are generated by v.lidar.growing from detected edges. The result-
ing data are post-processed with v.lidar.correction. Finally, the DEM and
DSM are generated with v.surf.bspline. We apply this procedure to our
data:

# find out where we have multiple returns
g.region rural_1m -p
d.erase
d.rast ortho_2001_t792_1m
d.vect elev_lidrural_mrpts where="return=1" col=red siz=2
d.vect elev_lidrural_mrpts where="return=2" col=green siz=3
d.vect elev_lidrural_mrpts where="return=3" col=blue
d.vect elev_lidrural_mrpts where="return=4" col=yellow

For each emitted laser pulse, lidar that was used to acquire our data set
returned up to four range values for location and elevation data. You can
see that the first return data have practically continuous coverage while the
additional returns are available mostly in forested areas where the laser beam
penetrated the canopy (Figure 6.15. For the calculation, we use only the 1st
and 2nd return:

v.extract elev_lidrural_mrpts out=elev_lidfirst_pts \
where="return=1"

v.extract elev_lidrural_mrpts out=elev_lidlast_pts \
where="return=2"

# outlier detection and separation into two maps
# 1st return
v.outlier elev_lidfirst_pts output=elev_lidfirst_clean \

outlier=elev_lidfirst_outl
d.erase
d.vect elev_lidfirst_clean siz=2
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d.vect elev_lidfirst_outl col=red

# 2nd return
v.outlier elev_lidlast_pts output=elev_lidlast_clean \

outlier=elev_lidlast_outl
d.erase
d.vect elev_lidlast_clean siz=2
d.vect elev_lidlast_outl col=red

Then we run an edge detection on cleaned last return:

v.lidar.edgedetection elev_lidlast_clean \
out=elev_lidlast_edges

# buildings/vegetation are generated from detected edges
v.lidar.growing elev_lidlast_edges out=elev_lidlast_grow \

first=elev_lidfirst_clean
d.vect elev_lidlast_grow col=green

The resulting data are post-processed:

v.lidar.correction elev_lidlast_grow out=elev_lidlast_corr1 \
terrain=elev_lidlast_terr1

v.lidar.correction elev_lidlast_corr1 out=elev_lid_dsm \
terrain=elev_lid_dtm

# DEM and DSM are generated
# Estimation of lambda_i parameter with cross validation
v.surf.bspline -c elev_lid_dsm sie=100 sin=100
v.surf.bspline -c elev_lid_dtm sie=100 sin=100

From the cross-validation, we select lambda with minimal RMS error:

# generate raster surfaces at 1m resolution
v.surf.bspline elev_lid_dsm raster=lidar_dsm lambda=0.1
v.surf.bspline elev_lid_dtm raster=lidar_dtm lambda=0.01

d.rast lidar_dsm
d.rast lidar_dtm
nviz elev_lid_dsm,elev_lid_dtm \

col=ortho_2001_t792_1m,ortho_2001_t792_1m
# with the position slider you can visually separate DSM and DEM

6.10 Volume based interpolation

Physical and chemical properties of air, water or earth mass can be mea-
sured at 3D points capturing the distribution of the monitored variable in
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3D space. To transform such data into a continuous volume represented by
voxels, trivariate interpolation or approximation is needed. In this section, we
explain multivariate and volume interpolation methods using raster voxels.

6.10.1 Adding third variable: precipitation with elevation

Multivariate interpolation is a valuable tool for incorporating the influence
of an additional variable. For example, to interpolate precipitation with the
influence of topography, the trivariate version of RST v.vol.rst can be used.
The approach is similar to the one proposed by Hutchinson and Bischof (1983),
and it is described in more detail by Mitasova et al. (1995), and Hofierka
et al. (2002). The approach requires 3D precipitation vector points (x, y, z, p)
and a raster DEM. The result is a precipitation raster map computed as an
intersection of the precipitation volume model with the elevation surface.

As an example, we compute a 30 years mean annual precipitation
raster map for North Carolina using data from over 137 meteorological
stations and a statewide 500m resolution DEM. The input vector points
precip_30ynormals_3d include 3D coordinates for each meteorological sta-
tion and 30 year monthly and annual mean precipitation as floating point
attributes. The output is a 2D raster map precip_anntopo90_500m represent-
ing spatial distribution of annual precipitation (Figure 6.17b). We set both
the 2D and 3D region horizontal resolutions to the resolution of the input
DEM (500m) and define a single depth layer between 0m and 2000m eleva-
tion (bottom and top) by setting the vertical resolution tbres to 2000m using
g.region. To ensure that the interpolation is performed only for the NC state
area we set a MASK using the provided raster file ncmask_500m. For compari-
son, we compute 2D precipitation raster maps without and with the influence
of topography as follows (Figure 6.17 a):

# set the region and MASK
g.region rast=elev_state_500m -p
g.region t=2000 b=0 tbres=2000 res3=500 -p3
r.mask ncmask_500m

# compute precipitation raster map without elevation
v.info -c precip_30ynormals
v.surf.rst precip_30ynormals elev=precip_annual_500m \

zcol=annual segmax=600
r.colors precip_annual_500m col=rules <<EOF
950 red
1000 orange
1200 yellow
1400 cyan
1600 aqua
1800 blue
2500 violet
EOF
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Fig. 6.17. Interpolation of precipitation with influence of topography: a) precip-
itation distribution using bivariate interpolation by v.surf.rst, points represent
the climate stations; b) precipitation with influence of topography interpolated by
v.vol.rst. c) elevation surface intersected by 1200mm and 1800mm precipitation
isosurfaces

d.erase
d.rast precip_annual_500m
# compute precipitation raster map with elevation
v.info -c precip_30ynormals_3d
v.vol.rst precip_30ynormals_3d cellinp=elev_state_500m \

cellout=precip_anntopo_500m \
wcolumn=annual zmult=90 segmax=700
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r.colors precip_anntopo_500m rast=precip_annual_500m
d.rast precip_anntopo_500m
r.shaded.relief elev_state_500m shaded=elev_state_shade
d.his h=precip_anntopo_500m i=elev_state_shade bright=60

We have skipped segmentation by setting the parameters segmax=600 for 2D
and segmax=700 for 3D interpolation, because the number of input data points
is only 137 and no segmentation is needed for such small data set. When you
compare the results, you can see that the most significant difference in the
spatial pattern of precipitation in the raster maps precip_annual_500m and
precip_anntopo_500m is in the mountains (western NC) where the trivariate
interpolation that takes into account topography produces much richer pat-
tern. The impact of topography is controlled by the vertical scaling parameter
zmult, as well as by the resolution and smoothing of the DEM as demonstrated
by Hofierka et al. (2002). The module v.vol.rst internally computes a 3D
(volume) precipitation function. When using the cellinp option, the precip-
itation values are extracted from the precipitation volume at the elevations
given by the elev_state_500m raster map (see Figure 6.17c). This approach
captures a more complex, spatially variable relation between precipitation and
elevation than the traditional methods that are based on statistical correla-
tion.

To illustrate the internal working of the method described above, we can
compute the associated volume map by setting the vertical resolution to 200m
(leading to 10 vertical levels). We will reduce the horizontal resolution to
1000m for speed-up the computation and run the module v.vol.rst with
the parameter (with a slightly misleading name) elev set to the name of the
resulting volume map precip_annvol_1000m:

# compute precipitation volume for illustration
# set region, compute the volume, convert to 2d
g.region nc_500m
g.region t=2000 b=0 tbres=200 res=1000 res3=1000 -p3
v.vol.rst precip_30ynormals_3d elev=precip_annvol_1000m \

wcolumn=annual zmult=200 segmax=700
r3.to.rast precip_annvol_1000m out=precip_annvol_slice
# slice horizontaly through the volume
xganim view1="precip_annvol_slice*"

# see section about visualization how to work with volumes
nviz elev_state_500m volume=precip_annvol_1000m

You can view the result in nviz (see the next chapter on visualization for
more details) or you can convert the volume to horizontal 2D raster slices and
display them as animation using xganim.
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6.10.2 Volume and volume-temporal interpolation

GRASS provides some limited experimental tools for working with volume
data. We describe the functioning tools here to encourage further develop-
ment. Some of the prototype applications are demonstrated at the Spatial
interpolation Web site.9 To illustrate the volume data processing tools, we
use the Chesapeake Bay nitrogen concentration data that can be downloaded
from the GRASS book Web site as LOCATION chesapeake (see also an ex-
ample at the NCSU Multidimensional Spatial interpolation Web site). Start
GRASS with this LOCATION and check the preset 3D region using g.region.
You can then convert the provided 3D point data (x, y, z, w) to discrete voxel
representation with v.to.rast3:

# set the vertical region
g.region b=-33 t=1 res=500 tbres=2 -p3
v.to.rast3 nitro3d out=nitro3d.vol
g.list rast3d

The flags -p3 also print the third dimension of the boundary coordinates.
The last command allows you to list the volume raster files that are available.
The continuous volume from 3D scattered point data can be created by in-
terpolation to 3D raster using the IDW method implemented as v.vol.idw,
or the RST method using v.vol.rst, with RST usually providing more ac-
curate results. The mathematical description of the method, including the
equations for computation of associated gradients and curvatures, is in the
Appendix A.1. Trivariate RST has similar properties and parameters as the
bivariate version, so the principles described in the previous sections apply
here as well (see for example impact of tension in 2D and 3D in Mitas and
Mitasova, 1999).

To illustrate the volume interpolation, you can create a volume model
of spatial distribution of the Chesapeake Bay nitrogen concentrations. To
limit the interpolation to the water body, we first create a mask for the Bay
using the shoreline provided with the data set and v.to.rast. Then you can
interpolate the masked volume using v.vol.rst:

v.in.ascii chesapeakeshore.asc out=shore
v.to.rast shore out=shore_mask use=val val=1
v.vol.rst nitro3d elev=nitro3d segmax=400 zmult=1000 \

maskmap=shore_mask

9 Spatial interpolation:
- Chesapeake Bay Nitrogen,
http://skagit.meas.ncsu.edu/~helena/gmslab/viz/ches.html
- Concentrations of chemicals,
http://skagit.meas.ncsu.edu/~helena/gmslab/viz/vol1.html
- Soil properties,
http://skagit.meas.ncsu.edu/~helena/gmslab/gsoils/ccsoil2.html

http://skagit.meas.ncsu.edu/~helena/gmslab/viz/ches.html
http://skagit.meas.ncsu.edu/~helena/gmslab/viz/vol1.html
http://skagit.meas.ncsu.edu/~helena/gmslab/gsoils/ccsoil2.html
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Note that the vertical resolution of the resulting grid is much higher than
the horizontal resolution. The parameter zmult is set so that the vertical
distances between the data points are of the same magnitude as the horizontal
distances to ensure the stability of interpolation. See the Section 7.3.4 for
various possibilities to visualize the results.

Similarly to the bivariate version, trivariate RST can compute a number
of parameters related to the gradients and curvatures of the volume model.
An experimental version of RST interpolation for 4D data (volumes changing
in time) v.volt.rst is also available for update and further development.

6.10.3 Geostatistics and splines

As we have described in the previous sections, GRASS provides fully inte-
grated spline interpolation and a wide range of geostatistical tools, including
kriging through the link with Open Source geostatistical software (see Chap-
ter 10). Because the relation between splines and kriging is a frequently asked
question, we provide here a brief explanation.

Several authors (e.g., Wahba, 1990; Cressie, 1993) have demonstrated that
splines are formally equivalent to universal kriging with the choice of the co-
variance function determined by the smoothness seminorm (also called rough-
ness penalty). Therefore, many of the geostatistical concepts can be exploited
within the spline framework.

Kriging assumes that the spatial distribution of a geographic phenomenon
can be modeled by a realization of a random function and uses statistical
techniques to analyze the data (drift, covariance) and statistical criteria (un-
biasedness and minimum variance) for predictions. However, subjective deci-
sions are necessary (Journel, 1996) such as judgement about stationarity, and
choice of a function for theoretical variogram (variogram model). Kriging is
therefore successful for phenomena with a strong random component and/or
for the problems where estimation of statistical characteristics (uncertainty)
is the key.

Splines rely on a physical model with flexibility provided by change of elas-
tic properties of the interpolation function. Often, physical phenomena result
from processes which minimize energy, with a typical example of terrain with
its balance between gravitation force, soil cohesion, and impact of climate. For
these cases, splines proved to be rather successful. Moreover, splines provide
enough flexibility for local geometry analysis, which is often used as input to
various process-based models.

However, most of the surfaces or volumes are neither stochastic nor elastic
media, but they are results of a host of natural (e.g., fluxes, diffusion) and/or
socioeconomic processes. Therefore, each of the mentioned methods has a
limited realm of applicability and, depending on the knowledge and experience
of the user, proper choice of the method and its parameters can significantly
affect the final results as illustrated by numerous examples throughout this
book.
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Graphical output and visualization

Visual analysis and communication based on graphical output is a core com-
ponent of GIS. Graphical representation of georeferenced data and creation of
cartographic models provides important means for understanding and com-
municating complex spatial relationships. GRASS includes a wide range of
graphical tools from simple two-dimensional display to sophisticated visual-
ization and animation.

7.1 Two-dimensional display and animation

The most common approach to viewing and visually exploring geospatial data
is an interactive display of two-dimensional images using color and different
area, line and point symbols. This approach is mostly based on traditional
cartography, with current computer graphics tools offering greater flexibility
in color, symbols, dynamics and interactivity that was not possible with the
traditional maps.

7.1.1 Advanced map display in the GRASS monitor

We have already described and used the basic tools for viewing maps, such
as d.rast and d.vect. You have also learned how to add a legend, scale,
and text to your displayed map using d.legend, d.barscale, and d.text in
Section 3.1.5. To give you more flexibility in creating graphical output from
GRASS, we explain some additional tools and options.

Monitor size and frames As with any other window, you can adjust the
GRASS monitor size using the mouse. To change its default size, use the UNIX
environment variables GRASS_HEIGHT and GRASS_WIDTH either in /etc/profile
or locally in $HOME/.grass.bashrc or $HOME/.grass.cshrc.

To create more complex displays, each monitor can be split into several
frames using the d.frame command. You can subdivide the GRASS monitor
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Fig. 7.1. Map display with d.frame: two frames with shaded DEM and LANDSAT
RGB color composite map (North Carolina data set). The titles are written with
d.text

into rectangular areas (frames) by mouse using the flag -c. Subsequent display
commands will be applied only to the latest defined or selected frame. In case
that you have several frames, select another one with d.frame -s and click
with left mouse button into the desired frame, accept it with right mouse
button. To remove all frames, run d.frame -e. As an example, we create an
image shown in Figure 7.1:

g.region rast=elevation -p
d.mon x0
d.font FreeSans
d.frame -e
d.frame -c at="0,100,0,50"
d.his i=elevation_shade h=elevation
echo "NC shaded elevation" | d.text col=black

d.frame -c at="0,100,50.1,100"
d.rgb b=lsat7_2002_10 g=lsat7_2002_20 r=lsat7_2002_30
d.vect roadsmajor col=yellow
d.vect roadsmajor disp=attr attrcol=ROAD_NAME
echo "NC LANDSAT RGB and major roads" | d.text col=black

The frame coordinates are defined in percent of the monitor size (bottom, top,
left, right). Using this approach you can define frame regions independently
from the true monitor pixel size. If you want to include a displayed map in a
presentation or a report, you can use d.out.file to export the image into a
PNG, PostScript, TIFF or JPEG file. Later, in Section 7.1.4, we show how to
generate high resolution output as an image file with the PNG driver.
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Legends and labels You can display a legend in a separate monitor, frame,
or you can just stretch your current monitor to make space for the legend
and place it with a mouse using the -m option. The module d.legend will use
continuous colors for the floating point (DCELL, FCELL) raster maps or when
there are too many categories for current window height for integer (CELL)
maps. Otherwise, discrete colors are used (see examples in Section 5.1.1),
although you can force continuous colors for any raster map with the flag
-s. You can list only a subset of categories or range of values for which you
want to display the legend and control number of text labels. Use the d.font
command to change the font for legend labels and other textual output in the
GRASS monitor:

# list available fonts
d.font -l
# select font from list
d.font FreeSans

There is no legend tool yet for vector data – you need to use external
graphical software to add it to the snapshot image although the new GUIs
provide some enhanced capabilities.

Labels can be added to the vector features displayed in the GRASS monitor
with v.label/d.labels. We illustrate vector labeling with rotated labels along
lines:
g.region rast=lsat7_2002_10 -p
d.erase -f
d.rast lsat7_2002_10
d.vect roadsmajor col=yellow
v.label -a roadsmajor label=roads_labels column=ROAD_NAME \

size=200 color=red ref=center,upper back=white
d.labels roads_labels

An improved label tool with collision mitigation is under development.

Color tables For raster data, working with color provides a powerful tool
for extracting important spatial information and communicating it effectively.
As we have explained in Section 5.1.1, a raster color table can be defined
by r.colors. Besides selection from a substantially extended set of prede-
fined color tables you can define the colors by their names using the option
color=rules, or you can copy a color table from another raster map using
the option raster=mymap (see examples in Section 5.1.1). For a refined defi-
nition of colors you can use the red, green, blue (RGB) color description (see
Section 8.5.1). To find suitable RGB values for a desired color, use any graph-
ics tool provided by your system. For example in gimp, find a palette under
File ; Dialogs ; Palettes. Select a palette suitable for your map and then
click on the individual colors to get the RGB values which you can then use
in r.colors. Another nice online tool is the ColorBrewer1, designed to help
1 ColorBrewer Web site, http://colorbrewer.org

http://colorbrewer.org
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Fig. 7.2. Shaded elevation maps: shade map with sun azimuth=270◦ from north
(left) and shade map with sun azimuth=90◦ (right), sun altitude=30◦ above horizon
(North Carolina data set)

people select good color schemes for maps and other graphics. You can find
additional examples of rules for creating the color tables in the Sections 5.4.3
and 5.5.2 and, of course, in the manual page for r.colors.

7.1.2 Creating a 2D shaded elevation map

To enhance the perception of topography represented by a DEM, a shaded
elevation map can be generated quite easily as you have already learned in
Section 5.4.4. A special color transformation is used to prepare a translucent
view of the DEM (or any other raster map) and the shade map. It is based
on the IHS color transformation which is explained in greater detail in Sec-
tion 8.5.1. First, we generate a shade map based on the sun position using
the script r.shaded.relief. By default, the name of the resulting shade map
is created by adding .shade name extension to the name of the elevation file.
This map is then used to display the elevation map with shaded topography
by d.his:

g.region rast=elevation -p
r.shaded.relief elevation shadedmap=myelev_shade \

altitude=30 azim=270 zmult=3
d.erase
d.rast myelev_shade
d.his h=elevation i=myelev_shade

# display a brighter map
d.shadedmap rel=myelev_shade drape=elevation bright=60
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You may experiment with different values for altitude, azimuth, and zmult
when creating the shade map to highlight various topographic features. Fig-
ure 7.2 shows the effects for different sun azimuth angles. You can also apply
shading to other types of surfaces when studying their structure.

If you want to save the shaded map composite into a new raster map, use
r.his instead of d.his. It creates three maps representing the red, green and
blue channels (because the original map is 24bit, it writes three 8bit maps).
In our next example, we call them el.b, el.g, el.r. You can then use the
module r.composite to combine the three color maps within GRASS into a
single shaded elevation map dem.shaded:

r.his h=elevation i=myelev_shade b=el_b g=el_g r=el_r
r.composite b=el_b g=el_g r=el_r out=myelev_shaded_10m
d.rast myelev_shaded_10m

The module r.composite provides optional parameters to control the color
levels to be used for each color component (default color levels per channel:
32). This default number of levels results into a total of 32768 possible colors
(equivalent to 15bit per pixel). Due to limitations in the GRASS display color
model both r.composite and d.rast will significantly slow down if more colors
are used. However, for human eye, this number of grey shades for each channel
is quite sufficient. You can also export the three maps and compose them into
24bit shaded elevation image using external graphics tools. Alternatively you
can export the map using r.out.ppm3 which writes a 24bit PPM file. Note that
the composite shaded elevation map is only usable for visualization purposes
as the elevation cell values are modified due to the shading.

7.1.3 Using display tools for analysis

We have already used GRASS monitor for query of raster and vector maps
using d.what.rast and d.what.vect. Additional display tools can be used to
view results of statistical analysis or to add graphical coordinate information
to your map. Correlation between a pair of raster maps, in our case bare
ground elevation models (NED) and SRTM DSM, and histograms can be
displayed as follows:

g.region swwake_30m
d.erase
d.correlate layer1=elev_ned_30m layer2=elevation
d.correlate layer1=elev_ned_30m layer2=elev_srtm_30m

g.region swwake_10m
d.histogram elevation
d.polar aspect undef=0

The results of correlation show that the 30m and 10m NED have excellent
correlation as they come from the same data source (bare earth lidar DEM).
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The second example shows correlation between the NED and SRTM data,
with the SRTM apparently shifted due to vegetation and buildings (as we have
already explained, it is DSM). The polar diagram for the aspect map shows
balanced distribution of values in all directions. We have set the parameter
undef=0 to skip cells with zero aspect values (mostly lakes) that would create
a spike in the diagram in the eastern direction.

You can add coordinate information to your map as a projected or geo-
graphic coordinate grid or a ruler along the map borders using the command
d.grid:

d.rast elevation
d.grid size=5000 col=brown
d.grid -n size=1000
d.grid -g size=0:02 col=black

You can also examine your raster data at pixel level by displaying the pixel
values as numbers or, in case of aspect, as arrows:

g.region rural_1m res=30
d.erase
d.rast elev_ned_30m
d.rast.num elev_ned_30m dp=0
# use -f to erase the numbered raster
d.erase -f

# display aspect with arrows and flowlines
d.rast.arrow aspect
r.mapcalc "elev_nedrural_30m=elev_ned_30m*1."
r.flow elev_nedrural_30m fl=flowline skip=3
d.vect flowline

Vector features can be interactively extracted using graphical extractor in
the GRASS monitor d.extract. In the following example, we will extract a
forested area from the wake county planimetry map and store it as a separate
vector map:

g.region rural_1m
d.erase
d.rast ortho_2001_t792_1m
d.vect P079215 col=yellow

# extract the forest by clicking on its boundary
# note that it has two segments
d.extract P079215 out=forest_rural
Select vector(s) with mouse
- L: draw box with left mouse button to select
- M: draw box with middle mouse button to remove from display
- R: quit and save selected vectors to new map
L: add M: remove R: quit and save
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d.vect forest_rural col=green

You may find it easier just to click twice on the segment that you want to
extract rather than draw a box, which may include the features that you don’t
want to include.

Animations in 2D space If you have a series of data (temporal, spatial,
3D cross-sections) you can animate them using xganim. We have already used
xganim to display time series from raster-based modeling in Section 5.5 and
to view volume data in Section 5.6. Up to four different map series can be
animated simultaneously – a task often needed when analyzing outputs from
simulations of landscape processes. You can either list all the maps by name
or use wildcards, however, you need to be careful about the numbering sys-
tem that you use to ensure proper order of maps, and keep the possibility to
insert additional maps. The program provides a simple interface with controls
for speed, looping, direction of play, running and stopping the animation,
and stepping through the frames. If the animation is “jumpy”, it is usually
because your pattern does not change smoothly – you can add additional
frames by interpolating between the maps. Often, a simple average between
two raster maps is sufficient (use r.mapcalc). Animation is also useful for
browsing through a larger set of maps and as a preview tool when preparing
data for animation in 3D using nviz. To save your animation slides as an
MPEG file, use r.out.mpeg (see the manual how to use wildcards). This com-
mand requires an additional encoding program from the netpbm tools (see
Section 4.1.4).

7.1.4 Monitor output to PNG or PostScript files

Besides the GRASS monitor, it is possible to output the map display to other
types of graphics drivers such as PNG (read more about the drivers in the
GRASS User manual2, or by running g.manual displaydrivers).

PNG file driver While the regular GRASS monitor displays the raster map
at the resolution given by your display system, the PNG driver was imple-
mented to create a user defined, high resolution output in PNG image format.
It uses the PNG library3. True color output is supported. The PNG format
(Portable Network Graphics) is a lossless, highly compressing image format
designed as a replacement for GIF and TIFF which may contain patented
algorithms (note that the JPEG algorithm compression is lossy and is often
inadequate).

The use of the driver is similar to the use of the GRASS monitor with the
output stored in a PNG file when the PNG driver is stopped. The resolution
2 GRASS 6 online user manual, http://grass.itc.it/gdp/manuals.php
3 PNG library, http://www.libpng.org/pub/png/

http://grass.itc.it/gdp/manuals.php
http://www.libpng.org/pub/png/
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of the resulting image, its background color, true color support, and the name
of the output file are controlled by GRASS variables and UNIX environment
variables (see the manual page for the PNG driver). For example, you can
create a PNG image called myimage.png with the size of 1500 × 1350 pixels
with elevation and major roads maps as illustrated by the following sequence
of commands (here we use syntax for bash and similar shells):

g.region swwake_10m -p
GRASS_TRUECOLOR="TRUE"
export GRASS_TRUECOLOR
GRASS_WIDTH=1500
GRASS_HEIGHT=1350
GRASS_PNGFILE=myimage.png
export GRASS_WIDTH GRASS_HEIGHT GRASS_PNGFILE
d.mon PNG

Then, display a raster map and a vector map from our NC sample data set
and save the image by stopping the driver:

d.rast elevation
d.vect -c roadsmajor
d.mon stop=PNG

The PNG file called myimage.png will be automatically written into your cur-
rent directory. If you do not define the related environment variables, your
output will use the default settings; that means 8bit colors, the 640 × 480
image size, and the file name map.png.

PostScript file driver The use of the driver is similar to the use of the
PNG driver with additional variables for paper size and orientation. For ex-
ample, you can create a postscript file for printing a rich content, high quality
image called myimage.png with the size of 3000 × 2700 pixels that includes
shaded elevation, streams and street maps as illustrated by the following se-
quence of commands (here we use syntax for bash and similar shells):

g.region swwake_10m -p
GRASS_TRUECOLOR="TRUE"
GRASS_PSFILE=myimagelarge.ps
export GRASS_TRUECOLOR GRASS_PSFILE
GRASS_WIDTH=3000
GRASS_HEIGHT=2700
GRASS_LANDSCAPE="TRUE"
export GRASS_WIDTH GRASS_HEIGHT GRASS_LANDSCAPE
d.mon PS

Then, display the selected raster and vector maps from our NC sample data
set and save the image by stopping the driver:

d.shadedmap rel=elevation_shade drap=elevation bright=60
d.vect streets_wake
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d.vect streams col=blue
d.mon stop=PS

The PNG file called myimagelarge.ps will be automatically written into your
current directory.

7.2 Creating hardcopy maps with ps.map

The graphical tools for creating hardcopy maps in GRASS are relatively lim-
ited because of its focus on modeling and spatial analysis rather than computer
cartography. The hardcopy maps can be created by a text-oriented but power-
ful Postscript graphics tool or in combination with other Open Source graph-
ics programs. Hardcopy maps can be created by printing Postscript graphics
generated by ps.map. The Postscript graphics is produced from a control file
describing the layout and map style. All raster and vector data are supported,
as well as coordinate grids, user defined icons, and a bar scale.

You may try ps.map with the North Carolina data set and draw a raster
and a vector map at a given map scale. The map definitions are saved in a
text file. A sample text file psmap.def for the geology map of North Carolina
may look like this (find an extended version at the GRASS Book Web site):

paper a3
end

raster geology 30m
outline

color black
width 1
end

colortable y
where 1 6.5
cols 4
width 4
font Helvetica
end

setcolor 6,8,9 white
setcolor 10 green
vlines roadsmajor

width 0.1
style 0111
color grey
masked n
end

labels roads labels
font Helvetica
end

text 30% 100% NC Wake Geology map (State Plane metric, 1:100000)
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color red
width 1
hcolor black
hwidth 1
background white
size 500
ref lower left
end

vlegend
where 4 0
font Courier
fontsize 8
end

point 40% 60%
color purple
size 0.5
symbol basic/diamond
masked n
end

scale 1:100000
grid 2500

color grey
numbers 2 grey
end

end

The definition uses special labels for the roads generated with v.label (see
Section 7.1.1). The module is run on command line with these map definitions
to produce a Postscript map file:

ps.map input=psmap.def output=geology_wake_nc.ps

The module generates the Postscript map which may require some time de-
pending on the input map size, the map scale and the selected paper size.
Please refer to the manual page to learn more about this module. After the
map is generated, you may preview it with a Postscript interpreter such as
ghostscript (a convenient graphical user interface for ghostscript is gv). If
the map is as desired, you can send it to the printer:

lpr -s -P printer geology_wake_nc.ps

The optional flag -s avoids generating another temporary copy of the file in
the printer queue. Enter the correct printer name for printer. You can also
convert the map into PDF format using ps2pdf or a similar tool available on
most systems.
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7.3 Visualization in 3D space with NVIZ

The advanced, interactive visualization tool nviz can be used to view the
data in 3D space and to perform visual analysis of multiple raster surfaces,
vector maps and volumes. The module is fully integrated with the GRASS
data structure and runs directly from the GRASS prompt. It also supports
scripting for producing dynamic visualizations via animation. The module
provides the following capabilities:

• visualization of 2D raster maps as multiple surfaces in 3D space, with the
capability to use different raster maps for surface topography, surface color
and transparency;

• interactive positioning, zooming, and z-scaling;
• interactive lighting with adjustable light position, color, intensity and sur-

face reflectivity;
• display of multiple vector maps draped over selected surfaces or flat at a

selected height;
• multiple vector point data maps with attributes displayed in their 3D

position or draped over selected surfaces;
• animation capabilities with two options:

– key-frame animation for creating fly-by’s,
– scripting for automatically generating complex animations from series

of maps;
• interactive query of raster data displayed as a surface and color;
• interactive slicing through multiple surfaces using cutting planes;
• display of volume data using isosurfaces and cross-sections.

The nviz module is enhanced quite frequently, so some differences between the
latest version and our description are possible. The most important updates
will be posted on the GRASS Web site. You can also learn how to use nviz
from Nviz tutorial that can be accessed by clicking on the help button of its
interface.

7.3.1 Viewing surfaces, raster and vector maps

You can start the program without defining any maps by nviz -q and use the
interface to load your data. Alternatively, you can define the maps that you
want to visualize on the command line. For example, to view the elevation
surface with major roads, and schools from our North Carolina data set, run
(use elev_ned_30m for both region and elevation if you have less than 1GB
memory):

g.region rast=elevation -p
nviz elevation vect=roadsmajor points=firestations,hospitals
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Fig. 7.3. Land use map draped over DEM with overlayed streams and roads as
vector line data, and hospital and firestation locations as point symbols (pyramids
and spheres, respectively)

The program opens a graphics window with a coarse model of the elevation
surface and a control panel window. Depending on the size of your raster map,
the surface may not be rendered at its full resolution and the view may not
be optimal. In the following paragraphs, we explain how to adjust it to create
a desired 3D view of studied area.

Controlling the view The position of the viewing point, viewing direction,
perspective (zoom-in, zoom-out) and tilt of the surface can be adjusted using
the Controls menu (Figure 7.3). Use the left mouse button to move the puck
around the viewing direction square to change the position of viewer and the
direction of view – the coarse model of your DEM will move simultaneously
making it easier to find the desired viewing position. The perspective slider al-
lows you to zoom-in and zoom-out while the height slider controls the viewing
height. The z-exag slider is used to interactively modify the z-exaggeration (it
effectively multiplies the elevation data); note that it also changes the height
of the view so you may need to re-adjust it. If you cannot achieve the desired
view with the sliders or if you want to define an exact value for any of the
viewing variables, you can type them into the related field and type <ENTER>
to continue.

To focus on an area off the center of your map, use the Look here button
to select a new center of view with a mouse click (pin your surface in your
focus area). All movement of the surface will be centered around this point.
To put the focus back on the center click the center button. To get an ortho
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Fig. 7.4. Displaying schools as 3D point symbols sized according to the school
capacity

view, click on the top button and use the perspective slider to zoom in and
out. With the reset button you will get back to the default behavior. The
twist slider allows you to tilt the displayed surface to simulate the view from a
turning airplane. The surface with all other maps will be rendered after each
change. If you are using multiple steps to adjust the view of your surface,
you can switch off this automatic rendering using the buttons from the Show
features menu in the upper part of the main panel.

Modifying properties of surfaces The viewed surfaces are managed us-
ing the options provided by the Visualize ; Raster Surfaces menu (Figure 7.3).
In the lower part of this panel you can adjust the drawing style as well as the
level of detail for the rendered surface. By default, the surface is rendered as
colored polygons with Gouraud (smoothed) shading, using coarser resolution
while the surface is interactively manipulated. To change the surface display
to a mesh (wire) or colored surface with a mesh, select the desired option
from the panel under Coarse style. For fast interactive manipulation, you can
select wire. To render the surface at the current region resolution (as given by
g.region), set the Resolution: fine to “1”. Note that if the current resolution
is higher than the resolution of the raster file used for topography, the raster
file is automatically resampled leading to the discontinuous surface shown by
Figure 5.4 (see Chapter 5). To speed up rendering while exploring the viewing
parameters, you can lower the rendering resolution (increase the cell size) by
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choosing a higher value of polygon resolution. If you are using any style that
involves wire, you can adjust its grid spacing with Resolution: coarse.

To drape a new color map over the surface, select a new raster map using
the color option from the Surface Attribute menu, for example landclass96
from the PERMANENT MAPSET in our North Carolina example. After
loading the raster map, use DRAW to render your elevation surface with the
new color map (Figure 7.3). To overlay an additional raster map, you can
use transparency. However, for its meaningful application, the raster map
for transparency should be fairly simple. A possible use may be to suppress
(lighten) the areas outside a studied watershed, you can try it out by setting
the transparency to the raster map basin_50K. You can remove the trans-
parency by setting it to a new constant 0. To render only a subset of the
surface, you can define a raster map to be applied as a mask using the mask
option from the Surface Attribute menu.

Displaying vector lines and polygons If you would like to add a vector
line or polygon map or select a different color for your vector map, open the
vector panel by choosing Visualize ; Vector Lines/3D Polygons. You can load
a vector map using the New button, e.g. streams. After loading, the switch
Display on surface(s) is automatically activated for all surfaces (when working
with multiple surfaces, switch off those on which you do not want to drape
your new vector data). You can adjust the line width and color by using the
appropriate buttons. For example, select Color and pick a lighter blue for the
currently loaded streams and set the width to 1, then select roadsmajor as
Current vector map and assign it black color, keep the width to 2. If the lines
are not fully rendered, move them slightly above the surface using the vector
height above surface slider, if it is too high, you can type in the number (0.5
works well both for the streams and roads in our example). You can use Draw
current in the vector panel to drape only the selected vector file. To render the
surface with all vector maps draped over it, use the Draw button on the top
of the movement panel. We have already shown how to generate 3D vector
representation of buildings and view them in nviz in the previous chapter,
Section 6.5.6.

Displaying vector points To modify the symbols used for the vector point
data, go to Visualize ; Vector Points (Figure 7.4). It is similar to the vector
lines and polygons panel – you can use it to add or delete a vector points map,
select the surface on which the current vector point data should be draped,
and select the symbol, including its color and size. For example, we can select
hospitals, change the icon to diamond, color to purple, and size to 300 to
clearly distinguish them from firestations. If you have 3D vector point data,
you can also display them in 3D position rather than draped over the surface.
This is particularly useful when evaluating interpolation and smoothing of
surfaces as you can see how much the surface deviates from the given data
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and where the highest deviations are, or for visualization of multiple return
lidar data (Figure 6.15).

You can create more sophisticated displays for quantitative point data
using the option thematic mapping for vector points. When you click it, you
will get a set of buttons that allow you to adjust the color and size of the
selected icon according to values of the selected attribute. For example, start
nviz as follows:

g.region rast=elevation -p
nviz elevation col=landclass96 vect=roadsmajor \

points=schools_wake

Open Visualize ; Vector points, click the thematic mapping button, select
histogram for icon type, set icon size to 80 (this will adjust the size of the
symbol footprint). Then click on size in the first row and select an attribute
that will be used to adjust the height of the histogram point symbol – we
choose the school capacity CORECAPACI. In the size selection panel, we select
Auto option, but you can highlight or suppress certain values by specify-
ing the symbol height for selected attribute values or just change the max-
imum height from 10 to 6 to get a better image. You can further enhance
the symbols by adjusting the color (we select light blue to to dark blue for
PROJ_CAP). You can add aditional symbols to the histogram based on other
variables, for example, select the size for second variable using the attribute
representing the number of mobile classrooms MOBILECAPA. Adjust the max-
imum to 3, set the colors for this variable from yellow to red and change
the symbol in the third column from default to sphere to clearly distinguish
it from the core capacity variable. You can see that the schools with the
larger number of mobile classrooms are smaller schools, many of them in
suburbs with many young families with children. You can learn more about
the multiatribute point data visualization from the related workshop mate-
rial presented at the FOSS4G2006 conference http://www.foss4g2006.org/
contributionDisplay.py?contribId=45&sessionId=59&confId=1.

Controlling light Interactive light manipulation is useful for detecting
noise or small errors in surfaces as well as for enhancing the 3D perception
of surface topography and creating special effects. The panel Appearance ;

Lighting is used to change the lighting parameters such as the light color,
brightness, ambient (dispersed) light and a position of light source (height
and direction) by using the appropriate sliders and a square with puck. In-
teractive adjustment of lighting is made easier by a sphere which appears in
the center of the graphics window and shows the current lighting effects as
the changes are made (Figure 7.5). The sphere disappears when the surface
is rendered, for example with the Draw button.

Adding legends and labels To add a title or other text to the images
displayed by nviz, open the Appearance ; Labels panel or that allows you to

http://www.foss4g2006.org/contributionDisplay.py?contribId=45&sessionId=59&confId=1
http://www.foss4g2006.org/contributionDisplay.py?contribId=45&sessionId=59&confId=1
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Fig. 7.5. Interactive control of light aided by a sphere

type in a short text and place it in the graphical window with a mouse. The
legend can be created through the Legends panel with options similar to the
command d.legend. You can again place it with a mouse – click left button
to identify the upper left corner and right button for the lower right corner.
Our displayed land cover map, loaded in the previous examples (Figure 7.3)
has 7 classes, click show labels to add the land cover type for each class. The
legend is automatically redrawn with the image, to remove the legend, click
Erase legend. You can also add north arrow and a simple scale - place it in a
location close to you and then farther from you to explore the difference in
scale in the 3D view. Adding the fringe further enhances the 3D model, you
can set the bottom elevation to 50m and click the buttons on all sides, the
click on Draw Fringe will add it to the displayed surface.

Saving images, state and view settings To save the created image, go
to File ; Save image as and select one of the formats that you want to use
(TIFF, PPM). You can transform the saved image to JPEG, Postscript or
other formats using a graphics program such as gimp. To render and save
an image at high resolution (for example, at 5000 × 5000 pixels), use the
Maximum Resolution PPM option. The image will be split, rendered piece by
piece and then patched together.

Using File ; Save state, you can save the settings of your current 3D
visualization in your current directory. You can restore the settings by File
; Load state. Using this capability, you can save and quit your work and
then start it again without losing just the right light and view that you have
found. It is highly recommended to save the state regularly so that you can go
back and restore your settings at later time. You can also save your 3D view
settings in a GRASS 3d.view file within the current MAPSET using the Save
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3d settings option from the File menu or load the settings from a previously
created file to get specific viewing parameters.

7.3.2 Querying data and analyzing multiple surfaces

To use nviz for both qualitative and quantitative analysis, you can perform
3D queries. Choose Visualize ; Raster Query or Vector Query and activate the
query on/off switch. You can select which attributes you want to be included
in the query using the button Attributes. By pointing the mouse at a location
of interest, you will get its coordinates including the elevation, draped raster
map category, label, and color expressed as RGB triplet, and a distance from
previous queried location. You can also use nviz to perform small digitizing
tasks in 3D by querying and piping the result into a file defined file using the
Send results to button and then editing the saved text file to desired format.
When you choose Vector Query, again click query on/off switch and then select
vector maps by clicking on Choose map(s). Select from the listed maps using
the >> button to add a map and << button to remove a map from query. We
select roadsmajor and firestations, click OK and then click on a displayed
line or a point symbol – the results are shown in a special window for each
vector map. The principles used in the algorithm for 3D spatial query are
described by Brown et al. (1995).

Working with multiple surfaces Multiple surfaces are useful for visual
analysis of terrain change (Mitasova et al., 2005b), cut-and-fill during con-
struction or display of multiple soil horizons or geological layers. We illustrate
the tools using the lidar-based DSM elev_lidruralmr_1m and the bare ground
DEM elev_lidrural_1m that we have created in Section 6.9 (Figure 7.6):

g.region rural_1m
nviz elev_lidrural_1m,elev_lidruralmr_1m

Both surfaces are by default displayed based on their 3D coordinates – you
can see that the DSM surface is above the bare ground DEM. The relative
position of the displayed surfaces can be changed using the position menu,
which opens after clicking on the Visualize ; Raster Surfaces ; Position but-
ton. You can change the relative vertical position of the current surface using
the z slider or you can move the surface around using the cross in a horizontal
position square. Using this interface, you can arrange your surfaces within
your graphical window in a way useful for visual analysis; for example, next
to each other, as shown in Figure 7.6. To get the surfaces in their original
position click Reset for each of them.

When comparing multiple surfaces, cutting planes can be very useful.
Choose Cutting plane from Visualize menu, select a cutting plane from Ac-
tive cutting plane (you can have up to 8) and set its appropriate orientation
using the Rotate slider (Figure 7.6). You can also slide the rotate slider to
interactively cut through your surfaces, or you can slide the cross to move the
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cutting plane through the surfaces in fixed direction. The color of the cutting
plane can be selected from the set shading menu to the color of the top or
the bottom surface, blend of those two colors, transparent grey or clear. Make
sure that all your surfaces have the same resolution, otherwise the cutting
plane won’t be filled with color.

When working with multiple surfaces and cutting planes, keep in mind that
in geoscience applications, the vertical spatial variability requires resolutions
much higher than are the resolutions typically used in a horizontal plane.
Therefore, a global vertical exaggeration (z-exag) factor is applied for better
visual perception of terrain. However, to visualize vertical relationships with
sufficient detail, relative exaggeration of depths has to be used. For example,
for multiple surfaces representing soil horizons, the depths often need to be
exaggerated relative to terrain surface (Brown et al., 1995), you can find a
related tool under Visualize ; Scaled difference.

7.3.3 Creating animations in 3D space

Animation is a powerful tool for exploring large data sets and for analyzing
time series observations or modeling results. Fly-by’s over digital elevation
models or multiple surfaces can be created by using two types of key frame
animations. Scripting with file sequence tool provides capabilities to build
more complex animations with multiple maps including combination of sur-
faces, vector data and volumes.

Creating a fly-by You can directly control the position and movement of
the displayed surface using the View method ; fly by selecting the basic, simple
and orbit options. The relevant panel offers fly help button that explains how
to use mouse buttons to move the surface in different modes and directions.

Animations simulating flying over a surface can be created using anima-
tion panels which allow you to define key frames, representing key positions
defining your path and then render and save the surface views along this path.
Basic control of the fly-by is provided by the menu Visualize ; Simple An-
imation (see Figure 7.7). First, enter the number of images to be rendered
as set max. frames. The default is 25, a larger number is suggested to get an
interesting flight, for example, type in 100 followed by <ENTER>. Now select
your initial viewing position using the viewing direction puck and perspective,
height or twist sliders in the upper movement control panel. Click on Add to
save this position. Then select the next position on the key frame (time) axis
by dragging the thick vertical blue line to the right and define the second
key (viewing) position by adjusting the direction, perspective, height or twist.
Save your second key frame by clicking on Add. You can continue moving
your viewing position and adding key frames until you reach the end of the
time line. Additional frames will be automatically interpolated between the
key frames as indicated by the black bars on the time axis.



7.3 Visualization in 3D space with NVIZ 281

Fig. 7.6. Viewing multiple surfaces next to each other and in their relative position
with a cutting plane (elevation surfaces computed from the first return and bare
ground lidar elevation data, two bottom surfaces represent the hypothetical ground
water maps generated in the raster modeling section)

To avoid a jumpy flight, it is useful to start with a small number of key
positions, for example, by locating four key frames after each 25% segment on
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Fig. 7.7. Fly-by animation menu in nviz

the time axis. After defining the key positions and a number of key frames,
run the coarse resolution movie by clicking on the play button (black right
arrow) to get some feeling for how the controls work and see how fast and
smoothly you are flying. If the flight is too fast, add more frames. You can also
control the number of frames between the key positions by dragging the green
triangle on the Key Frames axis. To make the fly path smoother, activate the
Spline button and control the sharpness of the curves on your path using the
Tension slider. You can add vector maps to your surface by switching on the
Show lines and Show points buttons.

After previewing the animation by running the coarse resolution fly-by, you
can render the full resolution images for your movie by selecting the Run and
save and providing a filename (e.g. film). You can select MPEG-1 encoding if
your GRASS installation was configured with ffmpeg support, otherwise the
result will be a series of image files, which are automatically numbered (e.g.,
film00000.ppm - film00099.ppm). The images are then used to create a movie
file using external tools. Depending on the resolution, image size, and speed of
your computer, the procedure may take some time, especially if fine rendering
mode is used.

If you just want to try out animation, the simple animation tools described
above are enough; however, for a serious animation work it is worth learning
and using the Keyframe animation panel which provides control over the frame
rate and key frame time as well as refined control of the camera (viewing
position and direction). The use of Keyframe animation is described in detail
in the Nviz tutorial.

Converting series of images to movies When not using MPEG-1 en-
coding, the rendered images are saved in the PPM or TIFF format. To create
an animation, you can merge them into an animation file using external tools
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such as ppmtompeg (netpbm tools, see Section 4.1.4). To create an animated
GIF (suitable for animations from a smaller number of frames – 300 and less)
you can use the command convert available on most systems (see the manual
for all options):

convert -delay 10 -loop 3 water*.ppm animation.gif

You can find additional advice and links to various tools for encoding series
of images into animations at GRASS Wiki help page for Movies4.

Creating animations using scripting Complex animations involving
multiple surfaces, vector and volume data, cutting planes, changing views and
light parameters can be created using the scripting capabilities of nviz. Ani-
mations using dynamic maps can be used, for example, to view and analyze
the following models and data (Mitas et al., 1997):

• results of dynamic simulations such as water, sediment, pollutant trans-
port, fire spread, migration of animals, traffic, and urban growth;

• time series of observed data from monitoring and remote sensing, such
as movement of pollutants, change in rainfall or temperature, past urban
growth or vegetation change;

• behavior of a method or algorithm, for example, by animating the results of
parameter scans (impact of tension parameter on an interpolated surface,
or impact of land cover factor on erosion and deposition pattern, etc.).

You can create scripts for creating animations by using the basic scripting
tools in nviz. While the scripting is turned on, the performed visualization
tasks are saved in a script file, so that they can be repeated as desired.

Dynamic surfaces can be created using the file sequence tool available
under Scripting ; Script Tools. The use of these tools is described by a step-by-
step example in the Nviz tutorial and in a more up-to-date workshop material
on Multiple Surface Visualization presented at the FOSS4G2006 conference5.
Many examples of animations created by scripting can be found on the Spatial
modeling and visualization Web site.6

7.3.4 Visualizing volumes

We have already browsed through volume raster data using xganim in Sec-
tion 5.6. Volume data can also be visualized using isosurfaces and cross-
sections in nviz, see Figure 7.8. In the next example, we display the volume

4 GRASS Wiki help page for Movies,
http://grass.gdf-hannover.de/wiki/Movies

5 “GRASS 3D and visualization” workshop material, http://www.foss4g2006.org/
contributionDisplay.py?contribId=45&sessionId=59&confId=1

6 Spatial modeling and visualization,
http://skagit.meas.ncsu.edu/~helena/gmslab/

http://grass.gdf-hannover.de/wiki/Movies
http://www.foss4g2006.org/contributionDisplay.py?contribId=45&sessionId=59&confId=1
http://www.foss4g2006.org/contributionDisplay.py?contribId=45&sessionId=59&confId=1
http://skagit.meas.ncsu.edu/~helena/gmslab/
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Fig. 7.8. Volume (3D raster) visualization integrated in nviz: isosurfaces (K=0.20
and K=0.24 – violet and red, respectively) representing the soil erodibility volume
created in the Section 5.6. The volume is shifted lower for better visibility. Tilted
cross-section plane illustrates the relation between isosurface and voxel space

data generated in Section 5.6 (soils_Kvol). First make sure that you have
the 3d region set, check the range of values in your volume map (see 5.6), and
then start nviz:

g.region rural_1m res3=3 t=155 b=102 tbres=2 -ap3
r3.info soils_Kvol
nviz elev_lid792_1m

Then load your volume data Visualize ; Volumes, click New and select
soils_Kvol. Set Polygon resolution to 1 and click Add. The Visualization type
is isosurface, so with New constant you set its value, we select 0.27, click Accept
and your level shows up in a list (Figure 7.8). We can add level 0.20 and then
draw the image. The isosurfaces for this data set are ribbons with different
heights, because the volume was created from a 2D raster. You can change
the relative position of your volume and terrain surface using the Position
panel for Volumes or for Raster surfaces and adjust your viewing position, z-
exaggeration and light the same way as for 2D raster surfaces. You can explore
display of closed isosurfaces by applying the procedure to elev_state_500m
in combination with annual precipitation volume that we have computed in
Section 6.10. For more sophisticated visualization, we describe the export to
external tools.

7.4 Coupling with an external OpenGL viewer Paraview

After exporting with r3.out.vtk, GRASS 3D data can be displayed in
paraview7 visualization software. This tool offers various methods to render

7 Paraview software, http://www.paraview.org

http://www.paraview.org
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Fig. 7.9. Raster and vector visualization with Paraview

semi-transparent volumes, isosurfaces, movable cutting planes and isolines.
Also 2D raster maps can be exported (r.out.vtk) as well as 2D/3D vector
data (v.out.vtk). We export the 2D/3D data from Section 6.5.6:

g.region rast=elev_lid792_1m -p
# drape orthophoto over DEM for export
r.out.vtk ortho_2001_t792_1m out=ortho_dem_1m.vtk \

elevation=elev_lid792_1m
v.out.vtk bldg_resid_3d out=bldg_resid_3d.vtk
v.out.vtk bldg_cmcl_3d out=bldg_cmcl_3d.vtk

# make P079215 a 3D map, using larger 6m DEM
v.drape P079215 rast=elevlid_D792_6m out=P079215_dem
v.out.vtk P079215_dem out=P079215_dem.vtk

paraview --data=ortho_dem_1m.vtk
# - load the maps bldg_resid_3d.vtk, bldg_cmcl_3d.vtk,
# and P079215_dem.vtk via menu
# - set the color table of ortho_dem_1m to grey shade or color

Figure 7.9 illustrates the use of Paraview. You can learn more about using
Paraview with GRASS from the related workshop material presented at the
FOSS4G2006 conference8.
8 “GRASS 3D and visualization” workshop material,
http://www.foss4g2006.org/contributionDisplay.py?contribId=
45&sessionId=59&confId=1

http://www.foss4g2006.org/contributionDisplay.py?contribId=45&sessionId=59&confId=1
http://www.foss4g2006.org/contributionDisplay.py?contribId=45&sessionId=59&confId=1
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Image processing

Remote sensing, as a rapidly advancing technology for gathering environmen-
tal data using a wide range of satellite and airborne platforms, plays a major
role in spatio-temporal earth surface monitoring. Throughout this chapter, we
introduce the basic remote sensing methods and explain their use in GRASS.
The tools for image processing and remote sensing applications will be illus-
trated using LANDSAT-TM5/7 scenes available in the North Carolina data
set (MAPSET landsat). Furthermore, an annual time series of daily MODIS
Land Surface Temperatures (LST) from Aqua and Terra satellites is available
in MAPSET modis2002lst. These image scenes were projected and a subset
was created for the Wake county.

GRASS provides several modules devoted to image processing. Image data
are processed using the raster data model; therefore, all raster modules can be
applied. To distinguish the specialized image processing tools from the others,
they are prefixed with “i.” (example: i.class).

8.1 Remote sensing basics

Before describing numerous methods implemented in GRASS in detail, we
will explain basic concepts of satellite remote sensing. As this relatively short
section cannot replace related textbooks, references will be given where ap-
propriate.

8.1.1 Spectrum and remote sensing

In principle, there are different remote sensing approaches: optical (passive),
thermal (passive), and microwave (active) systems. Optical remote sensing
is based on the measurements of radiation reflected from surfaces. It usually
covers the visible (VIS) and infrared (IR) range of the spectrum. The re-
flected radiation in near (NIR) and middle infrared (MIR) spectrum behaves
similarly to visible light, while thermal radiation (TIR) is surface emitted
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radiation. Longer wavelengths are in far infrared (FIR) range and in the im-
portant microwave range. See Figure 8.1 for a portion of the spectrum. The
optical region spans at wavelengths from 0.3-15µm where energy can be col-
lected through lenses. A subdivision of this optical region is the reflective
region, 0.4-3.0µm. The adjacent subdivision of the optical spectral region is
the thermal spectral range which is between 3-15µm, where energy is pri-
marily emitted from surfaces rather than reflected. Far infrared ranges from
15µm-1mm, microwaves from 1mm-1m. Optical scanners always operate in a
limited spectral range per channel.

As opposed to optical systems, radar systems “actively” emit microwaves
and measure the backscattered energy. The major advantage of radar is the
relative independence from weather and solar illumination effects. In case
of an overcast sky, the earth surface is hidden by clouds for optical satel-
lites. However, radar satellites can continue to deliver usable images since
microwaves pass through the cloud cover (this is of special interest in the
tropics). Radar analysis is not covered in this book because it is fairly com-
plex. For details please refer to the microwave remote sensing literature, e.g.,
the book by Oliver and Quegan (1998). Additional tutorials are available on
the World Wide Web.1 Besides tools for optical data, GRASS also provides
basic capabilities to process radar and thermal data.

Another active remote sensing technique is lidar (Light Detection and
Ranging) which is one of the most recent technologies in 3D surveying and
mapping. A laser onboard a plane sends out laser pulses to the ground in order
to determine the distance to an object or surface. This distance is determined
by measuring the time delay between transmission of a pulse and detection of
the reflected signal. The horizontal and vertical accuracies are in the centime-
ter range. Multiple returns or entire waveform can be acquired for each pulse.
The lidar toolset in GRASS provides methods to compute the digital elevation
surface (DEM or DSM) based on radial basis functions and spline functions
with Thykhonov regularizer (Brovelli et al., 2004). We already discussed lidar
data analysis in Section 6.9.

In this chapter, we focus on images acquired by optical systems because
they are widely used and their interpretation as well as data processing is
easier than for radar data.

Reflected radiation and atmospheric effects Optical remote sensing
systems are measuring sun energy reflected from earth’s surface. While the
sun is emitting a full range spectrum with a special energy distribution, only
part of the energy reaches the earth’s surface. The reason are various absorp-
tion and scattering processes within the atmosphere. Figure 8.1 outlines the

1 SAR User Guide from Alaska SAR Facility,
http://www.asf.alaska.edu/reference/general/SciSARuserGuide.pdf
Remote Sensing Core Curriculum (RSCC), http://www.r-s-c-c.org/
ISPRS tutorial collection, http://www.isprs.org/links/tutorial.html

http://www.asf.alaska.edu/reference/general/SciSARuserGuide.pdf
http://www.r-s-c-c.org/
http://www.isprs.org/links/tutorial.html
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Fig. 8.1. Distribution of solar radiation (reflective portion of the spectrum) on upper
boundary of atmosphere and at earth’s surface with gaseous absorption (solar zenith
angle 45◦, curves as defined in 6S source code, Vermote et al., 1997)

solar radiation on top of atmosphere and at earth’s surface. Before reflected
solar energy reaches a sensor, it has passed the atmosphere twice at different
angles. Correction of such atmospheric effects often requires image preprocess-
ing. It is important to know that for some ranges of the spectrum, radiation
cannot pass the atmosphere at all. Within these absorbed wavelengths, op-
tical remote sensing platforms are unable to receive reflected radiation from
earth. Therefore, the spectral filters of satellite sensors are defined accordingly.
Schowengerdt (1997), describes these issues at a greater detail.

Remote sensing of the environment considers the sun energy’s reflection in
the visible and infrared range of the spectrum. Depending on the material of
the observed object, the amount of reflected radiation varies. The reflectance
curves of three basic materials are shown in Figure 8.2. While water absorbs
most radiation in the visible spectrum and all in near-infrared, the radiation
reflection of unvegetated sandy soil increases from the visible spectrum to
the infrared range. The curve for green vegetation is highly dependent on the
contents of chlorophyll. With a small peak for green wavelengths, the overall
amount of reflection in the visible spectrum is much lower than for the infrared,
especially in the near-infrared. The curve depressions at higher wavelength
depend on the water contents of the plant. In case of a plant disease or dormant
stage the reflection in infrared is dramatically decreased. Figure 8.2 shows the
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Fig. 8.2. Idealized reflection curves of green vegetation, sandy soil and water. For
illustration the LANDSAT-TM5 channel filter functions except the thermal channel
6 are shown in background (curves as defined in 6S source code, Vermote et al.,
1997)

spectral coverage of the LANDSAT-TM5 channels. The different reflectance
curves allow us to distinguish the observed objects by multispectral remote
sensing. For more theoretical details, please refer to Richards and Xiuping
(1999).

Resolution An important aspect of satellite data is the image resolution.
In particular, we distinguish between:

• spatial (geometric) resolution;
• spectral resolution;
• radiometric resolution.

Spatial or geometric resolution is the spatial extent of each pixel as known
from the raster data. For environmental satellite data, this resolution typically
ranges from 1m to 30m. Spectral resolution refers to the bandwidth of each
channel. The bandwidth is the range of the spectrum measured by one channel.
Figure 8.2 shows the bandwidths of LANDSAT-TM5 channels with respect
to the spectrum and object spectra. Both the higher number of channels and
the bandwidth of each channel improve the potential to distinguish objects
in an image. For example, when studying crop conditions, phenology-driven
signal variations are found in a narrow spectral range between the red and
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the near-infrared spectrum. Only, when this range is covered by two or more
channels with narrow bandwidth, the effects can be studied. Later on, we
will show how to merge channels of high spatial resolution with those of high
radiometrical resolution.

The radiometric resolution describes the signal dynamics within one image
(bit resolution). For data distribution, the 8 bit, 16 bit, and 32 bit formats
are common. Note that level numbering starts with 0 (no signal, usually col-
ored black). Accordingly, an 8 bit image contains 256 levels numbered from 0
(black) to 255 (white) with different grey levels in between.

8.1.2 Import of image channels

Aerial and satellite data are delivered in a variety of formats. Most of them are
imported easily into GRASS since the underlying GDAL library supports the
most important raster and imagery formats. Some issues can arise if the maps
are not oriented to north. Also important metadata are often available only
from the original image file, requiring the use of GDAL tools for displaying
them.

We show an example for a LANDSAT-TM7 data set in EOSAT FAST
Format (thermal channel 6, low and high gain):2

# thermal channel metadata
gdalinfo p016r035_7t20000331.hdr
Driver: FAST/EOSAT FAST Format
Files: p016r035_7t20000331.hdr
Size is 7676, 6541
Coordinate System is:
PROJCS["UTM Zone 17, Northern Hemisphere",

GEOGCS["WGS 84",
[...]

GeoTransform =
559939.132539704, 28.14122143322479, -4.530800840978595
4100246.646970852, -4.53138436482102, -28.13755733944946

Metadata:
ACQUISITION_DATE=20000331
SATELLITE=LANDSAT7
SENSOR=ETM+
BIAS1=-6.978739990024116
GAIN1=0.778740180758979
BIAS2=-7.198818993380689
GAIN2=0.798818898013258

[...]
Corner Coordinates:
[...]

2 LANDSAT-TM7 data set “p016r035_7x20000331”,
ftp://ftp.glcf.umiacs.umd.edu/glcf/Landsat/WRS2/p016/r035/p016r035_
7x20000331.ETM-EarthSat/

ftp://ftp.glcf.umiacs.umd.edu/glcf/Landsat/WRS2/p016/r035/p016r035_7x20000331.ETM-EarthSat/
ftp://ftp.glcf.umiacs.umd.edu/glcf/Landsat/WRS2/p016/r035/p016r035_7x20000331.ETM-EarthSat/
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In case that “GeoTransform” tag is present, the gdalwarp program has to be
applied to rotate the image from orbit orientation to north up orientation
before importing it into GRASS. We define the appropriate target resolution
for the channel to avoid introduction of irregular values:

# rotate to north up, write GeoTIFF, enforce 28.5m x 28.5m res.
gdalwarp -tr 28.5 28.5 p016r035_7t20000331.hdr \

p016r035_7t20000331.tif
gdalinfo p016r035_7t20000331.tif

The GeoTIFF file can now be imported with r.in.gdal as shown in Sec-
tion 4.1.3.

8.1.3 Managing channels and colors

A multispectral data set consists of various channels which represent portions
of the spectrum. In the case of LANDSAT-TM5 and TM7, the visible spectrum
with base colors blue, green and red is mostly covered as well as part of the
infrared and thermal spectrum. Other satellites such as SPOT and ASTER
do not provide the blue channel. To visually explore the imagery, we often
need to analyze and modify its colors.

In a RGB color composite, three channels (each grey colored) are assigned
to the colors red, green and blue; the result is a pixel-wise combined new
image with a color table based on the input values.

When generating color composites from multispectral data, we need to
determine which channels contain most information. For example, when con-
sidering LANDSAT-TM5 data, the following problem arises. Figure 8.3 shows
the solar spectrum and the filter functions of LANDSAT-TM5. The color filter
functions of channels 1, 2, and 3 partly overlap which leads to slightly corre-
lated channels. Generally, 20 color composites can be produced from the six
reflective LANDSAT-TM5 channels (not using the emissive thermal channel).
Due to the slight correlations, the information contents is reduced when the
first channels are combined. A simple method to find out the combinations
with the highest information content is the Optimum Index Factor method
(Chavez et al., 1984), which is based on correlation analysis. It is implemented
in the i.oif script. It calculates a rank of all reflective LANDSAT-TM5/7
band combinations and outputs a sorted combination table.

Simple color composites To obtain a color image from grey-colored chan-
nels, several channels have to be combined by assigning each channel to a
different base color. For example, to generate a near-natural colored image,
the blue, green, and red channels (each only grey-colored) have to be assigned
to blue, green, and red color of the GRASS color composition module. In
our example, we apply grey scale color tables to the channels; then, we can
generate a near-natural color composite:
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g.region rast=lsat7_2002_10 -p
r.colors lsat7_2002_10 col=grey
r.colors lsat7_2002_20 col=grey
r.colors lsat7_2002_30 col=grey
d.mon x0
d.erase
d.rgb b=lsat7_2002_10 g=lsat7_2002_20 r=lsat7_2002_30

This composite is drawn by d.rgb into the GRASS monitor.
Color composites can be stored as new map with r.composite. For exam-

ple, to generate and store a near-natural color image, the satellite channels
covering the red, green, and blue spectrum have to be assigned to <r>, <g>
and <b>, respectively. The number of color levels to be used for each base
color is predefined to a limited number of levels (number of resulting colors
= specified levels3). For example, 10 color levels will lead to 1000 colors in
the composite image. Due to speed limitations in the current GRASS display
color model (GRASS monitor) for large color tables, we recommend not to
generate 24 bit image composites inside GRASS (use r.out.ppm3 to export
to a 24 bit PPM image). Finally, the output name for the composite has to
be specified.

A false color composite for LANDSAT-TM7 can be done in a similar way,
but preferably from a histogram-equalized grey scale color tables calculated
in advance:
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axis) and relative spectral sensitivity of LANDSAT-TM5 channel filter functions,
thermal channel 6 is not shown (curves as defined in 6S source code, Vermote et al.,
1997)
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g.region rast=lsat7_2002_30 -p
r.colors lsat7_2002_30 col=grey.eq
r.colors lsat7_2002_40 col=grey.eq
r.colors lsat7_2002_70 col=grey.eq
d.erase
d.rgb b=lsat7_2002_30 g=lsat7_2002_40 r=lsat7_2002_70

This will display a false color image in the GRASS monitor, as we have effec-
tively assigned the red, near-infrared and mid-infrared channels to blue, green,
and red display colors. Green vegetation remains green while unvegetated ar-
eas are reddish. Likewise, other channel combinations can be visualized.

To access additional images, we add the landsat MAPSET to the
MAPSET search path (see Section 3.1.6). Then we visually compare the RGB
composites of LANDSAT coverages of Wake county, from 1987 and 2002:

# add additional MAPSET to search path
g.mapsets add=landsat -p

g.region rast=lsat7_2002_10 -p
d.erase
# LANDSAT-TM5 from 1987
d.rgb b=lsat5_1987_10 g=lsat5_1987_20 r=lsat5_1987_30
# LANDSAT-TM7 from 2002, restore good color tables
i.landsat.rgb b=lsat7_2002_10 g=lsat7_2002_20 r=lsat7_2002_30
d.rgb b=lsat7_2002_10 g=lsat7_2002_20 r=lsat7_2002_30

# show metadata
r.info -h lsat5_1987_10
r.info -h lsat7_2002_10

Note that the color tables were optimized beforehand with i.landsat.rgb to
gain relatively natural colorized composites (reverts above r.colors usage).
We observe that urban areas have significantly grown in few years. A more
detailed explanation of color models and image composites, we provide in
Section 8.5.

The image histogram The first step in analysing image data is to look at
the channel histograms. Each histogram shows the frequencies of grey levels
in an image representing the given channel. For each grey level, the number
of pixels in the image is counted and drawn into a diagram. As noted above,
the number of grey levels (or brightness levels) depends on the sensor. The
x-axis of the diagram represents the grey levels, while the y-axis shows the
number of pixels found at that grey level.

To calculate and display the histogram of a channel, open a monitor and
run d.histogram with the name of the channel you are interested in as pa-
rameter. The histogram will be displayed within the monitor using the color
coding from the image. If the histogram is displayed in dark colors, consider
modifying the image color table (see above paragraph). In the following exam-
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ple, we compare the histogram of the LANDSAT-TM7 panchromatic channel
and that of an aerial ortho-photograph:

g.region rast=ortho_2001_t792_1m -p
r.info ortho_2001_t792_1m
d.erase
# show 1m orthophoto
d.rast ortho_2001_t792_1m
# show 15m panchromatic LANDSAT-TM7 channel
d.rast lsat7_2002_80

d.histogram ortho_2001_t792_1m
d.histogram lsat7_2002_80

The histograms are very different: While the distribution of the LANDSAT-
TM7 panchromatic channel cell values is highly skewed, the histogram of the
aerial ortho-photograph is more evenly distributed.

8.1.4 The feature space and image groups

The processing of data from a multispectral satellite sensor is based on the
concept of feature space defined by the sensor channels. Together with the def-
inition of an image group as a combination of multiple channels, this concept
is a foundation for image classifications.

The feature space The channels of a multispectral satellite sensor are con-
sidered to span a multi-dimensional coordinate system called feature space.
For example, the three channels covering visible light (blue, green, red) span
a three-dimensional coordinate system. Within the coordinate system (or fea-
ture space), every pixel reaches a certain position depending on the bright-
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Fig. 8.5. Left: Spectrum showing typical spectral response of common objects with
LANDSAT-TM5 channels 3 (red) and 4 (NIR); right: Two-dimensional feature space
of channels 3 and 4 with pixel brightness levels. Three pixels for each observed object
(water, sandy soil and green vegetation) are shown with their brightness levels in
3 and 4. The feature space scatterplot (right) represents reflection per channel as
appear in channels 3 and 4 (adapted from Neteler, 2000:158)

ness levels in each channel. This position can be considered a vector in the
multi-dimensional coordinate system. The brightness levels of the pixels in
the different channels are called digital numbers (DN). Figure 8.4 shows the
position of a pixel in a three-dimensional feature space, which may represent
the blue (DN1), green (DN2), and red (DN3) spectrum range.

The concept of feature space plays an important role in image classifica-
tions that are used to derive land use maps from satellite data. Classification
methods are based on the idea that pixels containing the same land use are
close to each other within the multi-dimensional feature space. The num-
ber of dimensions depends on the number of input channels. For example, a
number of multispectral pixels which cover a forest will show similar spectral
signatures and therefore should be assigned to land use class “forest”. In the
process of classification, many methods (e.g., cluster algorithm) “group” ad-
jacent pixels in the multi-dimensional feature space and assign them to the
same class. Figure 8.5 shows the relationship between the spectrum and a two-
dimensional feature space spanned by the red and the near-infrared channel of
LANDSAT-TM5. More details on image classification will be explained below.

For illustration, we display the feature space of two channels of the
LANDSAT-TM5 satellite scene in the GRASS monitor (red and near-infrared
channels):

g.region rast=lsat5_1987_30 -p
d.erase
d.correlate layer1=lsat5_1987_30 layer2=lsat5_1987_40
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The pixel clouds from the red and near-infrared channels span the two-
dimensional feature space, which would be partitioned in a classification to
extract land use classes. However, in this scatterplot, it is difficult to visually
distinguish clustered areas. If you zoom into a small subregion of one of the
satellite channels and re-run the d.correlate script, the scatterplot will be
different, with easier to distinguish pixel clusters. For higher level graphical
data analysis external software like “R” (compare Section 10.2) or “GGobi”3
are recommended.

Image groups in GRASS Since we are dealing with multi-spectral data
sets, we need a method to “bundle” the channels which belong together. This
helps when operating on multiple channels with identical geolocation. GRASS
offers a tool to “group” images by selecting the channels: i.group. Several
multi-spectral image processing modules expect an image group, a few of them
also need a subgroup (which may contain the same channels or a subset). Even
when working only with a single image, this channel has to be assigned to a
group. We are now ready to explore more complex remote sensing tasks.

8.2 Data preprocessing

In this section, we explain how to preprocess satellite data for further analysis.
Since imagery data are usually already geocoded, we concentrate on radio-
metric preprocessing to statistically explore the data and to extract further
information.

8.2.1 Radiometric preprocessing

Besides changes to the color lookup tables (LUTs) that are used to enhance the
visual perception of an image, satellite data often have to be radiometrically
preprocessed so that each pixel represents the apparent radiance measured at
the satellite sensor. Up to three major effects have to be corrected, depending
on the project goal, the image type, and the observed targets:

• the pixel values are usually a linear transformation of the original data
performed by the data provider to fit into the range of e.g. 8bit (0 - 255).
By applying “gain” and “bias” (also called “offset”, see Section 8.1.2) val-
ues which are delivered in the image header files or available from the
data provider, the DN values (DN: digital number) can be recalculated to
apparent radiance at sensor values;

• optical data, depending on their spectral range, are influenced by atmo-
spheric effects. To reconstruct the reflectance values at earth’s surface (im-
age includes only the values measured at the satellite), each satellite chan-
nel has to be atmospherically corrected;

3 Xgobi/Ggobi software, http://www.ggobi.org

http://www.ggobi.org
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• when the observed target area contains hilly or mountainous regions, the
slopes cause variations in the brightness reflectance (terrain effects), which
can lead to wrong classification results. To overcome this problem, a terrain
correction (illumination correction) based on the local slopes derived from
an elevation model has to be applied. This issue is not covered here.

Image calibration from DN to apparent radiance at sensor The
gain/bias correction is applied channel-wise to the image data set. The values
for the gains and biases are available from the channel headers (leader file) or
the data providers. For the sample data sets, these values are included in the
raster map metadata and can be shown with r.info.

For LANDSAT-TM7, there are two gain states (low and high gain, see
GSFC/NASA, 2001). The rationale behind switching gain states is to maxi-
mize the instrument’s 8bit radiometric resolution without saturating the de-
tectors. For thermal data, both low and high gain data are available by default.
For other bands (1 to 5, and 7) the satellite will acquire image data in one
of two possible gain settings. High gain measures a lesser radiance range with
increased sensitivity over areas of low reflectance. Low gain setting measures
a greater radiance with decreased sensor sensitivity for very bright regions to
avoid detector saturation.

The header/leader file of a satellite data set can be analyzed with gdalinfo
(delivered with GDAL library) for GDAL supported data formats. The pro-
gram prints important metadata information, including the gain and bias
values, if they are present in the data set (see Section 8.1.2). From the
output of the original imagery file, we obtain low/high gain, bias (offset)
values and more. The units for gain/bias are usually W

m2srµm . The gen-
eral equation for calculation of the apparent pixel radiance at sensor is
(Schowengerdt, 1997:313, see also LANDSAT Handbook4):

Lj = gainj ∗DNj + biasj (8.1)

with:
Lj : apparent pixel radiance of channel j [ W

m2srµm ]
biasj : offset of linear equation for channel j
gainj : gain of linear equation for channel j

To apply a gain/bias correction, the module r.mapcalc can be used. For our
example, we use the LANDSAT-TM7 scene of 2002:

g.region rast=lsat7_2002_10 -p
# visual inspection
d.erase
d.rgb b=lsat7_2002_10 g=lsat7_2002_20 r=lsat7_2002_30
d.vect roadsmajor col=red

4 LANDSAT Science Data Users Handbook,
http://ltpwww.gsfc.nasa.gov/IAS/handbook/handbook_htmls/chapter11/
chapter11.html

http://ltpwww.gsfc.nasa.gov/IAS/handbook/handbook_htmls/chapter11/chapter11.html
http://ltpwww.gsfc.nasa.gov/IAS/handbook/handbook_htmls/chapter11/chapter11.html
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# show metadata
r.info lsat7_2002_10

Instead of gain and bias, the values are given here as QCALMIN, QCALMAX,
LMIN, and LMAX. The related formula to calculate the spectral radiance at
the sensor is (GSFC/NASA, 2001):

Lλ = ((LMAXλ − LMINλ)/(QCALMAX −QCALMIN))
∗(QCAL−QCALMIN) + LMINλ

(8.2)

# convert pixel values to radiances: see p016r035_7x20020524.met
# LMAX_BAND1=19
# LMIN_BAND1=-6.200
# QCALMAX_BAND1=255.0
# QCALMIN_BAND1=1.0
# QCAL is the quantized calibrated pixel value in DN
r.mapcalc "lsat7_2002_10.rad= ((19.0 - (-6.2))/(255.0 - 1.0)) \

* (lsat7_2002_10 - 1.0) + (-6.2)"
r.info -r lsat7_2002_10.rad
min=-2.132283
max=19.000000

Note that the values depend on the data provider and the image acquisition
date as gain/bias values regularly change for various reasons.

With additional calculations, it is also possible to convert apparent pixel
radiance at sensor to planetary reflectance or albedo (see Mather, 1999:93
and Schowengerdt, 1997:317). These planetary reflectances can be computed
to achieve a reduction in between-scene variability through a normalization
for solar irradiance. Please refer to the remote sensing literature for details.

Correction of atmospheric effects Satellite signal distortions are caused
by several effects. Diffuse irradiance from sky may increase the radiance of
an observed object. Path radiance (atmospheric intrinsic radiance) leads to
haze effects. Local effects such as environmental radiance from neighborhood
objects change the object’s radiance, as well as a locally reduced upward
transmittance. Finally, there is the adjacency effect, when a brighter ad-
jacent object influences the surrounding object’s radiation. All these prob-
lems are widely discussed in the remote sensing literature, see for example
Schowengerdt (1997). Atmospheric effects are visible in color composites as a
whitish-bluish haze.

The correction of such atmospheric effects is a complex issue. Using an
atmosphere model like 6S (Second Simulation of the Satellite Signal in the
Solar Spectrum5, Vermote et al., 1997), the radiance at earth’s surface can
5 Atmosphere model 6S (Msix) software,
http://www-loa.univ-lille1.fr/SOFTWARE/Msixs/msixs_gb.html

http://www-loa.univ-lille1.fr/SOFTWARE/Msixs/msixs_gb.html
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be reconstructed from the apparent radiance at sensor if the local weather
conditions at image acquisition time are known. For a scripted method to use
the 6S model within GRASS, see Neteler (1999). In GRASS 6.3, the 6S model
has been implemented in a new module i.atcorr.

As detailed information about the local weather conditions and gaseous
contents are often unknown, to some extent the atmospheric effects can be re-
trieved statistically from the image channels themselves. Known dark objects
(e.g., water bodies or coniferous forest) can be used to do so. In an uncor-
rected image, these objects do not appear dark due to atmospheric effects.
The amount of path radiance is approximately identified by calculating pixel-
wise the difference between the actual radiance for a dark object and zero (full
absorption, given for water in infrared). This difference value can be removed
from all pixels of the channel. Details are described in Moran et al. (1992)
and Chavez Jr. (1996). The modules d.what.rast or r.what can be used to
calculate the path radiance for dark objects, the subtraction can be done with
r.mapcalc. A simpler method, not considered in detail here, is based on the
Tasseled Cap transformation. It does not require the manual identification of
dark objects and corrects the data set through a “haze” image (Tasseled Cap
component TC4) and linear regression. The GRASS AddOns SVN repository
contains a i.landsat.dehaze script for LANDSAT-TM.

8.2.2 Deriving a surface temperature map from thermal channel

Several satellites such as ASTER/TERRA, LANDSAT-TM5 and LANDSAT-
TM7 provide thermal channels. The data delivered by a thermal channel
(channel 6 for LANDSAT systems) can be calibrated to a surface temperature
map. These surface temperatures must not be confused with air temperatures.
Note that the methods are different for LANDSAT-TM5 and LANDSAT-
TM7, as their gain/bias values are different. For an absolute calibration of
satellite-derived temperatures, atmospheric correction has to be taken into
account.

Surface temperature map from LANDSAT-TM5 channel 6 The fol-
lowing calculations derive the effective at-satellite temperatures (LANDSAT-
TM5) of the viewed earth-atmosphere system under an assumption of unity
emissivity and using pre-launch calibration constants. First, the gain/bias
values are applied to the thermal channel to receive spectral radiances (Barsi
et al., 2003), then the resulting pixel values are converted to absolute tem-
perature in Kelvin. Optionally, the result can be recalculated to a degree
Celsius temperature map. In MAPSET landsat, a LANDSAT-TM5 scene is
available:6

6 GLCF Maryland data set “p016r35_5t871014”,
ftp://ftp.glcf.umiacs.umd.edu/glcf/Landsat/WRS2/p016/r035/p016r35_
5t871014.TM-EarthSat-Orthorectified/

ftp://ftp.glcf.umiacs.umd.edu/glcf/Landsat/WRS2/p016/r035/p016r35_5t871014.TM-EarthSat-Orthorectified/
ftp://ftp.glcf.umiacs.umd.edu/glcf/Landsat/WRS2/p016/r035/p016r35_5t871014.TM-EarthSat-Orthorectified/
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# convert TM5/B6 digital numbers (DN) to spectral radiances
# (apparent radiance at sensor): radiance = gain * DN + offset
g.region rast=lsat5_1987_60 -p
r.info lsat5_1987_60

r.mapcalc "lsat5_1987_60.rad=0.0551584*lsat5_1987_60+1.2378"
r.info -r lsat5_1987_60.rad
min=5.650472
max=8.463550

# convert spectral radiances to absolute temperatures
# T = K2/ln(K1/L_l + 1))
r.mapcalc "tm5.temp_kelvin=1260.56 / \

(log (607.76/lsat5_1987_60.rad + 1.))"
r.info -r tm5.temp_kelvin
min=268.931214
max=293.984778

# convert to degree Celsius
r.mapcalc "tm5.temp_celsius=tm5.temp_kelvin - 273.15"
r.info -r tm5.temp_celsius
min=-4.218786
max=20.834778

r.univar tm5.temp_celsius
[...]
range: 25.0536
mean: 13.3068
standard deviation: 1.65198
[...]

The resulting Land Surface Temperature (LST) map for the 14 Oct. 1987
shows an average LST of 13.3◦ Celsius with a range of pixels with lower tem-
peratures (such as cloud top temperatures) and higher temperatures (usually
urban areas)7 We apply a blue-green-yellow-red color ramp table before dis-
playing the LST map:

# apply new color table, display
r.colors tm5.temp_celsius col=bgyr
d.rast.leg tm5.temp_celsius
d.vect roadsmajor

The map tm5.temp_celsius shows the distributed emitted thermal radiation
in degree Celsius. The surface brightness temperature is the actual surface
temperature only when the emissivity of the object in a particular waveband
equals to 1.0. For most surfaces, where the emissivity is near, but not equal to
1.0, a calibration according to the Stefan-Boltzmann equation is needed when
interpreting the results.
7 NC Climatic Data, monthly normals,
http://www.nc-climate.ncsu.edu/cronos/normals.php?station=317079

http://www.nc-climate.ncsu.edu/cronos/normals.php?station=317079
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We can compare the LST map to the near-natural color composite (visible
light channels) and extract only areas with high LST:

d.rgb b=lsat5_1987_10 g=lsat5_1987_20 r=lsat5_1987_30

# show areas with high LST
d.erase -f
d.rast -o tm5.temp_celsius val=15-50
d.vect streets_wake

Clearly, the urban areas show high surface temperatures. To get a more de-
tailed comparison, we can compare to the landuse map landuse96_28m (gen-
erated a year before the LANDSAT overpass):

g.region rast=landuse96_28m -p
r.to.vect landuse96_28m out=landuse96_28m feat=area
d.erase
d.rast tm5.temp_celsius
d.vect landuse96_28m type=boundary

# interrogate selected polygons
d.what.vect

# generate report
r.report tm5.temp_celsius,landuse96_28m units=p,h nsteps=5

You may even re-generate a land use/land cover map through image classifi-
cation as shown later in Section 8.6 where you apply the individual emissivity
factors according to land use. With r.mapcalc, you can calibrate the landuse
corrected temperature map from these maps.

Surface temperature map from LANDSAT-TM7 channel 6 As in
the previous case, the LANDSAT-TM7 image data have to be converted from
digital numbers to spectral radiances by applying the gain/bias values. De-
pending on the data format, these values may be retrieved from the image
metadata with gdalinfo. In our example, we use the LANDSAT-TM7 scene
as prepared in Section 3.3.3 for the nc_spm sample LOCATION. However,
the original data are provided in GeoTIFF format. This requires to look up
the gain and bias parameters from the accompanying metadata file which is
separated from the image data.

We use the low gain thermal channel lsat7_2002_61 which is available in
the landsat MAPSET. The conversion procedure is the same as outlined in
Section 8.2.1:8

# show calibration metadata
r.info lsat7_2002_61

8 Generating a surface temperature map from LANDSAT-TM7 channel 6, see Land-
sat 7 Science Data Users Handbook,
http://ltpwww.gsfc.nasa.gov/IAS/handbook/handbook_toc.html

http://ltpwww.gsfc.nasa.gov/IAS/handbook/handbook_toc.html
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# convert TM7/B61 digital numbers (DN) to spectral radiances
g.region rast=lsat7_2002_61 -p
r.mapcalc "lsat7_2002_61.rad=((17.0 - 0.) / \

(255. - 1.))*(lsat7_2002_61 - 1.) + 0."
r.info -r lsat7_2002_61.rad

# convert spectral radiances to absolute temperatures
# T = K2/ln(K1/L_l + 1))
# K1: 666.09 W/ln(m^2 * sr * um)
# K2: 1282.71 Kelvin
r.mapcalc "etm.temp_kelvin=1282.71 / \

log(666.09 / lsat7_2002_61.rad + 1.)"

# calculate degree Celsius
r.mapcalc "etm.temp_celsius=etm.temp_kelvin - 273.15"
r.info -r etm.temp_celsius
min=5.072581
max=52.250418

# apply new color table, display
r.colors etm.temp_celsius col=bgyr
# display the map, overlay to ETM/PAN (B80) 14.25m channel
g.region rast=lsat7_2002_80 -p
d.his i=lsat7_2002_80 h=etm.temp_celsius bright=70
d.legend etm.temp_celsius

The resulting temperature map (in degree Celsius) represents the uncorrected
surface temperatures at image acquisition time (around 9:30h local solar time,
24 May 2002), see notes above for emissivity correction. For deriving these
maps from other satellites such as ASTER/TERRA, please refer to the related
documents.9

8.3 Radiometric transformations and image
enhancements

Various methods have been developed for the analysis of multi-channel satel-
lite data using their multispectral nature for radiometric transformations and
image enhancement. These techniques play a fundamental role in image in-
terpretation. Most methods may either be applied to uncalibrated data sets
or to preprocessed image data sets.

8.3.1 Image ratios

Image ratios are the basis of a simple algebraic method used for feature ex-
traction, reduction of terrain illumination effects, image enhancement, compu-
tation of vegetation indices and more (this topic is widely discussed in various
9 Asterweb (ASTER/TERRA), http://asterweb.jpl.nasa.gov

http://asterweb.jpl.nasa.gov
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papers, for example, refer to Mather, 1999:117-124). To understand a particu-
lar channel ratio formula, the object reflectance curves have to be considered
(sample curves for green vegetation, soil and water are shown in Figure 8.2).
In general, the ratio result for pixels with very different values for the input
channels is larger (brighter) than for pixels with similar values. The image
ratio equations can be computed with r.mapcalc. It is important to include
a multiplier of 1.0 at the beginning of the map algebra expression because we
are dividing integer values. Otherwise, the result will become zero and not
the expected floating point numbers. As an example, we calculate the ratio
between the channels 7 and 4 of LANDSAT-TM7:

g.region rast=lsat7_2002_70 -p
r.mapcalc "ratio7_4=1.0 * lsat7_2002_70/lsat7_2002_40"
d.erase
d.rast ratio7_4

For more than 15 years, a variety of vegetation indices have been developed.
To illustrate such a calculation, we can compute a NDVI map (normalized
difference vegetation index) from LANDSAT-TM5/7:

r.mapcalc "ndvi=1.0 * (lsat7_2002_40 - lsat7_2002_30) / \
(lsat7_2002_40 + lsat7_2002_30)"

r.colors ndvi col=rules << EOF
-1.0000 blue
-0.40 40 40 255
-0.310 220 220 250
0.0000 150 150 150
0.1000 120 100 51
0.3000 120 200 100
0.4000 28 144 3
0.6000 6 55 0
0.8000 10 30 25
1.0000 6 27 7

EOF
d.rast.leg ndvi
d.vect roadsmajor col=red
# transparently over shaded DEM
d.his i=elevation_shade h=ndvi bright=70

The calculation of NDVI uses the pixel-wise differences between the red and
the infrared channel to derive information about the land cover. When a
pixel value in the near-infrared dominates over the red wavelength (as for
green, healthy vegetation), NDVI is positive. NDVI for unvegetated soil is
around zero; for water, below zero. To quickly classify these three (or more)
landcovers, you may filter them with r.mapcalc (if-condition).
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8.3.2 Principal Component Transformation

Multispectral image channels often contain correlations due to similarities
of the spectral response of the observed objects or slightly overlapping filter
functions of the spectral sensors. This leads to redundancies within the data
set. The “Principal Component Transformation” (PCT) method has been de-
veloped to transform such a data set to a new data set without correlations
between the channels. This will concentrate the image information in fewer
image channels (reduction of image dimensionality), which is of particular in-
terest for hyperspectral data. The PCT transforms the original multispectral
data set to a new spectral coordinate system, the Principal Component axes,
which are orthogonal to each other. Figure 8.6 shows the position of origi-
nal multispectral pixels and the PCT coordinate system. In general, the first
principal component (PC) image contains the maximum possible variance of
the original images. The second principal component image contains the max-
imum possible variance not stored in the first PC image, as the second PC
axis is orthogonal to the first PC axis (Schowengerdt, 1997:191). Accordingly,
higher PC images explain remaining variances. The number of PC images is
identical to the number of input channels. Since the amount of variance de-
creases from the first to the last PC, uncorrelated noise (and sometimes some
remaining high frequencies) is found in the last PC image. As a result, the
method is sometimes used for image compression, as it allows the image infor-
mation to be concentrated in fewer channels. PCT is also sometimes used to
generate additional channels to obtain more variables for later classification
process. The scatterplot in Figure 8.7 shows the original spectral axes and,
after transformation, the new rotated PC axes for a sample LANDSAT-TM5
pixel cloud (channel 3 and 4).
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Fig. 8.7. Principal Component Transformation applied to channels tm3 and tm4
of a LANDSAT-TM5 data set. Both the original spectral axes (channels tm3, tm4)
and the PC axes (PCT transformed channels tm3’, tm4’) are shown

In GRASS, the Principal Component Transformation is implemented in
i.pca. The module requires the input channel names (at least two images)
and a prefix for the transformed PC image files, which will be enumerated
incrementally. Optionally, the data can be rescaled to a range different from
the default range of 0-255:

g.region rast=lsat7_2002_10 -p
i.pca in=lsat5_1987_10,lsat5_1987_20,lsat5_1987_30,\
lsat7_2002_10,lsat7_2002_20,lsat7_2002_30 out=pca
d.erase
d.rast pca.1
d.rast pca.2
d.rast pca.3
d.rast pca.4

We can use the PCA to perform a simple change detection analysis:

d.rgb b=pca.1 g=pca.2 r=pca.3
d.rgb b=lsat5_1987_10 g=lsat5_1987_20 r=lsat5_1987_30
d.rgb b=lsat7_2002_10 g=lsat7_2002_20 r=lsat7_2002_30
r.univar -e pca.3
[...]
minimum: 0
maximum: 255
range: 255
mean: 129.874
[...]



8.4 Geometric feature analysis with matrix filters 307

3rd quartile: 134
90th percentile: 137

# simple change detection:
# consider high PCA values in high PCA component as change
r.mapcalc "changes=if(pca.3 > 134,1,null())"

# vectorize and remove small areas
# (3 pixel * 28.5m)^2 = 7310.2m^2
r.to.vect -s changes out=changes feat=area
v.clean changes out=major_changes tool=rmarea thresh=7300

# overlay to Oct/1987 map
d.rgb b=lsat5_1987_10 g=lsat5_1987_20 r=lsat5_1987_30
d.vect major_changes type=boundary col=red
d.vect lakes fcol=blue type=area

# overlay to May/2002 map
d.rgb b=lsat7_2002_10 g=lsat7_2002_20 r=lsat7_2002_30
d.vect major_changes type=boundary col=red
d.vect lakes fcol=blue type=area

We overlay the lakes map to omit those changes caused by water turbu-
lences etc. The resulting vector polygons capture significant land use changes,
especially conversion from vegetated area to developed area.

Another method not covered here is the Fourier transform, which is pro-
vided by i.fft and i.ifft (forward and backward transformation). It trans-
forms image data from spatial to frequency domain. Among the important
applications of the Fourier Transformation are the identification and elimina-
tion of (periodic) noise or stripes in a satellite image.

8.4 Geometric feature analysis with matrix filters

The geometric (spatial) feature analysis applies local neighborhood operations
to raster data. Several methods are available for image smoothing: contrast
improvement, low- and high pass filtering, edge detection and more. Geometric
filters are user defined raster matrix templates (“moving window”) that are
applied row- and column-wise over the image and are used to calculate the
new raster map. All raster cells which are covered by this moving window are
considered for the calculations.

Matrix filters can be used to locally modify the spatial frequency character-
istics for an image. These modifications are based on calculations considering
the neighboring raster pixels in a 2D spatial convolution process (for theo-
retical details, refer to Richards and Xiuping, 1999:114-116). These spatial
convolution filters operate in spatial domain and are an alternative to fre-
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quency domain filters (such as Fourier Transformation). Spatial convolution
filtering is well suited for:

• high and low pass filtering (sharpening, blurring), averaging;
• edge detection by direction and gradient filters;
• morphological filters;
• preprocessing for image segmentation.

The high and low pass filtering can be performed using r.mapcalc or the
module r.mfilter, as both are available to define matrix filters.

The use of r.mapcalc is less convenient, as every matrix element has to be
addressed with relative coordinates to the central cell expressed as map[r,c],
where r is the row offset and c is the column offset. For example, map[0,2]
refers to the same row as the center cell and two columns to the right of the
center cell, map[-2,-1] refers to the cell two rows up and one column to the
left of the center cell. This syntax permits the development of neighborhood-
type filters for one single map or across multiple maps. As a simple example,
we define a 3 × 3 low pass filter. The filter equation for the each center cell
xc is:

xc =
1
9

9∑
i=1

xi (8.3)

expressed in r.mapcalc as:

r.mapcalc "lowpass=(map[1,-1]+map[1,0]+map[1,1]+map[0,-1]+\
map[0,0]+map[0,1]+map[-1,-1]+map[-1,0]+map[-1,1])/9."

You may try this example with the lsat7_2002_80 image. Further exam-
ples for r.mapcalc matrix operations are described in Shapiro and Westervelt
(1992).

A convenient way to perform spatial convolution filtering is to use
r.mfilter with a matrix template defined in an ASCII file. We extend our
first example to a 7 × 7 median filter which filters existing sharp contrasts in
a raster map. This is effectively a low pass filter. The filter definition has to
be stored in an ASCII file, for example, lowpass.asc:

TITLE 7x7 Low pass
MATRIX 7
1 1 1 1 1 1 1
1 1 1 1 1 1 1
1 1 1 1 1 1 1
1 1 1 1 1 1 1
1 1 1 1 1 1 1
1 1 1 1 1 1 1
1 1 1 1 1 1 1
DIVISOR 49
TYPE P
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The mean value is preserved if the sum of the filter values equals the line-
number × column-number. Every cell within the “moving window” is multi-
plied by 1. The results are summed up and finally divided by DIVISOR 49
(product of 7 × 7 × 1). To see how this works, the filter may be applied to
the LANDSAT-TM7 panchromatic channel:

g.region rast=lsat7_2002_80 -p
r.mfilter lsat7_2002_80 out=etm80.lowpass filt=lowpass.asc
r.colors etm80.lowpass col=grey.eq
d.erase
d.rast etm80.lowpass

The color table may be set to grey or grey.eq with r.colors as in the example
above.

It is possible to define two types of filters: sequential and parallel filters.
Sequential filters (TYPE S) use the modified neighboring raster cell values
for calculation of the central cell, while the parallel filters (TYPE P) use the
neighboring cell values of the original map. Directional filters should be set
up as parallel filters. Further information related to these types can be found
in the manual page for r.mfilter.

Another example is a high pass filter for sharpening an image. It can be
defined as follows (we store it in an ASCII file highpass.asc):

TITLE 5x5 High pass
MATRIX 5
-1 -1 -1 -1 -1
-1 -1 -1 -1 -1
-1 -1 24 -1 -1
-1 -1 -1 -1 -1
-1 -1 -1 -1 -1
DIVISOR 25
TYPE P

In this example the central cell of the window is weighted by 24, while the
other cells have weight -1. The entire matrix is finally divided by 25 and its
values are stored in a new map. Again, we apply it to the map lsat7_2002_80:

g.region rast=lsat7_2002_80 -p
r.mfilter lsat7_2002_80 out=etm80.highpass filt=highpass.asc
r.colors etm80.highpass col=grey.eq
d.erase
d.rast etm80.highpass

The resulting map shows enhanced high frequencies (at the same spatial reso-
lution). Note that a filter definition file may also contain multiple filters which
will be applied to the image subsequently.

The only limitation of r.mfilter in comparison to r.mapcalc is that only
integer numbers are accepted in a filter matrix. If you want to use floating
point numbers or trigonometric functions, r.mapcalc must be used instead.
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The latter is also well suited for a thresholded binarization used to extract
selected features (if-condition).

An application for advanced edge detection with vectorization based on
segmentation is explained for aerial photographs in Section 8.8.

8.5 Image fusion

Often, satellite data sets with high radiometric resolution (multispectral chan-
nels) lack high geometric resolution and vice versa. However, for an accurate
image interpretation, both radiometric and geometric resolution should be
high. Image fusion is a method to geometrically enhance images with high
radiometric resolution by merging the multispectral channels with a panchro-
matic image. Different image fusion methods have been developed; two basic
methods will be described in the following sections.

8.5.1 Introduction to RGB and IHS color model

To understand image fusion methods operating in color space, it is important
to have basic knowledge about the RGB (red, green, blue) and IHS (also
referred to as HIS or HSI: intensity, hue, saturation) color spaces. Similarly to
geometrical data, the color spaces span their own coordinate systems. Due to
their definitions, it is possible to convert images lossless from one color model
to the other. The RGB model is an additive color model, where new colors are
derived by adding the three base colors at different levels. For example: yellow
= red + green. The IHS model is different; here, the intensity (sometimes also
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called “value”) is a measure of color brightness, the hue corresponds with the
dominant wavelength (which is related to color names), and the saturation
describes degree of color purity.

Figure 8.8 shows both the RGB and the IHS color model. A pixel in the
RGB color space has a specific position within the cube spanned by the coor-
dinate axes, while the IHS color space forms a hexcone. The main advantage
of RGB is that it is easy to understand; however, intensity changes are depen-
dent on color settings. Thus, in the RGB model, a change in intensity always
leads to a change in colors. The IHS color model preserves colors in case of
intensity changes which is a major advantage of this model. Based on this
feature, the IHS model can be used for image fusion, which we explain below.
GRASS provides two color conversion modules, the i.rgb.his to convert an
image from RGB to IHS and i.his.rgb to convert back from IHS to RGB.

8.5.2 Image fusion with the IHS transformation

For image fusion, two geometrically co-registered data sets are required. The
acquisition time of these data sets should be very close to avoid possible
modification of the result by land use changes. For IHS-fusion, the three RGB
channels must first be transformed to the IHS color model. The general idea of
IHS-fusion is to replace the intensity channel with a high resolution panchro-
matic channel for the back-transformation from the IHS to RGB color model.
As a result, the color information in lower resolution is merged with the high
spatial resolution of the panchromatic channel. In terms of GIS, a resolution
change is required before back-transforming the images to achieve the higher
spatial resolution in the output. A disadvantage of this fusion method is that
this technique changes the spectral characteristics of the data.

As an example, we enhance the geometrical resolution of geocoded
LANDSAT-TM7 color channels (each at 28.5m resolution) using the panchro-
matic ETMPAN channel (at 14.25m resolution) of the same satellite acquired
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at the same time. Before starting the procedure outlined in Figure 8.9, the
contrast in the input channels should be enhanced with r.colors. The input
channels are then converted to the IHS color model with i.rgb.his at 28.5m
resolution. Then we set the region to the higher resolution defined by the
panchromatic channel. In case of LANDSAT-TM7, we change it from 28.5m
to 14.25m; for SPOT data, from 20m to 10m. To improve the geometric resolu-
tion, the original intensity image which resulted from the RGB to IHS trans-
formation is replaced by the panchromatic channel for back-transformation
to the RGB color model. Finally, three new RGB channels at 14.25m reso-
lution containing the multispectral information from the input channels are
generated. The GRASS procedure is as follows:

# if not done yet, apply a contrast stretch (histogram equal.)
g.region rast=lsat7_2002_10 -p
r.colors lsat7_2002_10 color=grey.eq
r.colors lsat7_2002_20 color=grey.eq
r.colors lsat7_2002_30 color=grey.eq

# RGB view of RGB channels
d.erase
d.rgb b=lsat7_2002_10 g=lsat7_2002_20 r=lsat7_2002_30

# RGB/IHS conversion
i.rgb.his blue=lsat7_2002_10 green=lsat7_2002_20 \

red=lsat7_2002_30 hue=hue intensity=int saturation=sat

# IHS/RGB back conv. with ETMPAN replacing old intens. image
g.region rast=lsat7_2002_80 -p
i.his.rgb hue=hue intensity=lsat7_2002_80 \

saturation=sat blue=etm.1_15 green=etm.2_15 red=etm.3_15

# color contrast enhancement
r.colors etm.1_15 color=grey.eq
r.colors etm.2_15 color=grey.eq
r.colors etm.3_15 color=grey.eq

# visualize higher resolution color composite
d.erase
d.rgb b=etm.1_15 g=etm.2_15 r=etm.3_15

The resulting color composite combines the three color channels with im-
proved geometrical resolution. More complex merging procedures can also be
performed. For geological applications, the use of ratio calculations (generated
by r.mapcalc) is recommended, as they can be used as input into the fusion
instead of the common multispectral input channels.
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Fig. 8.10. Left: Standard composite of LANDSAT-TM7 RGB channels (28.5m
resolution); right: Image fusion of LANDSAT-TM7 RGB channels (28.5m) with
ETMPAN (14.25m) with Brovey transform leading to resolution enhanced image
(grey scale reproduction of color original)

8.5.3 Image fusion with Brovey transform

An alternate method for image fusion is the Brovey transform (described in
Pohl and van Genderen, 1998, and among other methods in Zhou et al., 1998).
The Brovey transform method is implemented in GRASS as i.fusion.brovey.
The formula was originally developed for LANDSAT-TM5 and SPOT, but it
also works well with LANDSAT-TM7. You need the panchromatic channel to
be spatially co-registered to the multispectral channels. Image fusion based on
Brovey transform for LANDSAT-TM7 data merges the channels 2, 4, and 5
(all at 28.5m resolution) with the panchromatic ETMPAN channel (at 14.25m
resolution):

g.region rast=lsat7_2002_10 -p
d.erase
i.fusion.brovey -l ms1=lsat7_2002_10 ms2=lsat7_2002_20 \

ms3=lsat7_2002_30 pan=lsat7_2002_80 out=brov
# it temporarily sets raster resolution to PAN resolution: 14.25

# original RGB
d.erase
d.rgb b=lsat7_2002_10 g=lsat7_2002_20 r=lsat7_2002_30

# Brovey transformed RGB
g.region -p rast=brov.red
d.erase
d.rgb b=brov.blue g=brov.green r=brov.red
d.vect streets_wake col=red
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The result provides improved spatial resolution. You may consider modifying
the color tables of the resulting channels to optimize the color quality to again
achieve a near-natural color image:

i.landsat.rgb b=brov.blue g=brov.green r=brov.red
# note reversed B and G channel assignment
d.rgb g=brov.blue b=brov.green r=brov.red

Figure 8.10 shows an example for image fusion with LANDSAT-TM7 data.

8.6 Thematic classification of satellite data

One of the main goals of satellite remote sensing is to derive thematic maps
describing the current land use/land cover of the earth’s surface. In the GIS
context, these maps are often used to update maps generated by conventional
techniques. Common multispectral classification algorithms treat the multi-
channel images as variables for a classification process. The resulting classes
describe the dominating land use or land cover in a certain area, where the
land use is considered locally homogeneous. Numerous classification methods
have been developed; GRASS provides capabilities for a set of standard ap-
proaches. Due to its Open Source nature, additional methods can be directly
implemented in C or other programming languages.

When reclassifying multispectral satellite data, the image data set is an-
alyzed pixel-wise, with the values of all channels being taken into account
for each pixel. The number of pixels covering the same geographic region de-
pends on the number of channels. This group of pixel values describing the
same small area is called the spectral vector. It describes its specific position in
the feature space (compare Figure 8.5 earlier in this chapter) which contains
all spectral vectors. Within the feature space, the classification algorithm tries
to separate similar spectral vectors which vary depending on the observed ob-
ject types as soil, vegetation, water bodies etc. Similar spectral vectors will
be assigned to the same class. All classes are finally stored in a thematic map
where each class describes the dominating land use type.

Local variations due to changes within and between the observed objects,
terrain slope and aspect changes, and variations of the atmospheric conditions
(haze, dust, clouds etc.) present a problem for the classification process. De-
pending on the observed area, data have to be radiometrically preprocessed
as described in the previous section to minimize influences from slope/aspect
and atmospheric effects.

In general, two strategies – unsupervised and supervised – are common
for the classification of remote sensing data (Figure 8.11). For both methods,
the classification process requires two major steps. First, the data have to
be analyzed for similarities in their spectral responses and then, pixels have
to be assigned to classes. The unsupervised method is fully automated based
on image statistics, but it delivers only abstract class numbers. The main
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task then is to find a reasonable number of clusters/classes and assign ground
truth information to these classes. The supervised classification requires user
interaction, as training areas covering known land use have to be digitized.
Image statistics are automatically derived from these training areas and used
for the final classification.

Common classification methods (MLC - Maximum Likelihood classifier as
described in Sections 8.6.1 and 8.6.2) are pixel-based. GRASS additionally
provides a different method (SMAP - Sequential Maximum A Posteriori clas-
sifier, see Section 8.6.3) which also takes into account that neighborhood pixels
may be similar. The fact that a neighborhood of similar pixels will lead to
spatial autocorrelation is used to improve the result. Altogether, four differ-
ent approaches for satellite analysis within two main groups of classification
methods are available:

• Radiometric classification:
– unsupervised classification (i.cluster, i.maxlik using the Maximum

Likelihood classification (MLC) method),
– supervised classification, and
– partially supervised classification (i.class, i.gensig, i.maxlik),

Multi−
spectral
images

Multi−
spectral
images

Classification Clustering

Classification

Clustering r.digit
v.digit

Training areas
statistics
Cluster

statistics
Cluster

Verification Verification

Landuse
classes

Landuse
classes

Ground truth

 Assignment

U
ns

up
er

vi
se

d 
cl

as
si

fic
at

io
n

S
up

er
vi

se
d 

cl
as

si
fic

at
io

n

Fig. 8.11. Unsupervised (left) and supervised (right) classification procedures for
multispectral data
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• Combined radiometric/geometric supervised classification (i.gensigset,
i.smap using the Sequential Maximum A Posteriori classification (SMAP)
method)

A common problem in remote sensing of the environment are mixed pixels
which cover various objects (field borders, urban areas, etc.). In this case, the
mentioned methods will assign the pixel dominating object to a class, usually
at a low confidence level. If appropriate, masking out settlements where lots
of mixed pixels appear may be considered. Subpixel analysis methods such as
“Spectral Mixture Analysis” are a way to overcome this problem (for a GRASS
implementation, see Neteler, 1999).

Other classifiers such as Artificial Neural Networks (ANN), k-Nearest
Neighbor Classification (kNN), Support Vector Machines (SVM), classifica-
tion trees (multiclass), and other methods are implemented in i.pr (get from
the GRASS AddOns SVN repository) and in the R statistical language. The
latter can be linked to GRASS using the GRASS/R interface; for an intro-
duction to R, see Section 10.2.

8.6.1 Unsupervised radiometric classification

Unsupervised classification is the automated assignment of raster pixels to
different spectral classes. The assignment is based only on the image statis-
tics. The unsupervised classification is a two-step approach. First, a clustering
algorithm groups pixel values with similar statistical properties according to
user definitions of minimum cluster size, separability, number of clusters, etc.
This approach is similar to the creation of a map legend, where the number
of signatures existing in a map is identified and visualized. The pixel clusters
are image categories that can be related to land cover types on the ground.
The iterative clustering algorithm computes the cluster mean values and co-
variance matrices (module i.cluster), adjusting these values while reading
the image data set. The idea is to identify pixel clouds from the feature space
which have similar reflectance values in the various channels. Each pixel cloud,
grouped into clusters which represent land use classes, characterizes the spec-
tral signature of a certain object which will be later assigned to a class.

This cluster information is used to perform the spatial assignment of the
individual pixels to the derived clusters (module i.maxlik). The MLC deter-
mines which spectral class each cell in the image belongs to with the highest
probability. Internally, a Chi-square test is run with changing thresholds until
a predefined convergence is reached (stability of the pixel assignment during
the iteration steps). The result is a new map containing the classes. The MLC
also stores the confidence level for each pixel belonging to a certain class in
a second map. This map is called “reject threshold map layer” or “rejection
map” and contains one calculated confidence level for each reclassified cell in
the reclass map. High values in the rejection map represent a high rejection
probability for the assigned class. One of the possible uses for this map is as a
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MASK, to identify cells in the reclassified image that have the lowest proba-
bility of being assigned to the correct class. It is important to know that MLC
assumes that the spectral signatures for each class are normally distributed
(i.e., Gaussian in nature) which is often unrealistic. For a detailed discussion,
see various remote sensing books such as Mather (1999).

First step: Clustering of image data The unsupervised classification
starts with collecting the image channels of interest (i.e., for optical data
usually all reflective channels without thermal channel) into an image group
using i.group (group parameter). It is important to also generate a subgroup
containing the same channels because the classification modules will ask for
the subgroup name.

The clustering process is performed with i.cluster. A set of parameters
has to be specified to control the clustering. It is important to set the initial
number of classes used for the first iteration (“number of initial classes”); for
other parameters, you may use default values for the first try. They have the
following meaning (class and cluster are used as synonyms, explanations are
based on the U.S. Army CERL (1993) tutorial):

• Minimum class size: minimum number of pixels to define a cluster;
• Class separation: minimum separation below which clusters will be merged

in the iteration process. It depends on the image data being reclassified
and the number of final clusters that are statistically acceptable. Its deter-
mination requires experimentation, usual values range between 0.5 to 1.5.
Note that as the minimum class separation is increased, the maximum
number of iterations should also be increased to achieve this separation
with a high percentage of convergence (see percent convergence);

• Percent convergence: point at which cluster means become stable dur-
ing the iteration process. When clusters are being created, their means
constantly change as pixels are assigned to them and the means are re-
calculated to include the new pixel. After all clusters have been created,
i.cluster begins iterations that change cluster means by maximizing the
distances between them. As these mean shift, a progressively higher con-
vergence is approached. Because means will never become totally static,
a percent convergence and a maximum number of iterations are supplied
to stop the iterative process. The percent convergence should be reached
before the maximum number of iterations. If the maximum number of it-
erations is reached, it is probable that the desired percent convergence was
not reached. The number of iterations is reported in the cluster statistics
in the report file;

• Maximum number of iterations: determines the maximum number of iter-
ations which is greater than the number of iterations predicted to achieve
the optimum percent convergence of the Chi-square test. If the number
of iterations reaches the maximum designated by the user; the user may
want to rerun i.cluster with a higher number of iterations;
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• Sampling intervals: simplifies the calculations by grouping the pixels into
blocks. If the system resources are about to be depleted due to a too small
block size, i.cluster will warn the user. These numbers are optional with
default values based on the size of the data set such that the total pixels
to be processed is approximately 10,000 (consider round up). With appro-
priate hardware, the unrecommended sampling may become unnecessary.

For using i.cluster, define the group and subgroup names, and a sigfile
name for the “result signatures” (which will store the cluster information for
i.maxlik. Only if present (not in the first run), a seed name for a “Initial
signature” may be specified. This allows you to use cluster information from
a previous run or to use spectral signatures from another partial supervised
classifications using i.class. Then, enter a reportfile name for the “Final
report” file which will be written to the current directory. It contains statistical
information about the clustering process. For a LANDSAT-TM5/7 scene, the
classes (“Initial number of classes”) should be initially set to 20. This is a test
case – the number has to be changed depending on the results, especially when
the convergence is not reached. After launching the command, the cluster
analysis is running, generating the cluster statistics and the report file:

# store VIZ, NIR, MIR into group/subgroup
i.group group=lsat7_2002 sub=lsat7_2002 \
in=lsat7_2002_10,lsat7_2002_20,lsat7_2002_30,lsat7_2002_40,\
lsat7_2002_50,lsat7_2002_70

g.region rast=lsat7_2002_10 -p
i.cluster group=lsat7_2002 sub=lsat7_2002 sig=clst2002 \

classes=10 report=rep_clst2002.txt

After checking the quality of the clustering process in the report file, an even-
tual modification of the parameters and one or more new runs of i.cluster
are required.

Second step: Unsupervised classification of image data Now, the
unsupervised classification based on the MLC algorithm can be done with
i.maxlik. The module will assign all pixels in the satellite image to the spec-
tral signatures (classes) derived by the previous clustering process. For starting
i.maxlik, the image group and subgroup have to be defined as well as the sig-
nature file name which is the result of the clustering process performed with
i.cluster. Additionally, a name for the new reclassified image and a name
for the reject threshold map is needed. The latter stores pixel-wise the assign-
ment confidence levels. As described above, this map represents the spatially
localized errors which occurred when assigning each pixel to a class:

# MLC
i.maxlik group=lsat7_2002 sub=lsat7_2002 sig=clst2002 \

class=lsat2002_maxlik rej=lsat2002_maxlik_rej
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d.rast.leg lsat2002_maxlik
d.rast.leg lsat2002_maxlik_rej

With this command, GRASS computes the unsupervised classification. The
resulting maps are displayed with d.rast. The reject threshold map contains
one calculated confidence level for each classified cell in the classified image:

# select all areas with confidence level >= 70%
# of correct assignment
r.report lsat2002_maxlik_rej un=h
r.mapcalc "lsat2002_maxlik_rej_qual = \

if(lsat2002_maxlik_rej >= 10, 1, null())"
r.report lsat2002_maxlik_rej_qual un=h
d.erase
d.histogram lsat2002_maxlik_rej

The filtered rejection map lsat2002_maxlik_rej_qual can be used as MASK
to select the pixels with a high confidence level of assignment. In case that the
quality of the classification process is not acceptable, the number of classes or
other parameters need to be changed; subsequently, the clustering and MLC
analysis must be repeated with the new values.

The classes in the classification map are then manually assigned to the
appropriate land use types in the verification. The assignment of category
labels is explained in Section 5.1.9. Alternatively, the map can be vectorized
and attributes assigned with v.db.update. To change the map colors to more
intuitive ones (water colored blue, etc.), the module r.colors is used.

8.6.2 Supervised radiometric classification

In a supervised classification, the classification process is supported by an in-
teractive selection of known areas (for the general workflow, see Figure 8.11).
Using visual inspection in the field or auxiliary training maps, areas with
known land cover are selected and stored in a training map, which is used
to identify the spectral signatures for the classification process. These known
areas are also called “ground truth areas”. It is important that the training ar-
eas are homogeneous samples. Since training areas cover several pixels, small
local variations are included for the definition of the classes. For verification,
the module i.class supports analyis of channel-wise histograms. A Gaus-
sian distribution of the spectral responses is assumed and standard deviations
are displayed in the histograms. These standard deviations can be modified
to change the cluster statistics. The spectral signatures (grouped later into
classes) are computed from the regional mean values of the training areas and
their covariance matrices.

The training areas can either be digitized within the module i.class (cov-
ered in the first part of the following description) or prepared from auxiliary
maps such as already available land use maps (second part of the following
description).
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Fig. 8.12. Sample screen of interactive training area identification with i.class
(LANDSAT-TM7 RGB composite image, North Carolina, Wake County)

Interactive selection of training areas The manual vectorization of
training areas is accomplished with i.class. First, the satellite channels have
to be joined into an image group and subgroup using i.group. Creating a
natural or false color composite (see Section 8.1.3) which will be helpful for
identification of training areas is recommended.

To start the module i.class, define an image group and subgroup. Also
provide a name for the “result signature file”. It will contain the spectral
signatures for the later classification process. Optional is the “input signatures”
which allows you to read in signatures from a previous run (e.g., in case you
interrupted this procedure). We skip it for the first run. Then specify a “raster
map to be displayed” which may be a previously generated natural or false
color composite. This map, if not included in the image group, will not be
considered for the image statistics:

g.region rast=lsat7_2002_rgb
i.class group=lsat7_2002 sub=lsat7_2002 map=lsat7_2002_rgb \

outsig=outsig

The monitor display becomes divided into three parts. In the upper right
corner, you see the image. In the lower right corner, zoomed map portions
will be displayed when using the Zoom function. In the left section of the
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monitor, histograms for the selected training areas for all channels will be
displayed. The training areas can be digitized by using the Define Region and
the Draw Region buttons. When digitizing using the mouse, a vector line is
drawn around the first training area. Keep in mind that the training area
should cover a unique land use. To close the drawn polygon use Complete
Region and leave the Draw Region menu with Done. An example screen is
shown in Figure 8.12. To verify the cluster statistics, click on Analyze Region.
Now the i.class module will search for spectral signatures based on the
current training area within the image. The resulting histograms are shown
in the left column of the monitor. The next step is to determine the class
assignment to the image – the spatial distribution of the current spectral
signatures can be overlayed as filled polygons with Display Matches (you can
select a color for the area). If desired, the standard deviation can be set to a
different value (Set Std Dev’s). This way, you can try to improve the cluster
statistics and display the matches again. After displaying the matching areas,
you are asked whether to accept this signature. If yes, you can specify a
Signature description in the terminal window for this spectral signature. You
can then continue to digitize the next training area. With some experience,
you will become familiar with the concept of this module. Please note that
the vector lines of the digitized training areas are not stored. See the next
paragraph for an alternate approach based on retrieving training areas from
auxiliary maps.

To obtain good results, you should not digitize border pixels of any land
use patch because such pixels often contain mixed spectral signatures. It is
also important not to digitize very small areas since these will be ignored for
statistical reasons (i.class will print a warning message, accordingly). Once
you leave this module, the generated spectral signatures will be stored.

The spatial assignment of the data set pixels to the classes is done with
i.maxlik. Specify the file generated by i.class as the “result signature” map.
The other settings are the same as described in the previous section. Finally,
the classification map and the “Reject threshold map” are created.

Generating training areas from auxiliary maps When additional
maps with information about the current land use are available, they can
be used to extract training areas. It is also useful to digitize training ar-
eas independently from i.class and store them in a separate map for later
use/verification.

For raster maps, r.mapcalc (if-conditions) will be useful, for vector maps
it will be the v.extract module. If training areas need to be digitized from
a map, v.digit can be used (see Section 6.3.2). After digitizing, vector areas
have to be converted to a raster map with v.to.rast. It is recommended to
assign a vector label to each training area in v.digit. Otherwise, unlabeled
areas will be hard to understand later. It is also possible to digitize from a
raster image with r.digit.
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The training map in the raster model is input for i.gensig. This module
creates a signature file using the training area statistics similar to i.class.
The spatial assignment of the pixels is subsequently handled by i.maxlik.

Partial supervised classification The partial supervised classification is
similar to the above-described unsupervised classification. The difference lies
in the incorporation of training areas, which have to be defined prior to the
application of i.cluster using i.class or i.gensig. After preparing spectral
signatures from training areas, the clustering module i.cluster is started and
the “result signature file” is generated with i.class or i.gensig is used as
“seed signature” for i.cluster. Finally the i.maxlik is used to generate the
classification map and “reject threshold map”. Beyond this step the procedure
is the same as for the unsupervised classification.

Also, in the reverse order, the hierarchical classification is a way to derive
thematic maps from satellite data. Based on an unsupervised classification,
potential training areas are identified and stored in a map. This map is a basis
for a supervised classification as shown above. As signature files can be used
across the modules, better results are eventually achieved through an iterative
approach rather than a straight-forward classification.

8.6.3 Supervised combined geometric and radiometric
classification

GRASS provides an additional sophisticated supervised classification tool.
The algorithm is a combined radiometric/geometric classification method
which is called “SMAP – sequential maximum a posteriori – estimation”. Un-
like the pixel-based approach described above, this method uses an image
pyramid approach which also takes neighborhood similarities into account
(Schowengerdt, 1997:107, see also Ripley, 1996:167-168). This combination
leads to a significant improvement of the classification results (Redslob, 1998).
A second advantage is that the module also accepts a single channel data, so it
can be used for image segmentation which we demonstrate later in Section 8.8.
The SMAP implementation module is i.smap.

The steps for a SMAP-classification are as follows. First, the data set im-
ages are joined into a group with i.group. Training areas have to be digitized
with v.digit, r.digit or generated from existing vector or raster maps. The
training areas map has to be a raster map. Note that the number of train-
ing areas defines the number of classes. Similarly to the other classification
methods, the training areas should cover several pixels; otherwise they will be
ignored if the pixel number is too small. The spectral signatures are generated
from the training map with i.gensigset. This module first queries the name
of the training map, then the group and subgroup names. The module creates
a “Subgroup signature file” which corresponds to the above mentioned “Result
signature file”.
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radiometric, radiometric, supervised radio- and geo-
unsupervised metric, supervised

Preprocessing i.cluster i.class (monitor) i.gensig (maps) i.gensigset (maps)
Computation i.maxlik i.maxlik i.maxlik i.smap

Table 8.1. Classification methods in GRASS

The supervised classification can be performed from the spectral signatures
with i.smap. Again, group and subgroup have to be entered, followed by
the name of the recently generated “Subgroup signature file” and then the
computation will start.

With a sufficient number of training areas, the results of this algorithm
are superior to the MLC. A comparison of SMAP, MLC, and the ECHO
classifier (the latter is not implemented in GRASS) can be found in McCauley
and Engel (1995). Table 8.1 summarizes the main classification techniques
available in GRASS.

8.7 Multitemporal analysis

The availability of multitemporal remote sensing data including long term
satellite data is of great importance for environmental monitoring. Advanced
analysis methodologies support monitoring of the earth’s surface and atmo-
sphere at different spatial and temporal scales. Many methods are described
in the remote sensing literature; in this section, we will focus on a simple
time series analysis with MODIS (Moderate Resolution Imaging Spectrora-
diometer) sensor data which is flown on board of the Terra and Aqua NASA
satellites. Terra was launched in 12/1999, Aqua in 5/2002. The data analyzed
here are Land Surface Temperatures (LST, MODIS level V004, pixel resolu-
tion nominally 1 km2). To facilitate the use of these data which are originally
delivered in HDF format and Sinusoidal projection, a spatial subset for parts
of North Carolina was produced including application of MODIS quality as-
surance maps, outlier detection, reprojection to the nc_spm LOCATION and
rescaling to degree Celsius. These processed data are available in a separate
MAPSET modis2002lst. The data processing is outlined in Neteler (2005)
and Rizzoli et al. (2007). The time series in MAPSET modis2002lst includes
two daily maps from Terra/MODIS for 2002; from Aqua/MODIS, two daily
maps are available from September 2002 onwards, July and August are incom-
plete. Due to this, four LST maps per day are available from 1st of September
in the MAPSET.

The temporal order is as follows (given in approximate local NC time; the
raster map metadata timestamps are given in UTC, as shown with r.info):

• Aqua overpass at 01:30 (e.g., aqua_lst_night20020921),
• Terra overpass at 10:30 (e.g., terra_lst_day20020921),
• Aqua overpass at 13:30 (e.g., aqua_lst_day20020921),
• Terra overpass at 22:30 (e.g., terra_lst_night20020921)
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As a first step, we add the modis2002lst MAPSET to the map search
path, list available maps and look at a selected day (21 Sept. 2002):

g.mapsets add=modis2002lst
g.list rast map=modis2002lst

# night overpass at 22:30h, temperatures in degree Celsius
d.rast.leg terra_lst_night20020921
d.vect us_natlas_hydrogp type=boundary col=blue
d.vect us_natlas_urban type=boundary
d.vect us_natlas_urban disp=attr attrcol=NAME type=centroid \

where="AREA>=0.002" lsize=12

# day overpass at 10:30h
d.rast.leg terra_lst_day20020922
d.vect us_natlas_hydrogp type=boundary col=blue
d.vect us_natlas_urban type=boundary
d.vect us_natlas_urban disp=attr attrcol=NAME type=centroid \

where="AREA>=0.002" lcol=black lsize=12

We can easily calculate the pixel-wise difference between the late evening and
next morning LST using r.mapcalc,:

# difference night LST to next morning
r.mapcalc "diff_day_night=terra_lst_day20020922 - \

terra_lst_night20020921"
d.rast.leg diff_day_night
d.vect us_natlas_hydrogp type=boundary col=black
d.vect us_natlas_urban type=boundary col=brown
d.vect us_natlas_urban disp=attr attrcol=NAME type=centroid \

where="AREA>=0.002" lcol=black lsize=12

Not surprisingly, the lakes appear as very stable in temperature, while there
are stronger differences for urban areas.

We can use these data to generate various time series indicators. A central
problem to deal with in optical remote sensing are the clouds. Since cloud
top temperatures are measured, they were filtered out in the data processing,
leaving NULL data cells. For certain indices such as average temperature,
we have to take care of this and perform NULL propagation. In the next
example, we calculate daily LST averages for September 2002. In order to
minimize the necessary steps, we write a simple UNIX shell script (a for loop
with a sequence over all days, reformatting of the DAY number to match the
map name style; for backticks usage, see Section 5.4.1). Using r.series, we
can aggregate over time:

# bash shell script style
for d in ‘seq 1 30‘ ; do
DAY=‘echo $d | awk ’{printf "%02d\n", $1}’‘
LIST=‘g.mlist type=rast pat="*lst*200209${DAY}" sep=","‘
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a                                                                            b

c                                                                           d

Fig. 8.13. LST maps derived from MODIS: a) Average Land Surface Temperature
(LST) for September 2002 (in degree Celsius) showing urban heat islands while lake
surroundings are relatively cool, b) difference between day and night LST on a given
day, c) day LST, and d) night LST used to compute the differences

echo "$LIST"
# propagate NULL to avoid wrong average due to cloud passage
r.series -n $LIST out=lst_200209${DAY}_avg method=average
d.rast.leg lst_200209${DAY}_avg
d.vect us_natlas_urban type=boundary

done

We observe that due to the NULL propagation, often partially or completely
empty daily average LST maps are generated. This cannot be avoided unless
a complex time series reconstruction is performed which would use the perod-
icity of the diurnal and seasonal temperature profiles. However, for a monthly
aggregation we may omit single days since the calculations are done on the
pixel-wise time series.

We can aggregate the resulting daily average LST maps again to monthly
average LST of September 2002:

LIST=‘g.mlist type=rast pat="lst_200209*" sep=","‘
echo "$LIST"
# here we don’t propagate NULL
r.series $LIST out=lst_200209_avg method=average
r.colors lst_200209_avg col=gyr
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# count number of "good" pixels in time series
r.series $LIST out=lst_200209_avg_count method=count
r.colors lst_200209_avg_count col=ryg

# show number of valid days
d.rast.leg lst_200209_avg_count
d.vect us_natlas_hydrogp type=boundary col=blue
d.vect us_natlas_urban type=boundary
d.vect us_natlas_urban disp=attr attrcol=NAME type=centroid \

where="AREA>=0.002" lcol=black lsize=12

# only accept average LST map if sufficient pixels available
r.mapcalc "lst_200209_avg_filt=if(lst_200209_avg_count > 5, \

lst_200209_avg, null())"

# show resulting filtered average LST map
d.rast.leg lst_200209_avg_filt
d.vect us_natlas_hydrogp type=boundary col=blue
d.vect us_natlas_urban type=boundary
d.vect us_natlas_urban disp=attr attrcol=NAME type=centroid \

where="AREA>=0.002" lcol=black lsize=12

Despite some no data areas due to too many clouds, the resulting filtered
average LST map clearly shows the high average temperature in urban areas
in September 2002 (see Figure 8.13). Relative differences can be seen, for
example between Raleigh and Durham with Durham being several degrees
colder than Raleigh. The lakes and surroundings are significantly colder on
average.

8.8 Segmentation and pattern recognition

Aerial photos can be used for land use/land cover classifications similar to
satellite data. However, because often only a single channel is available, either
in black-and-white, in visible colors or in the infrared spectral range, the classi-
fication of aerial photos is different from satellite images. Image segmentation
is a method for semi-automated feature extraction, such as the land use/land
cover classes or edges from remote sensing data. A segmentation algorithm
is implemented in the SMAP module i.smap which we already introduced in
Section 8.6.3 for multi-channel satellite data.

The SMAP algorithm exploits the fact that nearby pixels in an image are
likely to belong to the same class. The module segments the image at various
scales (resolutions) and uses the coarse scale segmentations to guide the finer
scale segmentations (image pyramid). In addition to reducing the number of
misclassifications, the SMAP algorithm generally produces results with larger
connected regions of a fixed class which may be useful in numerous appli-
cations. The amount of smoothing that is performed in the segmentation is
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dependent on the behavior of the data in the image. If the data suggest that
the nearby pixels often change class, then the algorithm will adaptively reduce
the amount of smoothing. This ensures that excessively large regions are not
formed. The SMAP segmentation algorithm attempts to improve segmenta-
tion accuracy by segmenting the image into regions rather than segmenting
each pixel separately.

The size of the submatrix used for segmenting the image has a principle
function of controlling memory usage; however, it can also have a subtle effect
on the quality of the segmentation in the SMAP mode. The smoothing param-
eters for the SMAP segmentation are estimated separately for each submatrix.
Therefore, if the image has regions with qualitatively different behavior, (e.g.,
natural woodlands and man-made agricultural fields) it may be useful to use a
submatrix small enough so that different smoothing parameters may be used
for each distinctive region of the image.

Generating a training map The module i.smap runs with single images
as well as multispectral images. The raster polygons resulting from the seg-
mentation process may be vectorized later with r.to.vect. To classify, i.smap
requires a training map containing spectral signature. This training map con-
tains numbered raster polygons which cover selected areas with homogeneous
land use/land cover. The pixels inside a training area are considered to be
spectrally similar. The training map is analyzed by i.gensigset which gener-
ates statistical information from the input aerial image based on the training
map. The training map can be digitized (r.digit or v.digit with v.to.rast
subsequently). The image statistics derived by i.gensigset is input to i.smap.
As opposed to the Maximum Likelihood Classifier algorithm which operates
pixel-wise, the SMAP also considers spectral similarities of adjacent pixels.
The module i.smap expects the aerial image listed in an image group and
subgroup.

If the aerial photo is a color image, it may be analyzed in three channels.
During import, a 24 bit aerial color image can be split into the red, green
and blue channels. Also black-and-white images can be roughly split into
three pseudo-color images with r.mapcalc (# operator, see Section 5.2). The
# operator can be used to either convert map category values to their grey
scale equivalents or to extract red, green, or blue components of a raster map
into separate raster maps. The # operator has three forms: r#map, g#map and
b#map. These extract the red, green, or blue pseudo-color components in the
named raster map, respectively. For example,

g.region rast=ortho_2001_t792_1m -p
r.mapcalc "ortho_2001_t792_1m.r=r#ortho_2001_t792_1m"
r.mapcalc "ortho_2001_t792_1m.g=g#ortho_2001_t792_1m"
r.mapcalc "ortho_2001_t792_1m.b=b#ortho_2001_t792_1m"
d.erase
d.rast ortho_2001_t792_1m
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d.rgb b=ortho_2001_t792_1m.b g=ortho_2001_t792_1m.g \
r=ortho_2001_t792_1m.r

results in three pseudo-color channels which may be used for the segmenta-
tion. However, when working with 24bit images, the information contents is
certainly higher.

Sometimes, it is useful to generate and use additional synthetic channels for
the classification. For example, the module r.texture creates raster maps with
textural features from image channels. The textural features are calculated
from spatial dependence matrices at 0, 45, 90, and 135 degrees within a given
moving window. For details, please refer to the related manual page.

A sample segmentation session A sample segmentation procedure for
the aerial image ortho_2001_t792_1m may be performed as follows:

i.group group=segment subgroup=segment in=ortho_2001_t792_1m

# digitizing training areas: fields, forest, roads, etc.
# save as map "training"
r.digit training
d.rast.leg training

# generate class statistics from training map
i.gensigset training gr=segment sub=segment sig=smapsig

# run segmentation
i.smap gr=segment sub=segment sig=smapsig out=ortho.smap
d.erase
d.rast ortho.smap
# overlay to original orthophoto
d.his i=ortho_2001_t792_1m h=ortho.smap

Depending on the training map, the result can become a vectorized land
use/land cover map. However, this map would contain a lot of spurious areas.
These can be filtered first with the script r.reclass.area. As an example,
only areas greater than 0.0025 hectares will be preserved (note, this script
only operates in georeferenced LOCATIONS):

# 5x5 pixel = 25m = 0.0025ha
r.reclass.area ortho.smap out=ortho.smap.filt greater=0.0025
d.rast ortho.smap.filt

The deleted areas are filled with NULL (no-data) values. To reassign values
to these NULL cells, we can use a mode filter which replaces the NULL cells
by the dominating land use value in the 5 × 5 neighborhood. The mode filter
is implemented in r.neighbors:

# mode filter to replace NULL cells
r.neighbors ortho.smap.filt out=ortho.smap2 method=mode size=5
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d.rast ortho.smap2
# vectorization and visual./report of land use/land cover map
r.to.vect -s ortho.smap2 out=ortho_smap2 feature=area
d.erase -f
d.rast ortho_2001_t792_1m
d.vect -c ortho_smap2 type=boundary col=yellow

v.info -c ortho_smap2
# now use v.db.update to assign text attributes in
# the "label" column of the table based on the "value" entries

# area report
v.report ortho_smap2 option=area units=h

We have now the land use/land cover map available as raster and vector maps.
Special care has to be taken for cast shadows resulting from sun which may
either be treated as a special class or reduced by image pre-processing.
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Notes on GRASS programming

GRASS provides a unique opportunity to improve and extend GIS capabil-
ities by a new code development. The GNU General Public License (GPL)
keeps the code as Free Software, while protecting the rights of the individual
authors as well of the users. Because the source code can be studied, modi-
fied and published again, there is an ongoing exchange of knowledge, methods
and algorithms between GIS and software engineering experts. Free Software
projects are gaining interest even in the proprietary GIS industry due to their
stability and the transparent development process.

To make the development of GIS tools more efficient, GRASS provides a
large GIS library with documented application programming interface (API).
The code is portable on all common architectures and operating systems.
The available programming documents enable potential developers to better
estimate the workload of adding functionality to GRASS. The possibility of
simply deriving a new tool or customized solution from existing source code
greatly speeds up development. An important aspect of the GRASS develop-
ment is the fact that the developers are at the same time advanced GRASS
users who improve or extend the existing functionality, based on the needs of
their daily GIS use in production.

9.1 GRASS programming environment

Important communication channel supporting GRASS development is the
“GRASS developers mailing list”.1 Here advanced users exchange ideas and
discuss problems related to code development or bugfixes. The core team
members can submit changes at any time because the source code is managed
in CVS (Concurrent Versioning System). Write access to CVS is granted by
the GRASS Project Steering Committee (GRASS-PSC) to those developers
who build a record of systematically contributing quality code. Documenta-
tion (“GRASS Programmer’s Manual”, GRASS Development Team, 2006 and

1 “grass-dev” mailing list, http://grass.itc.it/mailman/listinfo/grass-dev

http://grass.itc.it/mailman/listinfo/grass-dev
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user manual) is automatically extracted from the source code (inline docu-
mentation, extracted with “doxygen” tool) into HTML and PDF formats and
updated weekly. Access to the full source code, either as a released package, or
as a weekly CVS snapshot, or directly extracted from CVS, allows the devel-
opers to study the code structure of a full featured GIS. We will describe the
general code structure of GRASS 6 in greater detail below. The code structure
is fairly standardized, following as much as possible ANSI/POSIX style. Fig-
ure 1.1 at the beginning of the book in Section 1.2 shows the current GRASS
development model.

9.1.1 GRASS source code

The complete GRASS source code is available on the GRASS Web sites. It
comprises around 550.000 lines of basically C, Makefiles, Tcl/Tk and Python
code and shell scripts. Those who want to participate in the ongoing source
code development of GRASS should learn more about the “GRASS-CVS”.
This electronic management tool (CVS: Concurrent Versioning System2) for
the source code is used in GRASS development since December 1999. The
idea of CVS is to enable the developers to have direct read/write access to
the GRASS source code for independent development. CVS supports the cen-
tralized management of GRASS development, as the developers work on a
single code base with restricted write, but public worldwide read access. You
can find more information about this topic on the GRASS Web servers. An-
other advantage is that the CVS client minimizes data transfer after an initial
download: during a subsequent synchronization of the local GRASS source
code copy with the centralized CVS server (“cvs update” command) only new
code changes are transferred through network. It is planned to migrate the
repository to the more modern subversion (SVN) repository software which
works in a similar way.

CVS snapshots which cover the latest development are generated on a
weekly basis and made available in a package for download. This is useful for
skilled users who do not want to learn CVS itself but who would like to follow
the latest development. However, knowledge about how to compile source code
packages is required.

To compile the source code it is recommended to first read the
REQUIREMENTS.html file provided with the source code as well as the INSTALL
file to make sure that you have all the necessary libraries installed on your
system. After extracting the code (not needed when directly accessing the
CVS server), the compilation is done with three steps:

# you may compile as normal user
./configure <parameters>
make

2 CVS software, http://www.nongnu.org/cvs/

http://www.nongnu.org/cvs/
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# installation usually requires ’root’ permissions
su
make install

Note that the configure script may expect parameters depending on your
local installation of required libraries. Please refer to the INSTALL file within
the source code for further details and explanations.

If you want to compile code from the GRASS Addons SVN repository (see
Section 3.1.1), you can compile GRASS modules (stored there in subdirecto-
ries) with:

make MODULE_TOPDIR=$HOME/grass63/
make install

The MODULE_TOPDIR path needs to be adapted to the directory where you
installed GRASS.

9.1.2 Methods of GRASS programming

GRASS 6 is written in ANSI C programming language. Additionally, UNIX
Shell scripts and a few PERL scripts are implemented. The current graphical
user interface gis.m is based on Tcl/TK libraries, the nviz visualization tool
additionally includes OpenGL function calls. A new Python/wxWidgets based
graphical user interface is under development (wxgrass, available from the
GRASS AddOns SVN repository).

The command line parser is part of the GIS library. It generates output in
different programming languages. Several parameters are available to quickly
prototype applications by simply launching a GRASS command:

• <grassmodule> --script: prints a boilerplate for a shell script with auto-
generated graphical interface to the script;

• <grassmodule> --tcltk: prints out a Tcl/TK description of the module’s
parameters and flags;

• <grassmodule> --interface-description: prints out a XML description
of the module’s parameters and flags;

• <grassmodule> --html-description: prints out a HTML description of the
module’s parameters and flags.

A simple automatic Python/wxWidgets GUI builder based on the XML-based
GRASS user interface descriptions along with a Document Type Definition
(DTD) is available. Also a preliminary GRASS-SWIG interface has been im-
plemented. SWIG is a software development tool that connects programs writ-
ten in C and C++ with a variety of high-level programming languages; in
GRASS, PERL and Python are currently supported.

The modular concept of GRASS provides huge potential for development.
Apart from the standard use, two basic levels of programming are supported.
Average users will use “script programming” to automate repeating processes
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and generate workflows, while advanced users can extend existing code or
develop new modules based on the SWIG or C-API.

For script programming, there are no general limitations. After setting
the specific environment variables as discussed below, more or less any UNIX
compliant script language can be used, even MS-Windows batch scripts are
supported with some limitations. Many UNIX shell scripts are already imple-
mented, as well as PHP Hypertext Preprocessor3 and others. To learn how
to write customized scripts, take a look at the numerous scripts stored in
$GISBASE/scripts/). The advantage of scripts is that they can utilize other
UNIX tools such as awk, sed, or cut. If you are familiar with the command
line usage of GRASS, it requires only a small step to start writing your own
scripts. To write Web-based applications such as developing a “remotely con-
trolled” GIS which dynamically generates Web map pages will certainly need
more time: Besides functionality, issues like software ergonomics, speed, and
security play an important role. In Section 10.4, we will demonstrate a simple
example how to publish GRASS raster data with a fast Web mapping server.

We can only provide few introductory notes about GRASS C-programming
here, as this GIS focused book does not intend to replace a general C-
programming tutorial. Our objective is to depict the current source code
structure to guide newcomers within the huge code base.

9.1.3 Level of integration

There are different levels of integrating new or external functionality into
GRASS. We can distinguish between:

• links to external software:
– loose coupling: linking other GIS to GRASS via data exchange through

shared data formats (e.g., using GRASS in a heterogeneous network
such as Linux/Samba/MS-Windows along with proprietary GIS soft-
ware);

– tight coupling: direct access to GRASS LOCATION through
GDAL/OGR (e.g., to read maps from a LOCATION directly with
UMN/MapServer);

• full integration: modification/extension of GRASS functionality (e.g., writ-
ing new code in C, Python, UNIX Shell, PERL, such as gstat and the
GRASS/R interface) and/or using the SWIG interface.

In the following sections we provide several examples of scripts and programs
illustrating the possibilities for extending GRASS capabilities. To improve
legibility, we have typeset these scripts and programs in a language-sensitive
formatting. You can download the larger scripts explained in this chapter from
the Internet.4

3 Sample application “Recent Earthquakes”: map generated by GRASS on the fly
with PHP, http://grass.itc.it/spearfish/php_grass_earthquakes.php

4 GRASS Book Web site, http://www.grassbook.org

http://grass.itc.it/spearfish/php_grass_earthquakes.php
http://www.grassbook.org
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9.2 Script programming

UNIX Shell, PERL and Python scripts can be used to automate workflows
which are repeatedly performed for different maps. The standard GRASS
installation provides a set of scripts which, from the user’s side, mostly be-
have like modules programmed in C language. The major drawback is that
scripts usually run slower than compiled implementations (except for Python).
Scripts are stored as ASCII files. Because the GRASS modules can be called
within the scripts, complex applications can be developed. When writing such
a script for the first time, it is useful to perform the task by running the com-
mands step by step in command line mode. Then the UNIX history command
allows you to view and save the previously entered commands. Another option
is to use the UNIX script program which logs a session into a text file.

As an example, we write a simple script d.rast.region which first adjusts
the current region settings to the map given as a parameter, and then displays
the map:

#!/bin/sh
#
# This program is Free Software under the GNU GPL (>=V2).
# Adjust the current region settings to a raster map
# specified as parameter, then display the map

if test "$GISBASE" = ""; then
echo "You must be in GRASS to run this program."
exit

fi

#map name is first parameter:
MAP=$1

#zoom:
g.region rast=$MAP
#erase monitor and display map:
d.erase
d.rast $MAP

The first line is mandatory for UNIX Shell scripts. After performing a test to
ensure that the script is executed in GRASS environment, the first parame-
ter given on command line is stored into a script-internal variable. GRASS
modules are then used to perform the desired task. The map name is stored
in the new variable $MAP. It is a good programming practice to use easy to
understand variable names and to document the functionality step-by-step. It
is also important to set the proper file permissions after storing the script as
a file d.rast.region:
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chmod a+x d.rast.region

The script can be copied into the directory $GISBASE/scripts/ or in a
dedicated directory which has to be defined by the environmental variable
$GRASS_ADDON_PATH before starting GRASS itself. This allows you to keep
your scripts and modules physically separated from the standard GRASS.
The path(s) defined in $GRASS_ADDON_PATH are added to the modules search
path during startup.

The next example, demonstrating the potential of script programming,
slightly extends the GRASS functionality by introduction of the awk tool. This
script calculates general geostatistical information for raster images (adapted
from Albrecht, 1992). You may save this script as statistics.sh and set the
UNIX execute permissions:

#!/bin/sh
# This program is Free Software under the GNU GPL (>=V2).
# calculate univariate statistics for GRASS raster data

if test "$GISBASE" = ""; then
echo "You must be in GRASS to run this program."
exit

fi
MAP=$1
r.stats −1 $MAP | awk ’BEGIN {sum = 0.0 ; sum2 = 0.0}
NR == 1{min = $2 ; max = $1}

{sum += $1 ; sum2 += $1 * $1 ; N++}
{
if ($1 > max) {max = $1}
if ($1 < min) {min = $1}
}

END{
print "Number of raster data samples N =",N
print "Minimum value MIN =",min
print "Maximum value MAX =",max
print "Variation v =",(max - ((min * -1) * -1))
print "Mean MEAN =",sum / N
print "Variance S2 =",(sum2 - sum * sum / N) / N
print "Standard deviation S =",sqrt((sum2 - sum * sum/N) / N)
print "Variation coeffic. V =",100*(sqrt((sum2 - sum*sum/N)/N)) \

/(sum/N)
}’

exit 0

This script must be used from inside GRASS. The name of the input raster
map is specified as a parameter. Within this script, the output of the GRASS
module r.stats is piped to the program awk. The statistical calculations are
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done within awk and the results are printed out. A modified version of the
above script, r.univar.sh, is provided with GRASS (note that there is also a
faster C implementation r.univar).

The next script example calculates the center of gravity of an area (area
centroid). You can use it to find the center of gravity of a region defined
by a watershed boundary. The script requires a watershed map generated
by r.watershed. Internally, all basins except the watershed of interest are
masked out with r.mask. You can download a r.centroid script from the
GRASS Book Web site. This script shows how UNIX commands and GRASS
modules can be combined. It also provides a parser (through g.parser), so the
script will run both in the command line mode, and, when started without
parameters, in the interactive mode, i.e. graphical user interface. The first
test checks if the module is started within GRASS, and exits if it is not. The
usage description is stored in a function to save space within the script and
to improve the legibility.

A simple parser is provided for command line processing with g.parser.
In our example, a raster map such as a watershed or other raster area map
are of interest. The module checks if the user requested the module help
description or otherwise accepts the first parameter as raster file name. Then
the ID number of the raster polygon is checked (which might be queried
with d.what.rast beforehand). This is followed by the centroid calculation
according to the centroid formula. The calculation requires the area of the
current raster polygon which is retrieved from r.report. Additionally, the
current resolution is needed. In case that MASK is present, it will be saved
and later restored. This is necessary, as the area of interest has to be selected
inside the input raster map with a new MASK. To see the r.centroid script
applied to the watersheds map basin_50K in our NC sample data set, you may
run:

# set region and display the input map
d.mon x0
g.region rast=basin_50K -p
d.erase
d.rast basin_50K

# calculate area and centroid coords for watershed no. 28
r.centroid map=basin_50K areanumber=28

# display centroid of watershed no. 28,
# coordinates taken from above r.centroid call
echo "636596.22 219735.74 28" | v.in.ascii out=grav_center \

fs=space
d.vect grav_center col=red icon=basic/circle

Generally you may face the problem that a script is not working as ex-
pected. To identify problem(s), you can add printing of variable contents with
echo $VARIABLE. An alternative recommended method to debug shell scripts
is to add the -x flag to the first line of the shell script:
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#!/bin/sh -x

This switches the shell into an echo-mode, printing every line including vari-
able content into the terminal window which simplifies error identification.

Further scripts are described in Albrecht (1992) and Shapiro and West-
ervelt (1992). Many scripts that you can learn from are included in GRASS
(from inside GRASS change to $GISBASE/scripts/) and available from the
GRASS Wiki. You can find further useful tips for GRASS script program-
ming style as well as recommendations to avoid portability traps in the file
SUBMITTING_SCRIPTS which is included in the source code.

9.3 Automated usage of GRASS

Due to the modular character of GRASS, a monolithic “GRASS program”
does not exist. In fact, GRASS is a collection of modules which are run in a
special environment. The structure allows GRASS to be completely controlled
from outside through scripts.

9.3.1 Local mode: GRASS as GIS data processor

GRASS in batch mode The usage of GRASS in batch mode requires
setting of some environment variables, which can be also done manually or
in scripts.5 After setting these variables, the environment is defined and all
GRASS modules can be used. The best approach is to write a working script,
and then define it in a variable to be executed:

# bash shell style
GRASS_BATCH_JOB=my_grass6script.sh
export GRASS_BATCH_JOB
grass63 /path/to/LOCATION/MAPSET/

# or simply
GRASS_BATCH_JOB=my_grass6script.sh grass63 \

/path/to/LOCATION/MAPSET/

To disable batch job processing again, type into the terminal:

unset GRASS_BATCH_JOB

Multiple sessions in the same LOCATION are best done when using different
MAPSETs. The module-specific environment variables are further explained
in the software documentation, check with:

g.manual variables

5 GRASS in batch mode,
http://grass.gdf-hannover.de/wiki/GRASS_and_Shell

http://grass.gdf-hannover.de/wiki/GRASS_and_Shell
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Once the minimum number of environment variables has been set, GRASS
commands can be integrated into shell, Python, PERL, PHP and other scripts.
When operating large batch jobs, it is recommended to remove temporary
GRASS files from time to time by:

$GISBASE/etc/clean_temp

Automated creation of a LOCATION from external raster data A
nice application for running GRASS in batch mode is generate LOCATIONs
from external GIS raster data. We use r.in.gdal for this purpose because the
module supports many formats and it can read projections from metadata if
provided:

#!/bin/sh
# This program is Free Software under the GNU GPL (>=V2).
# create a new LOCATION from a raster data set

#variables to customize:
# path to GRASS software main directory
GISBASE=/usr/local/grass63
# path to GRASS database
GISDBASE=$HOME/grassdata

#nothing to change below:
MAP=$1
LOCATION=$2

if [ $# -lt 2 ] ; then
echo "Script to create a new LOCATION from a raster data set"
echo "Usage:"
echo " create_location.sh rasterfile location_name"
exit 1

fi

#generate temporal LOCATION:
TEMPDIR=$$.tmp
mkdir −p $GISDBASE/$TEMPDIR/temp

#save existing $HOME/.grassrc6
if test −e $HOME/.grassrc6 ; then

mv $HOME/.grassrc6 /tmp/$TEMPDIR.grassrc6
fi

echo "LOCATION_NAME: $TEMPDIR" > $HOME/.grassrc6
echo "MAPSET: temp" >> $HOME/.grassrc6
echo "DIGITIZER: none" >> $HOME/.grassrc6
echo "GISDBASE: $GISDBASE" >> $HOME/.grassrc6
export GISBASE=$GISBASE
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export GISRC=$HOME/.grassrc6
export PATH=$PATH:$GISBASE/bin:$GISBASE/scripts

# import raster map into new location:
r.in.gdal −oe in=$MAP out=$MAP location=$LOCATION
if [ $? −eq 1 ] ; then

echo "An error occured. Stop."
exit 1

fi

#restore saved $HOME/.grassrc6
if test −f /tmp/$TEMPDIR.grassrc6 ; then

mv /tmp/$TEMPDIR.grassrc6 $HOME/.grassrc6
fi

echo "Now launch GRASS with:"
echo " grass63 $GISDBASE/$LOCATION/PERMANENT"

In case that no projection information is found in the raster data set, you
may use g.setproj to generate the projection information later. Note that
g.setproj does not reproject any data. The above script accepts only raster
data sets. For vector data, the v.in.ogr command would be used instead.
Extending the script with data format as additional third parameter, it would
become a universal solution for most spatial data formats.

You can launch GRASS directly without individually specifying the names
of LOCATION, MAPSET and DATABASE as follows:

grass63 /usr/local/share/grassdata/nc_spm/user1

This is only successful if the LOCATION and MAPSET exist, otherwise an
error message is shown.

9.3.2 Web based: PyWPS – Python Web Processing Service

GRASS can be used as GIS backbone for WebGIS applications by provid-
ing geoprocessing functionality over networks using Web Services. PyWPS
(Python Web Processing Service6) implements the Web Processing Service
standard from Open Geospatial Consortium, designed for Web based geopro-
cessing. The goal of PyWPS (Python Web Processing Service) is to provide
GIS tools over a Web interface, with special focus on GRASS as reference
implementation. PyWPS offers a user environment which can be easily ex-
tended for writing customized WPS services. It is written with native support
for GRASS that makes GRASS modules directly accessible via Web. Demo
applications covering vector network routing, line of sight analysis and more
(using an AJAX based interface) are available on-line.7

6 Python Web Processing Service, http://pywps.wald.intevation.org/
7 PyWPS demo applications, http://pywps.ominiverdi.org

http://pywps.wald.intevation.org/
http://pywps.ominiverdi.org


9.4 Notes on programming GRASS modules in C 341

9.4 Notes on programming GRASS modules in C

This section briefly explains the GRASS code organization for a user with
basic C language programming knowledge. While we cannot explain GRASS
programming within this book, we provide a brief introduction to the huge
code base. GRASS provides an ANSI C language API with several hundred
GIS functions, from reading and writing maps to area and distance calcu-
lations for georeferenced data, as well as attribute handling and map visu-
alization. All important aspects of GRASS programming are covered in the
“GRASS Programmer’s Manual” (available from the GRASS Web site). To
understand the usage of the GRASS API, it is helpful to explore the existing
modules. The general structure of the modules is similar, with each module
stored in its own subdirectory of the GRASS source code. You can find fur-
ther useful tips for GRASS programming style as well as recommendations to
avoid portability traps in the file SUBMITTING. This file is included in the main
directory of the source code.

It is important to know that a parser will launch the graphical user inter-
face for a GRASS command if there are no command-line arguments entered
by the user. Otherwise, it will run on command line. Command parameters
and flags are defined within each module. They are used to ask user to define
map names and other options.

GRASS source code structure The general GRASS 6 source code struc-
ture is as follows:

- db/ # database modules
- debian/ # debian control files
- demolocation/ # small location, used during compilation
- display/ # display modules
- doc/ # development documentation
- gem/ # GRASS extension manager
- general/ # general modules
- gui/ # graphical user interface (Tcl/Tk based)
- imagery/ # image processing
- include/ # include header files
- lib/ # set of GRASS libraries
- locale/ # message translations
- macosx/ # Mac OSX compilation files
- man/ # MAN manual pages (generated from HTML)
- misc/ # miscellaneous modules
- ps/ # postscript modules
- raster/ # raster modules
- raster3d/ # voxel modules
- rfc/ # RFC (request for comments) of GRASS-PSC
- rpm/ # RPM spec files
- scripts/ # shell scripts
- sites/ # legacy only



342 9 Notes on GRASS programming

- swig/ # SWIG programming interface (PERL, Python)
- testsuite/ # test suite for regression testing
- tools/ # internal compilation tools
- vector/ # vector modules
- visualization/ # visualization modules

The GRASS libraries are stored in lib/. They provide the API in C (which
is wrapped to other languages in swig/). This “GRASS programming library”
(C API) is structured as follows (typical function name prefixes for related
library functions are listed in squared brackets):

• GIS library: database routines (GRASS file management), memory man-
agement, parser (parameter identification on command line), projections,
raster data management etc. [G_]

• vector library: management of area, line, and point vector data [Vect_]
• database (DBMI) library: attribute management [db_]
• image data library: image processing file management [I_]
• display library: graphical output to the monitor [D_]
• raster graphics library: display raster graphics on devices [R_]
• segment library: segmented data management [segment_]
• vask library: control of cursor keys etc. [V_]
• rowio library: for parallel row analysis of raster data [rowio_]

Modules consist of one or more C program files (∗.c), the local header files
(∗.h) and a Makefile. The file Makefile contains instructions about files to be
compiled and libraries to be used (GRASS and system libraries). The GRASS
libraries are predefined as variables. The structure of Makefile follows special
rules. A simple example illustrates a typical Makefile (it is important to
generate indents with <TAB>, not with blanks!):

MODULE TOPDIR = . ./. .

PGM = v.info

LIBES = $(VECTLIB) $(GISLIB)
DEPENDENCIES= $(VECTDEP) $(GISDEP)
EXTRA INC = $(VECT INC)
EXTRA CFLAGS = $(VECT CFLAGS)

include $(MODULE TOPDIR)/include/Make/Module.make

default: cmd

The line default: cmd reads the compiler instructions from
include/Make/*.make files. Above this line several variables are set which
contain the name of the GRASS module and needed library references.
Numerous variables used here are pre-defined in:



9.4 Notes on programming GRASS modules in C 343

include/Make/Grass.make

This meta-configuration file is created depending on the platform by
configure script, which has to be run before a first compilation of GRASS.
It contains information related to the compiler, paths to local libraries and
include files etc. The other internal variables are defined in

include/Make/Platform.make

which is also generated by configure. These settings should be kept un-
changed.

It is a good programming practice to subdivide a C program (here a
GRASS module) into several files, organized by functionality. GRASS GIS
library commands can be used in the source code when the code is linked
against the related libraries. A short example of a raster module (file main.c):

/*
* This program is Free Software under the GNU GPL (>=V2).
* Conversion of LANDSAT-TM5 DNs to at-sensor radiances
*/

#include <stdio.h>
#include <string.h>
#include <math.h>
#include <grass/gis.h>
#include <grass/glocale.h>

int main(int argc, char *argv[ ])
{

CELL *cellbuf;
DCELL *result cell;
int nrows, ncols;
int row, col;
char *groupname;
int fd;
struct GModule *module;
struct Option *group;
struct Flag *quiet;

module = G define module();
module−>description = ("Module to convert LANDSAT-TM5 "

"digital numbers to at-sensor radiances");
module−>keywords = ("image processing, satellite");

group = G define standard option(G OPT I GROUP);

flag.quiet = G define flag();
flag.quiet−>key = ’q’;
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flag.quiet−>description = ("Run quietly");

G gisinit (argv[0]);

if (G parser(argc,argv))
exit(EXIT FAILURE);

groupname = group−>answer;

/* function defined in other file */
open file(groupname, fd);

nrows = G window rows();
ncols = G window cols();
cellbuf = G allocate raster buf(CELL TYPE);
result cell = G allocate raster buf(DCELL TYPE);

/* go row wise and col wise through image */
for (row = 0; row < nrows; row++) /* rows loop */
{

/* read integer satellite channel */
G get raster row (fd, cellbuf, row, CELL TYPE);
for (col = 0; col < ncols; col++) /* cols loop */
{

/* the formula is defined in another file: */
result cell[col] = calc new pixel(cellbuf);

} /* end cols loop */

G put raster row(fd, result cell, DCELL TYPE);
} /* end rows loop */

G close cell (fd);
exit(EXIT SUCCESS);

}

The calculation is done row-wise and column-wise (see “for” loop). This draft
program illustrates only the general structure of GRASS code, for copyright
reasons it is not a real GRASS program. Please refer to the GRASS source
code for the real world implementations.

Future of GRASS programming At the time of writing this book new
ideas for GRASS 7 are collected. In the near future, the development for
GRASS 6 will be shifted to GRASS 7. Migration of the code to the new
code repository will be accompanied by a code cleanup. Some code spread
in various modules will be organized into new library functions. Existing li-
brary functions will be examined for consistency, and if needed, functions
performing similar tasks will be merged. Also, at the module level, merging



9.4 Notes on programming GRASS modules in C 345

of modules with similar functionality will be done. In general, the goal is to
provide a well defined, layered GRASS model with GRASS-Core, providing
all library functions, GRASS-Base, providing basic modules for importing, ex-
porting, displaying and basic manipulation of spatial data sets and extended
GRASS packages including specialized add-on packages for image processing,
hydrological modeling, volume data management and analysis, etc.

Important improvements will be a modernization of the raster processing
library to implement tiling and caching for large data sets as well as adding
support for calculations on computer grids and distributed systems. Also the
image processing tools will benefit from these changes. For vector data pro-
cessing, it is desired to add transactions which would protect the geometry in
the event of an incomplete or otherwise unexpected termination of an editing
session. Further optimizations concerning a better use of the spatial index are
anticipated to reduce the computational overhead of building topology.

GRASS intends to be a general purpose GIS. The current GRASS 6 ver-
sion is a major step to develop a reliable, intuitive to use, flexible GIS in
terms of Free Software. Skilled users are invited to participate in its further
development.
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Using GRASS with other Open Source tools

GRASS is one of many Free Software projects in the GIS world; however, it
is the only full featured free GIS at this time (see “Open Source GIS Survey”
by Ramsey, 2006). A comprehensive list of more than 300 free GIS projects
is available online at the FreeGIS Project Web site.1 The use, development
and support of Free GIS Software is promoted at this site, as well as the
use and release of publicly available geographic data. Some free GIS projects
can provide additional functionality for GRASS by addressing some of its
unresolved issues or intentional constraints.

The software stack for Free Software GIS comprises system software, data
processing tools, data serving tools, user interface tools, and end-user appli-
cations (Mitchell, 2005; Erle et al., 2005; Jolma et al., 2006, 2007). The OS-
Geo foundation aims at promoting this software stack and encourages cross-
pollination among the foundation projects.

Within this chapter, we first highlight selected procedures that extend the
geostatistical analysis capabilities of GRASS. We focus on two statistics soft-
ware packages, the gstat and the R project. This chapter does not try to cover
the theory of geostatistics. Excellent other books on theory and applications
are available, such as Cressie (1993); Bailey and Gatrell (1995), and Webster
and Oliver (2001). In relation to the R program, it is useful to read Chambers
and Hastie (1992); Venables and Ripley (2000), as well as Venables and Ripley
(2002).

After a brief look at GPS related software tools, we close this chapter
with a demonstration of fast Web mapping through UMN/MapServer and
OpenLayers linked directly to GRASS for reading GIS data from a GRASS
LOCATION.

Maas river bank soil pollution data In the first section, we use the Maas
river bank soil pollution data (Limburg, The Netherlands, Burrough and Mc-
Donnell, 1998). These data are provided in the gstat package and are used in

1 FreeGIS Project Web site, http://www.freegis.org

http://www.freegis.org
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examples in its manual. The Maas river bank soil pollution data are sampled
in a floodplain along the Dutch bank of the river Maas (Meuse) 3-5km north of
Maastricht, not far from where the Maas enters the Netherlands (Borgharen,
Itteren).2 The river Maas is at the north-west border of the study site, travers-
ing the area in north-east direction. Burrough and McDonnell (1998) use a
subset of the same data in their book. A “maas” GRASS LOCATION was
defined with following parameters: projection UTM, ellipsoid WGS84, zone
32, spatial extent 5650610N – 5652930N, 269870E – 272460E, resolution 10m,
232 rows and 259 columns. This LOCATION, including the pollution data
stored as vector points, can be downloaded from the GRASS Web site.3 The
data set also includes two raster maps; they can be used to experiment with
interpolation or other tasks. The point data contain the following columns
(topsoil data were collected as bulk samples during fieldwork in 1990 within
a radius of 5m according to Burrough and McDonnell, 1998:102, 309): East,
north (UTM zone 32 coordinates in meters); x, y (local coordinates in me-
ters); elev (elevation above local reference level in meters); d.river (distance
from main river Maas channel in meters); Cd (cadmium in ppm); Cu (copper
in ppm); Pb (lead in ppm); Zn (zinc in ppm); LOI (percentage organic matter
loss on ignition); flfd (flood frequency class, 1: annual, 2: 2-5 years, 3: every 5
years); soil (3 unnamed soil types).

10.1 Geostatistics with GRASS and gstat

The gstat4 package is Free Software for geostatistical modeling, prediction
and simulation in one, two or three dimensions (Pebesma and Wesseling, 1998;
Pebesma, 2001). It requires the gnuplot5 graphical plotting software for the
display of empirical variograms and variogram models.

A widely used geostatistical technique for interpolation and extrapolation
which is not available in GRASS 6, is kriging. The theory and practice of
kriging is described by a large volume of literature; here we briefly illustrate
the principal usage with free software packages.

Using gstat, you can perform geostatistical analysis and modeling includ-
ing computations of empirical (sample) variograms and cross variograms (or
covariograms). The sample (co-)variograms can be generated from ordinary,
weighted or generalized least squares residuals. Models can be fitted to these
variograms to predict data distributions. Using weighted least squares, nested
models are fitted to sample (co-)variograms. Restricted maximum likelihood
estimation of partial sills is also implemented. Variograms are drawn using the
2 Maas river bank soil pollution data descriptions: gstat package documentation;

Burrough and McDonnell (1998):309-311 (subset)
3 Maas river bank soil data GRASS LOCATION,
http://grass.itc.it/statsgrass/maas_grass6_location.tar.gz

4 gstat software, http://www.gstat.org
5 gnuplot software, http://gnuplot.sourceforge.net

http://grass.itc.it/statsgrass/maas_grass6_location.tar.gz
http://www.gstat.org
http://gnuplot.sourceforge.net
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plotting program gnuplot, when working in interactive variogram modeling
user interface.

The gstat software provides prediction and estimation using a model that
is the sum of a trend modeled as a linear function of polynomials of the coor-
dinates or of user-defined base functions, and an independent or dependent,
geostatistically modeled residual. This allows for simple, ordinary and univer-
sal kriging, simple, ordinary and universal cokriging, standardized cokriging,
kriging with external drift, block kriging and “kriging the trend”, as well as
uncorrelated, ordinary or weighted least squares regression prediction. Simu-
lation in gstat comprises uni- or multivariable conditional or unconditional
multi-Gaussian sequential simulation of point values or block averages, or
(multi-) indicator sequential simulation (features cited after Pebesma, 2001).

The gstat/GRASS interface allows the user to read point data from vector
point and raster maps. This requires to have the GRASS support compiled
into gstat. You can check your version with flag -v:

gstat -v

The line “with libraries” must list “grass” besides other supported formats
(e.g., “grass gdal netcdf”).

Output of gstat (prediction or simulation results) is written to raster
and also to vector point maps. You need to run gstat from inside GRASS
as the program requires the GRASS environment to internally set up the
LOCATION definitions. When a subregion is set in GRASS, gstat will only
interpolate or simulate the raster cells according to the current region. The
variables of interest need to be floating point numbers (DOUBLE) or stored
in a raster map. The instructions for gstat are stored in an ASCII file. The
program gstat reads GRASS vector points data from the current MAPSET
with the data() function. Variable positions are defined as:

x=1: coordinate column 1 contains the x-coordinate
y=2: coordinate column 2 contains the y-coordinate
z=3: coordinate column 3 contains the z-coordinate (optional)
v=1: data column 1 contains the first data (measurement)

variable, when 0, a grid map is read

To illustrate how it works, we run a sample session based on the “Maas river
bank” data set. First start GRASS with the Maas UTM LOCATION, then
copy the Zn (zinc) concentrations vector points map to the current MAPSET:

grass63 /usr/local/share/grassdata/maas6/user1/
g.copy vect=Zn,zinc
v.info zinc
v.db.select zinc

The following example is based on the manual of gstat6. Store the following
commands to the file gstat.maas1.zn in your home-directory:

6 gstat manual, http://www.gstat.org/manual/

http://www.gstat.org/manual/
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# two variables with (initial estimates of) variograms,
# start the variogram modeling user interface
data(zinc): ’Zn’, x=1, y=2, v=1;
data(ln_zinc): ’Zn’, x=1, y=2, v=1, log;
variogram(zinc): 10000 Nug() + 140000 Sph(800);
variogram(ln_zinc): 1 Nug() + 1 Sph(800);

The zinc concentrations are stored as first DOUBLE attribute (in ppm, re-
ported by v.info -c zinc) and we select this data column through v=1. Run
the analysis by:

gstat gstat.maas1.zn

The program starts to analyze the data and subsequently displays univariate
statistics (the warning can be ignored):

gstat: Linux version 2.5.1 (02 April 2007)
using Marsaglia’s random number generator
data(zinc): WARNING: Adapted sites library used for ...
GRASS site list zinc: 0 cat, 2 dim, 0 str, 1 dbl.
gstat/grass: 98 sites read successfully.

zinc (GRASS site list)
attribute: col[1] [x:] x_1 : [ 269870, 272460]
n: 98 [y:] y_2 : [5.65061e+06,5.65293e+06]
sample mean: 481.031 sample std.: 398.808
data(ln_zinc): WARNING: Adapted sites library used for ...
GRASS site list zinc: 0 cat, 2 dim, 0 str, 1 dbl.
gstat/grass: 98 sites read successfully.

zinc (GRASS site list)
attribute: log(col[1]) [x:] x_1 : [ 269870, 272460]
n: 98 [y:] y_2 : [5.65061e+06,5.65293e+06]
sample mean: 5.87065 sample std.: 0.778309
[starting interactive mode]
press return to continue...

After pressing <ENTER>, we reach the main menu, which allows us to interac-
tively analyze the loaded data set:

gstat 2.5.1 (02 April 2007), gstat.maas1.zn

enter/modify data
choose variable : zinc
calculate what : semivariogram
cutoff, width : 1159.03, 77.269
direction : total
variogram model : 10000 Nug(0) + 140000 Sph(800)
fit method : no fit

>show plot <Tab>
[...]
Command: _
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Fig. 10.1. gstat/GRASS: Semivariogram of zinc contaminations of the Maas river
bank soil samples (variogram model: WLS, weights n(h))

After reaching the menu you can move around with cursor keys. Now
choose the variable ln_zinc (logarithmic transformed zinc concentrations)
with <ENTER>. Set the cutoff (lag distance) to 1600 and width to 70. Then
select for fit methods “WLS, weights n(h)” (WLS is weighted least squares,
other methods are also available). Now the variogram model will be fitted
when hitting the <TAB> key or selecting show plot <Tab>. The resulting
semivariogram is shown in Figure 10.1.

Zinc contamination kriging example In the next example (adapted
from Pebesma, 2001:12), we will include a raster MASK and perform or-
dinary kriging prediction from the zinc data. This will result in a raster sur-
face map with predicted distributed zinc contaminations and the predicted
kriging error. The gstat instructions file looks as follows (store it as file
gstat.maas2.zn):

# ordinary kriging prediction
#
data(zinc): ’zinc’, x=1, y=2, v=1;
variogram(zinc): 0.0717 Nug(0) + 0.564 Sph(917.8);
mask: ’maasbank;
predictions(zinc): ’zinc_pr.map’;
variances(zinc): ’zinc_var.map’;
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Fig. 10.2. gstat/GRASS: Ordinary kriging prediction of zinc contaminations on the
Maas river bank. Left: predicted zinc contaminations [ppm], right: prediction error

In general, output grid maps are always written in the same format as the
input mask map. Besides the GRASS format, gstat also supports other GIS
formats. The Maas LOCATION contains a binary raster map maasbank which
covers the river bank area. We can now run the kriging prediction:

d.mon x0
d.rast maasbank
d.vect zinc size=5
gstat gstat.maas2.zn

During calculations the program will report similar user messages:

gstat: Linux version 2.5.1 (02 April 2007)
Copyright (C) 1992, 2006 Edzer J. Pebesma
using Marsaglia’s random number generator
data(zinc): WARNING: Adapted sites library used for ...
GRASS site list zinc: 0 cat, 2 dim, 0 str, 1 dbl.
gstat/grass: 98 sites read successfully.

zinc (GRASS site list)
attribute: col[1] [x:] x_1 : [ 269870, 272460]
n: 98 [y:] y_2 : [5.65061e+06,5.65293e+06]
sample mean: 481.031 sample std.: 398.808
[using ordinary kriging]
ncols 259
nrows 232
initializing maps ..
CREATING SUPPORT FILES FOR zinc_var.map
100% done

We have generated two new raster maps that represent the predicted zinc
distribution (zinc_pr.map) and the distributed error (zinc_var.map). Using
d.frame, we can display both maps side-by-side in the GRASS monitor:
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r.colors zinc_pr.map col=gyr
r.colors zinc_var.map col=gyr
d.erase -f
d.frame -c at="0,100,0,50" frame=left
d.frame -c at="0,100,50,100" frame=right
d.frame -s left
d.rast zinc_pr.map
d.vect zinc col=black size=5
d.font FreeSans
echo "Predicted zinc distribution" | d.text
d.legend -s zinc_pr.map at=50,90,7,10
d.frame -s right
d.rast zinc_var.map
d.vect zinc size=5
echo "Distributed error" | d.text
d.legend -s zinc_var.map at=50,90,7,10

The result is shown in Figure 10.2. For further details and examples, please
refer to the gstat documents.

10.2 Spatial data analysis with GRASS and R

The “R data analysis programming language and environment” (Ihaka and
Gentleman, 1996, available from Internet7), a dialect of S (Becker et al., 1988),
is an extensible system which can be connected directly to GRASS. R consists
of a base package and extensions that can be downloaded from the project Web
site. A regular newsletter informs about recent changes and improvements.8
Besides classical methods, graphical and modern statistical techniques are
implemented in the base R library and supplementary packages. The latter
comprise packages for point pattern analysis, geostatistics, exploratory spa-
tial data analysis and spatial econometrics. While R is a general data analysis
environment, it has been extensively used for modeling and simulation. The
R/GRASS interface substantially improves the geospatial analysis capabilities
of GRASS (Bivand, 2000; Bivand and Gebhardt, 2000; Bivand and Neteler,
2000; Furlanello et al., 2003; Bivand, 2007). The R/GRASS interface is inte-
grated into the sp “spatial” classes as extension spgrass69. Additional related
extensions such as maptools and rgdal are also avalable.

For the integration of R with GRASS, you need to run R from the GRASS
shell environment. The interface dynamically loads compiled GIS library func-
tions into the R environment. The GRASS metadata about the LOCATION’s
regional extent and raster resolution are transferred to R (internally calling

7 R software, http://www.r-project.org
8 R Newsletter, http://cran.r-project.org/doc/Rnews/
9 Spatial data in R, http://r-spatial.sourceforge.net

http://www.r-project.org
http://cran.r-project.org/doc/Rnews/
http://r-spatial.sourceforge.net
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g.region). The R/GRASS interface – like GRASS modules in general – as-
sumes that the user needs to work at the current resolution, not the initial
resolution of the map layer. The current interface is supporting raster and
vector data.

Besides the base package of R, it is useful to install also the following
contributed extensions: akima, fields, geoR, grid, gstat, lattice, MASS,
scatterplot3d, spatial, and stepfun (available from the R Web site). Addi-
tional packages in terms of spatial-temporal analysis are focused on autocor-
relation, spatial point patterns, time series, or wavelets.

Note that in this section, we omit the \ character for long lines as it is not
allowed in R. Long, broken lines are indicated by the indent in the next line.

Installation of the R/GRASS interface The installation of the
R/GRASS interface10 is very easy and can be done by a single command
(you probably have to be user “root” for this). If your computer is connected
to the Internet, you can install packages within a R session. Start R and launch
the command (we install “gstat” support at the same time):

# non-Mac users
install.packages("spgrass6", "gstat", dependencies = TRUE)

# Mac users
install.packages("spgrass6", "gstat", type="source",

dependencies = TRUE)

This will download the latest version of the package along with a set of de-
pendency packages; it then unpacks, compiles and installs them. From time
to time, the installed extensions should be checked for updates. The following
command will download the R package list, compare to the local installation
and upgrade installed packages if new versions are available:

update.packages()

Offline, you can install extra packages on command line:

# example
R CMD INSTALL spgrass6_0.3-7.tar.gz

As the interface is maturing, the version number is subject to change. Also
the path to the R executable depends on your local installation. To start a
quick exploration of standard R, simply run:

R
# list of demos (leave listings with <q>)
demo()
demo(graphics)

10 R/GRASS interface, http://cran.r-project.org/src/contrib/

http://cran.r-project.org/src/contrib/
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These demonstrations illustrate some of R’s capabilities. As mentioned above,
contributed packages extend immensely the functionality of GRASS in con-
junction with the R/GRASS interface. To find out which packages are already
available on your system, type within R:

library()

You can load an installed package by entering its name as a parameter for
this function. Some packages also provide examples for their functions. We
try an example for fitting a trend surface, the function is provided by library
spatial:

library(spatial)
example(surf.ls)
?surf.ls

The ? command displays the function’s help text (scroll down with <space>,
leave with <q>). Help pages are also stored in HTML format, you can open
them in a HTML browser with:

help.start()
?surf.ls
library(spgrass6)
?spgrass6

The pages provide package explanations and a local search engine.
To quit R, use the q() function. Before doing so, we look at the command

history of the session:

history()
q()

The function history() works similar to the UNIX history command: It
displays all commands used in the current R session. The function q() finishes
the R session. When leaving R with q(), you will be asked: “Save workspace
image? [y/n/c]:”. If answering <y>, the session objects are stored within the
local directory into the hidden file .RData and the command history into file
.Rhistory. When launching R next time in this directory, objects and history
will be read into the system and you can continue with your work.

When using R in batch mode, you can develop GRASS scripts which direct
utilize R functionality in a GRASS user environment. In Section 10.2.3, we
show an example.

10.2.1 Reading GRASS data into R

To illustrate how to apply R to your data, we present examples based on the
North Carolina data set. As an exercise, we will analyze precipitation normals.
After starting GRASS with North Carolina nc_spm LOCATION and setting
the region to the precipitation map (along with 1000m resolution), we launch
R within the GRASS terminal:
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grass63 $HOME/grassdata/nc_spm/user1
g.region vect=precip_30ynormals res=1000 -ap
R

If you need to change the region settings later within R, you can use the
system() function to call g.region. Within R the R/GRASS interface is loaded
as follows:

library(spgrass6)
# show metadata
str(gmeta6())

By this, we have loaded the library of interface functions and loaded GRASS’
metadata about the location into the R environment. Function str(gmeta6())
prints more detailed information about the metadata.

Now we are ready to perform geospatial analysis of GRASS raster and
vector data. As a prerequisite, to process these spatial data in R, we import
some maps into the R environment. To start, we load the North Carolina 30
year monthly and annual precipitation normals precip_30ynormals and the
vector map nc_state representing the state political boundaries:

precip30n <- readVECT6("precip_30ynormals", ignore.stderr=TRUE)
# verify that it is a SpatialPointsDataFrame
class(precip30n)

summary(precip30n)
[...]

Number of points: 136
Data attributes:

cat station lat long
Min. : 1.00 Min. :310090 Min. :33.99 Min. :-84.02
1st Qu.: 34.75 1st Qu.:312511 1st Qu.:35.20 1st Qu.:-81.68
Median : 68.50 Median :314950 Median :35.64 Median :-80.02
Mean : 68.50 Mean :314952 Mean :35.57 Mean :-80.04
3rd Qu.:102.25 3rd Qu.:317396 3rd Qu.:35.91 3rd Qu.:-78.34
Max. :136.00 Max. :319675 Max. :36.50 Max. :-75.62

elev jan feb mar
Min. : 2.438 Min. : 77.98 Min. : 77.98 Min. : 97.79
1st Qu.: 38.252 1st Qu.:103.38 1st Qu.: 87.63 1st Qu.:109.47
Median : 214.884 Median :109.22 Median : 91.95 Median :114.30
Mean : 300.203 Mean :114.56 Mean : 98.07 Mean :122.22
3rd Qu.: 396.697 3rd Qu.:117.16 3rd Qu.: 99.89 3rd Qu.:124.02
Max. :1615.440 Max. :207.26 Max. :181.86 Max. :235.46
[...]

nc_state <- readVECT6("nc_state", ignore.stderr=TRUE)

The summary() function computes the summary characteristics for the precip-
itation data set including univariate statistics (minimum, maximum, 1st and
3rd quartile, median, mean and the number of NA’s).
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Fig. 10.3. R/GRASS: meteorological stations with 30 year precipitation normals
in North Carolina, monthly values for January and August

Since we are working with spatial data, we can plot the R object precip30n
as a simple point map with the NC state map as background:

plot(nc_state, axes=TRUE)
plot(precip30n, add=TRUE, lwd=2, col="brown")

This map only shows the locations of the meteorological stations in North
Carolina available in our data set. To see all data objects which are currently
loaded into R, use the ls() function. Next we list the variables in the R object:

ls()
[1] "nc_state" "precip30n"

names(precip30n)
[1] "cat" "station" "lat" "long" "elev" "jan" "feb"
[8] "mar" "apr" "may" "jun" "jul" "aug" "sep"

[15] "oct" "nov" "dec" "annual"

# spatial plot of selected months, load color library first
library(RColorBrewer)
spl <- list("sp.polygons", nc_state)

# spatial plot of map in two monthly lattice panels
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spplot(precip30n, c("jan", "aug"),
col.regions=brewer.pal(5,"Spectral"),sp.layout=list(spl))

# annual precipitation
spplot(precip30n, "annual",

col.regions=brewer.pal(5,"Spectral"),sp.layout=list(spl))

The two plotted maps show different patterns in winter and summer precipi-
tation (see Figure 10.3). The annual precipitation shows average precipitation
along the costline, higher precipitation in the South-West NC and lower values
in the Piedmont areas (map not shown here). You can find more examples of
spatial plotting in R in the “gallery” at the “Spatial data in R” Web site11.

10.2.2 Kriging in R

The R software also supports kriging, based on the gstat embedded as an
extension of R. Here, we show how to transfer data from GRASS to R, perform
geostatistical analysis and transfer the resulting maps back to GRASS. We
again use the precipitation normals for this exercise, continuing the previous
R session.

Interpolation from point data requires an existing spatial grid frame that
will be filled with the interpolated values. The best way to generate the
grid frame is to resample an available GRASS raster map. Since we later
want to include the elevation of the meteorological station in the analysis
(given the mountainous areas in the western part of NC), we use the map
elev_state_500m from GRASS and cookie-cut it to the boundaries of NC
state using MASK (MASK is respected by readRAST6()). We will use this
masked elevation map later as newdata parameter in predict.gstat() for the
kriging. Since we are still in the R session and don’t want to leave it, we call
the GRASS commands via the system() function:

# prepare data in GRASS, set region to full state first
system("g.region vect=nc_state res=1000 -ap")
system("v.to.rast nc_state out=nc_state_mask use=val val=1")
system("r.mask nc_state_mask")
elev <- readRAST6("elev_state_500m", ignore.stderr=TRUE)
system("r.mask -r nc_state_mask")

# plot elevation map with stations point list on top
pts <- list("sp.points", precip30n, lwd=2, col="brown")
spplot(elev,col.regions=terrain.colors(20),sp.layout=list(pts))

The resulting map is shown in Figure 10.4.
From Figure 10.3, we observe a spatial trend from West to East in January

(which corresponds to variable “long” – longitude may be relevant besides the

11 “Spatial data in R” Web site, http://r-spatial.sourceforge.net

http://r-spatial.sourceforge.net
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Fig. 10.4. R/GRASS: meteorological stations used for the 30 year precipitation
normals in North Carolina drawn over elevation model

elevation). Also the annual precipitation shows a trend. Such trends are im-
portant for kriging and variogram estimation. We perform a series of attempts
to fit an exponential model variogram while minimizing the prediction error:

library(gstat)

# fix projection string which should be identical
proj4string(elev) <- CRS(proj4string(precip30n))

# first attempt, using longitude and station elevation
t1 <- gstat(formula=annual ~ long + elev, data=precip30n)
annual_vgm1 <- variogram(t1)
efitted1 <- fit.variogram(annual_vgm1, vgm(psill=200,

model="Exp", range=50000, nugget=100))
plot(annual_vgm1, efitted1, main="Exponential model variogram 1")
# we use the fitted variogram as model
t2 <- gstat(formula=annual ~ long + elev, data=precip30n,

model=efitted1)
# calculate prediction error
pe1 <- gstat.cv(t2, debug.level=0, random=FALSE)$residual
sqrt(mean(pe1^2))
[1] 115.7851

# second attempt, using second order of longitude instead
t3 <- gstat(formula=annual ~ long + I(long^2) + elev,

data=precip30n)
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Fig. 10.5. R/GRASS: Exponential variogram model for annual precipitations in
NC using elevation as variable

annual_vgm2 <- variogram(t3)
efitted2 <- fit.variogram(annual_vgm2, vgm(psill=200,

model="Exp", range=50000, nugget=100))
plot(annual_vgm2, efitted2, main="Exponential model variogram 2")
t4 <- gstat(formula=annual ~ long + I(long^2) + elev,

data=precip30n, model=efitted2)
pe2 <- gstat.cv(t4, debug.level=0, random=FALSE)$residual
sqrt(mean(pe2^2))
[1] 115.7715

The prediction error is almost identical for the second order model. We can
now try without longitude and rely only on elevation as variable:

# third attempt, using only elevation
t5 <- gstat(formula=annual ~ elev, data=precip30n)
annual_vgm3 <- variogram(t5)
efitted3 <- fit.variogram(annual_vgm3, vgm(psill=200,

model="Exp", range=50000, nugget=100))
plot(annual_vgm3, efitted3, main="Exponential model variogram 3")
t6 <- gstat(formula=annual ~ elev, data=precip30n,

model=efitted3)
pe3 <- gstat.cv(t6, debug.level=0, random=FALSE)$residual
sqrt(mean(pe3^2))
[1] 115.9228

The second order model shows the (relatively) lowest prediction error. Fig-
ure 10.5 shows the exponential model variogram of the third attempt which
we will use for the prediction. We can verify the 3rd model also in a different
way, creating a simple plot of elevation versus annual precipitation:

plot(annual ~ elev, data=precip30n)
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While precipitation is highly variable at sea level and higher altitudes, it is less
variable below 350m elevation (low elevations are dominant in NC). We will
use the last model to perform spatial prediction of annual rainfall in North
Carolina:

# prepare SpatialPixelsDataFrame for predition, matrix will
# be filled then
names(elev) <- "elev"
elev_SP <- as(elev, "SpatialPixelsDataFrame")
proj4string(elev_SP) <- CRS(proj4string(precip30n))

# the annual ~ elev model, using universal kriging
annual_precip <- predict(t6, newdata=elev_SP)
annual_precip$var1.pe <- sqrt(annual_precip$var1.var)
summary(annual_precip)
[...]
Data attributes:

var1.pred var1.var var1.pe
Min. : 948.4 Min. : 1169 Min. : 34.19
1st Qu.:1213.6 1st Qu.:17213 1st Qu.:131.20
Median :1239.6 Median :20814 Median :144.27
Mean :1277.4 Mean :19918 Mean :139.83
3rd Qu.:1296.4 3rd Qu.:23476 3rd Qu.:153.22
Max. :2305.9 Max. :31798 Max. :178.32

spl <- list("sp.points", precip30n, cex=0.7, col="brown")
pal <- colorRampPalette(brewer.pal(4, "Blues"))

# plot predictive map of precipitation
plot1 <- spplot(annual_precip,"var1.pred",sp.layout=list(spl),

col.regions=pal(20),
main="Universal kriging of annual precipitation in NC")

# plot variance map
plot2 <- spplot(annual_precip, "var1.pe",sp.layout=list(spl),

col.regions=pal(20), main="Prediction error map")

print(plot1, split = c(1,1,1,2), more = TRUE)
print(plot2, split = c(1,2,1,2), more = FALSE)

# or, alternatively
image(annual_precip, "var1.pred", col=pal(20))
points(precip30n, cex=0.7, pch=3, col="brown")

The first map shows the annual rainfall. Additionally, a second map is gen-
erated which represents the spatial distribution of predictive error (see Fig-
ure 10.6). Finally, we can write these two maps back into GRASS:

writeRAST6(annual_precip , "var1.pred")
system("g.rename rast=var1.pred,annual_precip_ukrig")
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Fig. 10.6. R/GRASS: Universal kriging of annual precipitations in NC using ele-
vation as variable

system("r.info -r annual_precip_ukrig")
min=950.364014
max=2313.140381

writeRAST6(annual_precip , "var1.pe")
system("g.rename rast=var1.pe,annual_precip_pe")
q()

The GRASS maps can be visualized as usual with d.rast or d.rast.leg, or
in nviz. You can compare the result to the splines interpolation performed in
Section 6.10.1:

# apply same color table
r.colors annual_precip_ukrig rast=precip_anntopo_500m
d.rast.leg precip_anntopo_500m
d.rast.leg annual_precip_ukrig

# calculate differences
r.mapcalc "diff_krig_rst=annual_precip_ukrig - \

precip_anntopo_500m"
r.univar diff_krig_rst
r.colors diff_krig_rst col=gyr
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d.rast.leg diff_krig_rst
nviz diff_krig_rst

In this exercise, we did not calculate the precipitation at 500m resolution
which influences somewhat the difference map, but the results from both
methods are very close. You may try to perform the kriging procedure at
full resolution. The highest differences are observed in the mountainous ar-
eas; additionally, the map generated with kriging method shows some local
maxima along the coast line which suggests further tuning of the parameters
(compare also the variance map in Figure 10.6).

10.2.3 Using R in batch mode

R supports batch mode processing for a fully scripted usage. Within GRASS
(maybe also scripted) geospatial data analysis can be automated. The desired
analysis methods have to be stored in a text file. As an example, we want
to create a batch job which calculates the empirical cumulative distribution
function (ECDF) of a given map. We use environment variables to pass pa-
rameters so that we can write the script as a generic script for any filename.
Save the following command sequence as script R_ecdf.batch:

# usage:
# export R_INMAP=elev_state_500m
# g.region rast=elev_state_500m res=1000 -pa
# R BATCH R_ecdf.batch
# -> will write ’ecdfplot.pdf’

# read input map from environment variable $R_INMAP
mapname <- Sys.getenv("R_INMAP")
library(spgrass6)
map <- readRAST6(mapname)
# summary(map)

# write graph to PDF
pdf("ecdfplot.pdf")

tstr <- c("ECDF (hypsometric integral):", mapname)
# plot ECDF
mapecdf <- ecdf(map$elev_state_500m)
plot(mapecdf,verticals=TRUE,do.points=F, \

xlab="elevation", main=tstr)
for (i in seq(0,2000,50)) lines(c(i,i),c(0,1),lty=3,col="red2")
dev.off()

# cleanup workspace
rm(list = ls(all = TRUE))
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The last command is needed to avoid that the loaded data are stored in the
R workspace file .RData. Alternatively, the flag --no-save can be used when
running the script. To run it, you have to define the GRASS raster map name
to be analyzed in the environment variable $R_INMAP. We define it before
starting the batch job (here bash shell syntax):

grass63 /usr/local/share/grassdata/nc_spm/user1
g.region rast=elev_state_500m res=1000 -pa
R CMD BATCH R_ecdf.batch

The function (and potential error) messages are echoed in the file
R_ecdf.batch.Rout for batch process verification. In the example above,
a plot of the ECDF function in PDF format is included. You should find
this file in the current directory if no error occurs. The resulting PDF file
ecdfplot.pdf contains the graph showing the hypsometric integral of the
input map (here: elev_state_500m). When using the above approach with
environment variables, complex (pseudo) GRASS scripts can be written to
extend functionality of GRASS through R.

10.3 GPS data handling

The FreeGIS Web portal lists a set of programs freely available to handle GPS
data including the data transfer from a GPS device to GIS and eventual datum
transformations. The solutions are highly dependent on the GPS device. We
only refer to few software packages:

• GPS Manager (GPSMan12) is a graphical manager of GPS data that
supports the preparation, inspection, and editing of GPS data in a user
friendly environment. GPSMan supports communication and real-time log-
ging with both Garmin and Lowrance receivers and accepts real-time log-
ging information in NMEA 0183 from any GPS receiver;

• GPStrans13 is a program which transfers track, route, and waypoint data
to and from various Garmin GPS;

• GPSBabel14 reads and writes GPS waypoints in a variety of formats.
Backends include GPX, Magellan and Garmin serial protocols, Geo-
caching.com, GPSMan, Garmin Mapsource, Magellan Mapsend, and many
others. It runs on various operating systems.

GRASS itself provides two scripts: v.in.garmin as well as v.in.gpsbabel (the
first requires gpstrans, the second gpsbabel). We have already shown GPS
import into GRASS in Section 4.2.2.

12 GPS Manager, http://www.ncc.up.pt/gpsman/
13 GPStrans, http://gpstrans.sourceforge.net
14 GPSBabel, http://www.gpsbabel.org

http://www.ncc.up.pt/gpsman/
http://gpstrans.sourceforge.net
http://www.gpsbabel.org
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10.4 WebGIS applications with UMN/MapServer and
OpenLayers

An excellent, fast and flexible Open Source mapping Web software is
UMN/MapServer, one of the OSGeo projects. On a basic level, the program
is run through CGI (Common Gateway Interface). In this case, it only re-
quires a definition file (so-called map file) and a HTML template (and GIS
data of course) to respond to a variety of spatial requests like making maps,
scale-bars, and point, area and feature queries. It also supports Web Services
(WMS, WFS, WCS, etc.), both as a server as well as a client to integrate
Web Services into an UMN/MapServer application. The installation is quite
convenient as the configuration of the Web mapping interface can be done
without high level programming. A draft map file can be even generated with
QGIS which allows you to save a project as map file. However, some editing
is needed before deploying your own UMN/MapServer.

UMN/MapServer reads common GIS raster and vector formats. When
GDAL has been compiled with GRASS plugin support, UMN/MapServer
directly reads raster and vector data from a GRASS LOCATION through
GDAL. Figure 10.7 provides a screenshot of the simple demonstrational
GRASS-UMN/MapServer which is implemented at GRASS Web site; also
an OpenLayers Spearfish demo is available.15

Fig. 10.7. Screenshot of GRASS / UMN/MapServer demonstrational Web site as
implemented at FBKITC-irst

15 Simple demonstrational GRASS UMN/MapServer (Spearfish data),
http://grass.itc.it/start.html
OpenLayers Spearfish application, http://grass.itc.it/spearfish/lite.html

http://grass.itc.it/start.html
http://grass.itc.it/spearfish/lite.html


366 10 Using GRASS with other Open Source tools

UserN

S
ec

ur
ity

 L
ay

er
 (

A
pa

ch
e 

ac
ce

ss
 r

es
tr

ic
tio

n)

In
te

rn
et

HTML Forms

Map display

Map query

PHP/Perl

P
R

O
J4

OGR
GDAL

OGR
 − vector maps
 − point maps

PostgreSQL/PostGIS

External GIS maps
 − GeoTIFF files
 − MapInfo files
 − SHAPE/DBF files

GRASS location

User2

User1

 − raster/vector maps

GDAL−OGR
GRASS plugin

UMN/MapServer

OpenLayers

Fig. 10.8. Sample UMN/MapServer implementation model

For more complex applications, UMN/MapServer can be enhanced using
Java, JavaScript, PHP or other Internet technologies. The PHP/MapScript
extension provides access to the underlying UMN/MapServer C API. The
UMN/MapServer software is freely available from the UMN/MapServer
Web site.16 It can be extended with several extensions such as “ka-Map”,
“p.mapper”, “Chameleon” and others. A recent alternative with innovative in-
terface is OpenLayers17 which supports data integration from Web Services,
local files and more. It also reads UMN/MapServer map files directly.

A more complex implementation using several Free Software tools is shown
in Figure 10.8. Requirements for this implementation are: Web server such as
Apache Server (with PHP support), UMN/MapServer, GDAL/OGR, PROJ4,
GDAL/OGR-GRASS plugin, GRASS and PostgreSQL/PostGIS. OpenLayers
can work on top of an UMN/MapServer backend, as alternative interface,
optionally aggregating additional (external) Web Services.

As mentioned, to deploy a customized UMN/MapServer or OpenLayers
application, essentially two files are required:

• UMN/MapServer definition file: to be stored in a map-script/ directory
in parallel to the htdocs/ directory;

• a HTML template file which goes into the HTML space (into htdocs/
directory).

At the GRASS Book Web site (see Chapter 1), samples of these files for the
North Carolina data set can be downloaded along with installation instruc-
tions. Numerous public WebGIS applications are accessible on the Internet to
get further inspiration.
16 UMN/MapServer project, http://mapserver.gis.umn.edu
17 OpenLayers Web site, http://www.openlayers.org

http://mapserver.gis.umn.edu
http://www.openlayers.org
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Appendix

A.1 Selected equations used in GRASS modules

This appendix section includes equations for selected GRASS modules to pro-
vide theoretical background of the methods used in these modules and give
users opportunity to assess advantages and limitations of their functionality.
The equations are also helpful for those who would like to improve or extend
the modules.

Basic Statistics

Several GRASS modules, such as r.univar, v.univar, r.stats, r.series,
r.neighbors compute basic statistical measures. We list the relevant equa-
tions here for reference, but check the source code to see the exact implemen-
tation. In the following equations, we are using x̄ for mean estimated from
sample of the population; replace it by µ when you are working with the entire
population.

Arithmetic mean:

x̄ =
1
n

(x1 + x2 + . . . + xn) =
1
n

n∑
i=1

xi (A.1)

Arithmetic mean x̄ has the same units as xi.

Median:
The median is the value below which 50% of the sample lie. To find the
median, the data have to be ordered from the smallest to the highest. In
case of an odd number of samples, it is the middle value; in case of an even
number of samples, it is as half way between the two middle samples. Median
has the same units as as the samples.
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Mode:
The mode is defined as the most frequently occuring measurement in a data
set. Continuous data need to be discretized into intervals to compute the
mode. For data with normal distribution the mean, median and mode lead to
the same value (in the limit of a large data sample).

Mean absolute deviation:

MD =
1
n

n∑
i=1

|xi − x̄| (A.2)

The mean absolute deviation is an expression of dispersion about the mean. If
the given values are deviations (e.g., provided by v.surf.rst), then we need
arithmetic mean of absolute values:

x̄D =
1
n

(|x1|+ |x2|+ . . . + |xn|) =
1
n

n∑
i=1

|xi| (A.3)

Arithmetic mean of absolute values has the same units as xi.

Variance for a population and for a sample:

σ2 =
1
n

n∑
i=1

(xi − x̄)2 σ2 =
1

n− 1

n∑
i=1

(xi − x̄)2 (A.4)

The variance is another measure of dispersion, it is mean squared deviation
and has the squared units of xi.

Standard deviation for a population and for a sample:

σ =

√√√√ 1
n

n∑
i=1

(xi − x̄)2 σ =

√√√√ 1
n− 1

n∑
i=1

(xi − x̄)2 (A.5)

The standard deviation is the positive square root of the variance and has
the same units as xp.

Coefficient of variation:
v =

σ

|x̄|
∗ 100 (A.6)

The coefficient of variation is the ratio of the standard deviation to the mean
and is dimensionless. It is expressed as a percentage when multiplied by 100
as in the above equation.
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Skewness:

skewness =
1
n

n∑
i=1

(
xi − x̄

σ

)3

(A.7)

Skewness is zero for any symmetric distribution. A distribution with a long
tail towards larger values has a positive skewness (left skewed, typical for
remote sensing images, Schowengerdt, 1997:118). Skewness is dimensionless
and sensitive to outliers.

Kurtosis:

kurtosis =

[
1
n

n∑
i=1

(
xi − x̄

σ

)4
]
− 3 (A.8)

Kurtosis is zero for a normal distribution. If a distribution has a positive
kurtosis, then the peak is sharper than of a Gaussian distribution. Kurtosis
is dimensionless and sensitive to outliers.

Covariance:

covariance =
1

n− 1

n∑
i=1

(xim − x̄m)(xin − x̄n) (A.9)

Interpolation

Bilinear and bicubic interpolation Bilinear interpolation uses 4 neigh-
boring cells to compute the unknown value z by performing linear interpo-
lation in east-west and then north-east direction, leading to the following
function:

z = a0 + a1 ∗ x + a2 ∗ y + a3 ∗ x ∗ y (A.10)

Note that the above function is not linear, in spite of its name. Using the
notation from the figure below the function can written as follows:

z = z12∗(1−u)∗(1−v)+z22∗u∗(1−v)+z11∗(1−u)∗v+z21∗u∗v (A.11)

where u = dx/px, v = dy/py.

z12 --------------- z22
| | dy |
|---+ z |
| dx | py
| |
| |

z11 ----------------z21
px
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Bicubic interpolation uses 16 cells leading to the following function:

z = a0 + a1x + a2y + a3x
2 + a4xy + a5y

2 + a6x
2y + a7xy2 + a8x

2y2

+a9x
3 + a10y

3 + a11x
3y + a12xy3 + a13x

3y2 + a14x
2y3 + a153x3y3

(A.12)

The coefficients are derived from the height at the four vertices, together
with three partial derivatives at each vertex estimated using the neighboring
vertices.

Inverse distance weighted interpolation (IDW) The method is based
on an assumption that the value at an unsampled point can be approximated
as a weighted average of values at points within a certain cut-off distance, or
from a given number m of the closest points (typically 10 to 30). Weights are
usually inversely proportional to a power of distance (Watson, 1992; Burrough,
1986) which, at an unsampled location r = (x, y), leads to an estimator:

F (r) =
m∑

i=1

wiz(ri) =
∑m

i=1 z(ri)/|r− ri|p∑m
j=1 1/|r− rj |p

(A.13)

where p is a parameter (typically p = 2, for more details on the influence of
this parameter, see Watson, 1992). GRASS modules use p = 2 and m = 12 as
default values.

Regularized Spline with Tension The function is a sum of a trend func-
tion and a radial basis function with an explicit form which depends on the
choice of the measure of smoothness, for more details see Mitasova and Mitas
(1993) and Mitasova et al. (1995):

z(r) = T (r) +
N∑

j=1

λjR(r, r[j]) . (A.14)

The trend function T (r) is given by

T (r) =
M∑
l=1

alfl(r) (A.15)

where {fl(r)} is a set of linearly independent functions (monomials) which
have zero smooth seminorm. R(r, r[j]) is a radial basis function with an explicit
form which depends on the choice of weights for partial derivatives in the
smooth seminorm. See Mitasova and Mitas (1993); Mitasova et al. (1995) for
the RST smoothness seminorm, which includes derivatives of all orders with
their weights decreasing with the increasing derivative order.

RST can be generalized to an arbitrary dimension and the corresponding
d-variate formula for the radial basis function is given by
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Rd(r, rj) = Rd(|r− rj |) = Rd(r) = %−δ γ (δ, %)− 1
δ

(A.16)

where r = |r− rj |, δ = (d−2)/2, and % = (ϕr/2)2. Further, ϕ is a generalized
tension parameter, and γ(δ, %) is the incomplete gamma function, not to be
confused with semivariogram (Abramowitz and Stegun, 1964). For the spe-
cial cases d = 2, 3, 4 (s.surf.rst, s.vol.rst, s.volt.rst, respectively), the
equation A.16 can be rewritten as:

R2(r) = − [E1(%) + ln % + CE ] (A.17)

R3(r) =
√

π

%
erf (

√
%)− 2 (A.18)

R4(r) =
1− e−%

%
− 1 (A.19)

where CE = 0.577215... is the Euler constant, E1(%) is the exponential integral
function and erf(√%) is the error function (Abramowitz and Stegun, 1964),
while the trend function is a constant (M = 1):

T (x) = a1 , d = 2, 3, 4 (A.20)

The coefficients a1, {λj} are obtained by solving the following system of linear
equations:

a1 +
N∑

j=1

λj

[
R(r[i], r[j]) + δjiw0/wj

]
= z[i] , i = 1, . . . , N (A.21)

N∑
j=1

λj = 0 . (A.22)

where w0/wj are positive smoothing weights.

Topographic analysis

Topographic parameters slope, aspect and curvatures are computed using the
principles of differential geometry and derived, for example, by Krcho (1973,
1991), and Mitasova and Hofierka (1993). First we introduce the following
simplifying notations:

fx =
∂z

∂x
, fy =

∂z

∂y
, fxx =

∂2z

∂x2
, fyy =

∂2z

∂y2
, fxy =

∂2z

∂x∂y
(A.23)

and
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p = f2
x + f2

y , q = p + 1 . (A.24)

The steepest slope angle γ in degrees or percent, and aspect angle α in degrees
are computed from gradient ∇f = (fx, fy) (its direction is upslope) as follows

γ = arctan
√

p γ[%] = 100.
√

p (A.25)

α = arctan
fy

fx
(α = 0 in west direction) . (A.26)

Sometimes we need to compute change of the surface in a direction given
by an angle α. The directional derivative of the surface z = g(x, y) can be
computed as

E =
∂g

∂s
=

∂g

∂x
cos α +

∂g

∂y
sinα (A.27)

where (x, y) are the georeferenced coordinates, and α is aspect (given direc-
tion).

Curvatures In general, a surface has different curvatures in different di-
rections. For applications in geosciences, the curvature in gradient direction
(profile curvature) is important because it reflects the change in slope angle
and thus controls the change of velocity of mass flowing downwards along
the slope curve. The curvature in a direction perpendicular to the gradient
(tangential curvature) reflects the change in aspect angle and influences the
divergence/convergence of water flow. Both curvatures are measured in the
normal plane. Equations for these curvatures can be derived using the gen-
eral equation for curvature κ of a plane section through a point on a surface
(Rektorys, 1969; Mitasova and Mitas, 1993).

The equation for the profile curvature κs[m−1] is

κs =
fxxf2

x + 2fxyfxfy + fyyf2
y

p
√

q3
. (A.28)

The equation for tangential curvature κt[m−1] at a given point is derived as
the curvature of normal plane section in a direction perpendicular to gradient
(direction of tangent to the contour line)

κt =
fxxf2

y − 2fxyfxfy + fyyf2
x

p
√

q
. (A.29)

The positive and negative values of profile and tangential curvature can be
combined to define the basic geometric relief forms (Krcho, 1973, 1991; Dikau,
1989). Each form has a different type of flow. Convex and concave forms in
gradient direction have accelerated and deccelerated flow, respectively, and
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convex and concave forms in tangential direction exhibit converging and di-
verging flow, respectively.

Other types of curvatures, such as the principle, mean, or Gauss curvatures
as well as curvatures in an arbitrary direction can be computed directly from
the interpolation function.

Gradient and curvatures for volumes Volumes can be modeled by a
trivariate interpolation function in the general form of w = f(x, y, z). When
this function is differentiable at least up to the 2nd order, the topographic pa-
rameters for volumes (3D) can be computed directly from its partial deriva-
tives (Mitasova et al., 1995). First, we introduce simplifying notations for
partial derivatives of this function:

fx =
∂f

∂x
, fy =

∂f

∂y
, fz =

∂f

∂z
, (A.30)

fxx =
∂2f

∂x2
, fxy =

∂2f

∂x∂y
, fxz =

∂2f

∂x∂z
,

fyy =
∂2f

∂y2
, fyz =

∂2f

∂y∂z
, fzz =

∂2f

∂z2
.

Volume geometry parameters are also derived from differential geometry,
using additional independent spatial coordinate (z). Theoretically, such topo-
graphic parameters can be derived up to N-dimensional space (see Hofierka,
1997b). For a three-dimensional cartesian space these parameters have the
following form:
Size of gradient:

|∇f | =
√

fx
2 + fy

2 + f2
z (A.31)

Direction of gradient can be defined by two angles.
Horizontal angle An:

An = arctan
(

fy

fx

)
(A.32)

and vertical angle Bn:

Bn = arctan


√

f2
x + f2

y

fz

 (A.33)

The change of gradient size in its direction has the following form:

∂|∇f |
∂n

=
f2

xfxx + 2fxzfxfz + 2fxyfxfy + f2
y fyy + 2fyzfyfz + f2

z fzz

f2
x + f2

y + f2
z

(A.34)

When we note principal curvatures in 3D cartesian space as k1, k2, k3, then
the Gauss-Kronecker curvature K can by expressed as:
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K = k1 ∗ k2 ∗ k3 (A.35)

The mean curvature M is:

M =
k1 + k2 + k3

3
(A.36)

In cartesian system these equations can be expressed as follows:

K =
f2

xzfyy + f2
yzfxx + f2

xyfzz − fxxfyyfzz − 2fxyfyzfxz(√
1 + f2

x + f2
y + f2

z

)5 (A.37)

H =

∣∣∣∣∣∣
h11 h12 h13

h21 h22 h23

h31 h32 h33

∣∣∣∣∣∣
3
(
1 + f2

x + f2
y + f2

z

) (A.38)

where:

h11 =
−fxx√

1 + f2
x + f2

y + f2
z

+ 2(1 + f2
x) (A.39)

h12 = h21 =
−fxy√

1 + f2
x + f2

y + f2
z

+ 2fxfy (A.40)

h22 =
−fyy√

1 + f2
x + f2

y + f2
z

+ 2(1 + f2
y ) (A.41)

h13 = h31 =
−fxz√

1 + f2
x + f2

y + f2
z

+ 2fxfz (A.42)

h23 = h32 =
−fyz√

1 + f2
x + f2

y + f2
z

+ 2fyfz (A.43)

h33 =
−fzz√

1 + f2
x + f2

y + f2
z

+ 2(1 + f2
z ) (A.44)

Estimation of partial derivatives To compute the above described equa-
tions for gradients and curvatures, we need to estimate first and second order
partial derivatives.

In the RST-based modules, partial derivatives of RST functions are used.
First, several definitions are introduced:

η =
ϕ

2
(A.45)
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R′(rj) = 2
1− e−(ηrj)

2

rj
(A.46)

R′′(rj) = 2

(
2(ηrj)2 + 1

)
e−(ηrj)

2 − 1
r2
j

(A.47)

Partial derivatives for the bivariate RST basis function can then be ex-
pressed as follows:

∂R(rj)
∂x

= R′(rj)
(x− x[j])

rj
, l = 1, 2 (A.48)

∂2R(rj)
∂x2

1

= R′′(rj)
(x− x[j])2

r2
j

+ R′(rj)
(y − y[j])2

r3
j

(A.49)

whereas the derivatives, according to y, are found easily from Equation A.49
by exchange of x to y. The mixed derivative is given by

∂2R(rj)
∂x∂x

=
[
R′′(rj)−

R′(rj)
rj

]
(x− x[j])(y − y[j])

r2
j

(A.50)

These expressions for first and second order derivatives are used for the compu-
tation of slope, aspect and curvatures in the modules s.surf.rst, v.surf.rst
and r.resamp.rst. Optionally, the values of these partial derivatives are out-
put by the module s.surf.rst when using the flag -d.

Partial derivatives for trivariate RST :

R′(rj) =
1

rj
√

π
exp

[
−
(ϕrj

2

)2
]
− 1

ϕr2
j

erf
(ϕrj

2

)
(A.51)

R′′(rj) =
2

ϕr3
j

erf
(ϕrj

2

)
−
√

π

(
2
r2
j

+
ϕ2

2

)
exp

[
−
(ϕrj

2

)2
]

(A.52)

In r.slope.aspect, second order polynomial approximation of a surface
defined by given point and its 3 × 3 neighborhood is used leading to the
following equations for the partial derivatives (as used in Horn’s formula, see
Horn, 1981):

z(x, y) = a0 + a1x + a2y + a3xy + a4x
2 + a5y

2 (A.53)

By fitting this polynomial to the 9 grid points (the given point zi,j and
its 3 x 3 neighborhood, as shown below), using weighted least squares, we
can derive the coefficients of this polynomial as well as its partial derivatives
(fx = a1, fy = a2, fxx = 2a4, fyy = 2a5, fxy = a3):
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i-1,j+1 ----- i,j+1 ----- i+1,j+1
| | |
| | |
| | |

i-1,j ------- i,j --------- i+1,j
| | |
| | |
| | |

i-1,j-1 ----- i,j-1 ----- i+1,j-1

fx =
(zi−1,j−1 − zi+1,j−1) + (2zi−1,j − 2zi+1,j) + (zi−1,j+1 − zi+1,j+1)

8∆x
(A.54)

fy =
(zi−1,j−1 − zi−1,j+1) + (2zi,j−1 − 2zi,j+1) + (zi+1,j−1 − zi+1,j+1)

8∆y
(A.55)

where ∆x and ∆y is the resolution (grid spacing) in the east-west and north-
south direction respectively.
Let us denote D(i, δ) = zi,j+1+zi,j−1−2zi,j and D(δ, j) = zi+1,j+zi−1,j−2zi,j .
Then we can write

fxx =
D(δ, j + 1) + (4zi−1,j + 4zi+1,j − 8zi,j) + D(δ, j − 1)

6(∆x)2
(A.56)

fyy =
D(i− 1, δ) + (4zi,j+1 + 4zi,j−1 − 8zi,j) + D(i + 1, δ)

6(∆y)2
(A.57)

fxy =
(zj−1,i−1 − zj−1,i+1)− (zj+1,x−1 − zj+1,i+1)

4∆x∆y
(A.58)

where zi,j is the elevation value at row j column i, ∆x is the east-west grid
spacing and ∆y is the north-south grid spacing (resolution).

Insolation

Equations for computation of solar energy related parameters used in r.sun
(Hofierka, 1997a; Hofierka and Súri, 2002, further citations in the manual page
of r.sun). The clear-sky solar radiation model applied in this module is based
on the work undertaken for development of European Solar Radiation Atlas
(Scharmer and Greif, 2000; Page et al., 2001; Rigollier et al., 2000).
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Solar geometry

Declination d [rad]:

δ = arcsin(0.3978 sin(j − 1.4 + 0.0355 sin(j − 0.0489))) (A.59)

where:
j = 2πday/365.25 [rad]

Position of the sun in respect to a horizontal plane:

sinh0 = C31 cos T + C33 (A.60)

cosA0 =
C11 cos T + C13√

(C22 sinT )2 + (C11 cos T + C13)2
(A.61)

where:
C11 = sinϕ cos δ
C13 = − cos ϕ sin δ
C22 = cos δ
C31 = cos ϕ cos δ
C33 = sinϕ sin δ

Position of the sun in respect to an inclined plane:

sin δexp = C ′
31 cos(T − λ′) + C ′

33 (A.62)

where:
C ′

31 = cos ϕ′ cos δ
C ′

33 = sinϕ′ sin δ
sinϕ′ = − cos ϕ sin γN cos AN + sinϕ cos γN

tanλ′ = − sin γN sin AN

sin ϕ sin γN cos AN+cos ϕ cos γN

Sunrise/sunset over a horizontal plane:

cos(Thr,s) = −C33

C31
(A.63)

Sunrise/sunset over an inclined plane:

cos(Tpr,s − λ′) = −C ′
33

C ′
31

(A.64)
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Extraterrestrial irradiance on a plane perpendicular to the solar
beam G0 [W/m2]

G0 = I0ε (A.65)

where:
ε = 1 + 0.03344 cos(j − 0.048869)

values j and 0.048869 are in radians.

Extraterrestrial irradiance on a horizontal plane G0h [W/m2]

G0h = G0 sinh0 (A.66)

Beam irradiance on a horizontal plane Bh [W/m2]

Bh = G0e
(−0.8662 TLK m δR(m)) sinh0 (A.67)

where:
p/p0 = e(−z/8434.5)

∆href
0 = 0.061359(0.1594 + 1.123h0 + 0.065656h2

0)/(1 + 28.9344h0 +
277.3971h2

0)
href

0 = h0 + ∆href
0

m = (p/p0)/(sinhref
0 + 0.50572(href

0 + 6.07995)−1.6364)
where values href

0 and 6.07995 are in degree
δR(m) = 1/(6.6296 + 1.7513m− 0.1202m2 + 0.0065m3 − 0.00013m4)

if m ≤ 20
δR(m) = 1/(10.4 + 0.718m) if m > 20

Beam irradiance on an inclined plane Bi [W/m2]

Bi = G0e
(−0.8662 TLK m δR(m)) sin δexp (A.68)

Diffuse irradiance on a horizontal plane Bh [W/m2]

Dh = G0Fd(h0)Tn(TLK) (A.69)

where:
Tn(TLK) = −0.015843 + 0.030543 TLK + 0.0003797 T 2

LK

Fd(h0) = A1 + A2 sinh0 + A3 sin2 h0

A′
1 = 0.26463− 0.061581TLK + 0.0031408T 2

LK

A1 = 0.0022/Tn(TLK)
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if A′
1 Tn(TLK) < 0.0022

A1 = A′
1

if A′
1 Tn(TLK) ≥ 0.0022

A2 = 2.04020 + 0.018945 TLK + 0.011161 T 2
LK

A3 = −1.3025 + 0.039231 TLK + 0.0085079 T 2
LK

Diffuse irradiance on an inclined plane Di [W/m2]

Di = DhFx (A.70)

where:

if plane is in shade (e.g. δexp < 0 and h0 ≥ 0):
Fx = F (γN )
F (γN ) = ri(γN ) +

(
sin γN − γN cos γN − π sin2

(
γN

2

))
0.252271

if plane is sunlit under clear sky:
if h0 ≥ 0.1rad:

Fx = F (γN )(1−Kb) + Kb sin δexp/ sinh0

if h0 < 0.1rad:
Fx = F (γN )(1−Kb) + Kb sin γN cos ALN/(0.1− 0.008h0)
A∗

LN = A0 −AN

ALN = A∗
LN

if − π ≤ A∗
LN ≤ π

ALN = A∗
LN − 2π

if A∗
LN > π

ALN = A∗
LN + 2π

if A∗
LN < −π

F (γN ) = ri(γN )
+
(
sin γN − γN cos γN − π sin2

(
γN

2

))
(0.00263− 0.712Kb − 0.6883K2

b )
Kb = Bh/G0h

ri(γN ) = (1 + cos γN )/2

Diffuse ground reflected irradiance on an inclined plane Ri [W/m2]

Ri = ρgGhrg(γN ) (A.71)

where:
rg(γN ) = (1− cos γN )/2
Gh = Bh + Dh

with Gh in [W/m2]
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Symbols

• Position of the grid cell (solar plane):
ϕ geographical latitude [rad],
z elevation above sea level [m],
γN slope angle [rad],
AN aspect (orientation, azimuth) – angle between the projection of the

normal on the horizontal plane and east [rad],
ϕ′ relative geographical latitude of an inclined plane [rad],
λ′ relative geographical longitude [rad].

• Parameters of the surface (plane):
ρg mean ground albedo.

• Date-related parameters:
day day number 1-365 (366),
j Julian day number expressed as a day angle [rad],
T time of computation [decimal hours/rad],
Thr,s time of sunrise and sunset over the local horizon,
Tpr,s time of sunrise and sunset over the inclined grid cell (plane),
δ solar declination [rad],
ε correction of the variation of sun-earth distance from its mean value.

• Solar position:
h0 solar altitude – an angle between sun and horizon [rad],
A0 solar azimuth – an angle between sun and meridian measured from

east [rad],
ALN angle between the vertical plane containing the normal to the surface

and vertical plane passing through the center of the solar disc [rad],
δexp solar incidence angle - an angle between sun and the (inclined) plane

[rad].
• Solar radiation:

I0 solar_const = 1367 W/m2,
G0 extraterrestrial irradiance on a plane perpendicular to the solar beam

[W/m2],
Gh Gh = Bh +Dh – global solar irradiance on a horizontal plane [W/m2],
Gi Gi = Bi+Di+Ri – global solar irradiance on an inclined plane [W/m2],
Bh beam irradiance on a horizontal plane [W/m2],
Bi beam irradiance on an inclined plane [W/m2],
Dh diffuse irradiance on a horizontal plane [W/m2],
Di diffuse irradiance on an inclined plane [W/m2],
Ri diffuse ground reflected irradiance on an inclined plane [W/m2].

• Parameters of the atmosphere:
p/p0 correction of station elevation [-],
TLK Linke turbidity factor [-],
TL corrected Linke turbidity factor (TL = 0.8662 TLK), see Kasten (1996),
m relative optical air mass [-],
δR(m) Rayleigh optical thickness [-].
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• Parameters of the radiation transmission:
Fd(h0) diffuse solar elevation function,
Tn(TLK) diffuse transmission function,
F (γN ) function accounting for the diffuse sky irradiance distribution,
Kb proportion between beam irradiance and extraterrestrial solar irradi-

ance on a horizontal plane,
ri(γN ) fraction of the sky dome viewed by an inclined plane [-],
rg(γN ) fraction of the ground viewed by an inclined plane [-].

Walking person

Anisotropic movement of a person between different geographic locations:

T = a.∆S + b.∆Hu + c.∆Hd + d.∆Hs (A.72)

where T is time of movement in seconds, ∆S is the distance covered in
meters, ∆Hu,Hd,Hs is the altitude difference in meters when going uphill,
downhill, and steep downhill respectively. The a, b, c, d parameters represent
speed under different conditions and are linked to a underfoot condition
(a=1/walking_speed), b underfoot condition and cost associated to move-
ment uphill, c underfoot condition and cost associated to movement moder-
ate downhill, d underfoot condition and cost associated to movement steep
downhill. Moving downhill is beneficial up to a specific slope value threshold,
after that it becomes unfavourable. The default slope value threshold (slope
factor) is -0.2125, corresponding to tan (12) downslope. The default values for
a, b, c, d are those proposed by Langmuir (0.72, 6.0, 1.9998, -1.9998), based on
man walking effort in standard conditions. Total cost is estimated as a linear
equation combining movement and friction costs using the λ parameter:

TC = MC + λ ∗ FC (A.73)

where TC is total cost, MC is movement time cost and FC is friction costs,
(see Aitken, 1977; Fontanari, 2001).

A.2 Landscape process modeling

Wetness index
W = ln

A

tanβ
(A.74)

where A is the upslope area per unit contour width [m] and β is the slope
angle in [deg].
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Universal Soil Loss Equation (USLE, RUSLE)

A = RKLSCP (A.75)

where A is average annual soil loss in ton/(acre.year)=0.2242kg/(m2.year),
R is rainfall factor in (hundreds of ft-tonf.in)/(acre.hr.year)=17.02
(MJ.mm)/(ha.hr.year), K is soil erodibility factor in (ton acre.hr)/(hundreds
of acre ft-tonf.in)=0.1317(ton.ha.hr)/(ha.MJ.mm), LS is a dimensionless
topographic (length-slope) factor, C is a dimensionless land cover factor,
and P is a dimensionless prevention measures factor. The modified factor,
representing topographic potential for erosion at a point on the hillslope, is a
function of the upslope area per unit width and the slope angle:

LS = (m + 1)
(

U

22.1

)m( sinβ

0.09

)n

(A.76)

where U is the upslope area per unit width (measure of water flow) in meters
(m2/m), β is the slope angle in degree, 22.1 is the length of the standard USLE
plot in meters and 0.09 = 9% = 5.15◦ is the slope of the standard USLE plot.
The values of exponents range for m = 0.2− 0.6 and n = 1.0− 1.3, where the
lower values are used for prevailing sheet flow and higher values for prevailing
rill flow. When nothing is known about the type of flow, m = 0.4 and n = 1.3
are usually used (see RUSLE for ArcView1).

Unit Stream Power Based Erosion/Deposition model (USPED)
The Unit Stream Power Based Erosion/Deposition model (USPED, Mitasova
and Mitas, 2001) estimates a simplified case of erosion/deposition using the
idea originally proposed by Moore and Burch (1986). It combines the RUSLE
parameters and upslope contributing area per unit width A to estimate the
sediment flow T :

T ≈ RKCPAm(sinβ)n. (A.77)

The upslope area and slope are not normalized, because T is an estimate of
sediment flow [kg/(ms)] (rather than soil detachment [kg/(m2s)]). The net
erosion/deposition D[kg/(m2s)] is then computed as a divergence of sediment
flow:

D = ∇ · (T s0) =
d(T cos α)

dx
+

d(T sinα)
dy

, (A.78)

where α in degrees is the aspect of the terrain surface (direction of flow). The
exponents m,n control the relative influence of water and slope terms and
reflect the impact of different types of flow. The typical range of values is
m = 1.0− 1.6, n = 1.0− 1.3, with the higher values reflecting the pattern for
1 RUSLE for ArcView,
http://abe.www.ecn.purdue.edu/~engelb/agen526/gisrusle/gisrusle.html

http://abe.www.ecn.purdue.edu/~engelb/agen526/gisrusle/gisrusle.html
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prevailing rill erosion with more turbulent flow when erosion sharply increases
with the amount of water. Lower exponent values close to m = n = 1 better
reflect the pattern of compounded, long term impact of both rill and sheet
erosion and averaging over a long term sequence of large and small events.

A.3 Definition of SQLite-ODBC connection

At time of this writing, there is only OpenOffice.org Base which can be used
as powerful graphical user interface to SQL databases. While GRASS can
be directly connected to SQLite, OpenOffice.org Base needs an ODBC based
driver, the “sqliteodbc” library2 and of course ODBC. In this example, we
define a sample SQLite-ODBC connection.

After installation of the “sqliteodbc” library, on UNIX-based systems, add
the driver to /etc/odbcinst.ini (either add next lines or create as new file if
the file does not yet exist):

[SQLite]
Description=SQLite ODBC Driver
Driver=/usr/local/lib/libsqlite3odbc.so
Setup=/usr/local/lib/libsqlite3odbc.so

Now the SQLite driver is available for ODBC. The next step is to add the
definition(s) of the database you want to connect to. Add an ODBC Data
Source Name (DSN) to your definition file at $HOME/.odbc.ini (replace “user”
and “mymapset” with the correct entries):

[nc_sqlite]
Description=North Carolina SQLite DB
Driver=SQLite
Database=/home/user/grassdata/nc_spm/mymapset/sqlite.db
# optional lock timeout in milliseconds
Timeout=2000

See Section 6.2.1 for GRASS related usage notes of the SQLite driver. For
installation under MS-Windows see the “sqliteodbc” Web page.

2 Web site of “sqliteodbc” library, http://www.ch-werner.de/sqliteodbc/

http://www.ch-werner.de/sqliteodbc/
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discrete data 7
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display 67
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elevation 10
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erosion modeling, process-based 163
erosion risk 160
erosion, RUSLE/RUSLE3D 158
erosion, topographic potential 382
erosion, USLE 158
erosion, USLE/USLE3D 158
erosion, USPED 161, 382
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g.manual 26
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GIS manager 29, 67
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GIS, concepts 7
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gps manager 364
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GRASS Development Model 4
GRASS Development Team 4
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GRASS startup screen 40, 44
GRASS, addon path variable 336
GRASS, batch job 338
GRASS, binaries 21
GRASS, code distribution 21
GRASS, coupling external software
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GRASS, CVS 332
GRASS, data portability 54, 71
GRASS, DATABASE 23
GRASS, datum transformation 45
GRASS, documentation 22
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GRASS, file management 34
GRASS, floating point values 107
GRASS, install script 23
GRASS, LOCATION 23
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GRASS, mailing lists 23, 331
GRASS, MAPSET 24
GRASS, modular concept 333
GRASS, monitor 31
GRASS, networked access (NFS) 23
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GRASS, programming, environment
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GRASS, programming, level of

integration 334
GRASS, programming, Python 335
GRASS, programming, scripts 335
GRASS, programming, XML 333
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GRASS, source code 21
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grid points 8
grid resolution 42, 56, 66
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groundwater modeling 156
gstat 348
gstat, GRASS support 349
gstat, kriging 349
gstat, variogram 349
gstat, vector point data 350
GTOPO30 DEM format, import 63
gv 272
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haze effects 299
heads-up digitizing 187
heuristic methods 216
HGT SRTM format, import 64
high pass filtering 308
histogram 294
history 335
history file 86
history file See also r.info 243
hue 311
hydrologic modeling 155
hyperspectral data 305

i.atcorr 300
i.class 315, 319, 320
i.cluster 315–317
i.fft 307
i.fusion.brovey 313
i.gensig 315, 322
i.gensigset 316, 322, 327
i.group 67, 297, 317
i.his.rgb 311
i.ifft 307
i.landsat.dehaze 300
i.landsat.rgb 294
i.maxlik 315, 316, 318, 321
i.oif 292
i.pca 306
i.points 67
i.pr 316
i.rectify 67
i.rgb.his 311, 312
i.smap 316, 322, 323, 326, 327
i.target 67
if-conditions 99, 109
IHS color model 310
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IHS color transformation 266
IHS image fusion 311
image enhancements 303
image fusion 310
image fusion, Brovey transform 313
image fusion, IHS transformation 311
image groups 297
image overlay, into new map 124
image processing 12
image pyramid 322, 326
image ratios 303
image segmentation, preprocessing

308
image sharpening 308
ImageMagick tools 67
import, ARC/INFO Binary GRID 60
import, ASCII raster 60
import, ASTER format 64
import, AVHRR 63
import, BIL 63
import, binary arrays 63
import, Etopo DEM 63
import, GLOBE DEM 63
import, GMT 63
import, GRIDATB Topmodel format

64
import, GTOPO30 DEM 63
import, HGT SRTM format 64
import, MAT MATLAB format 64
import, MrSID format 62
import, SHAPE vector 74
import, TIFF 65
import, WFS 78
import, WMS 64
intensity (IHS model) 310
interoperability 53
interpolation 230
interpolation, bilinear 119
interpolation, IDW 119, 232
interpolation, inverse distance weighted

See also interpolation, IDW 232
interpolation, kriging 262, 349, 358
interpolation, large data sets 244
interpolation, multivariate 258
interpolation, nearest neighbor 119
interpolation, precipitation 258
interpolation, RST 119, 235
interpolation, RST, comparison to IDW

245

interpolation, RST, deviations 241
interpolation, RST, estimating accuracy

241
interpolation, RST, overshoots 240
interpolation, RST, segmented

processing 244
interpolation, RST, smoothing 239
interpolation, RST, tension 237
interpolation, RST, trivariate 261
interpolation, RST, tuning parameters

235
interpolation, RST, visible segments

237, 245
interpolation, RST, volume 257
interpolation, selecting method 230
interpolation, splines (general) 262
interpolation, topographic influence

258
interpolation, visible segments 247
interpolation, volume-temporal 261
interspersion 126
iso-chrones 139
isolines 9, 118

JAVA 11
join, attribute table 180

KML format 81, 210
kriging 262, 349, 358
kriging, gstat 349
kriging, R 358

Lambert Conformal Conic 17
land cover factor 158, 382
Land Surface Temperature 301
land use class 296
land use/land cover maps 314
LANDSAT 5
LANDSAT-TM5 290, 292, 300
LANDSAT-TM7 298, 300, 311, 313
landscape process modeling 155
landscape structure analysis 153
latitude-longitude 16, 45, 46, 120
lattice 8
layer 73
least-cost algorithm 135, 144
legend, vector map 171
length-slope factor 158, 382
lidar 5, 61, 203, 209, 244, 249, 288
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line length, vector map 192
line of sight 152
line segment 198
linear reference system 221
linear regression 131
lines 7, 9, 169
listing of maps 34
location 23, 40
location, auto-generate 60, 338
location, create 37, 40, 44
location, create latitude-longitude 40
location, create xy 44
location, remove 36
low pass filtering 308
lpr 272
LRS See also linear reference system

221
LUT 297

m.proj 45, 199, 217
Maas river bank soil pollution data

347, 348, 351
main 343
Makefile 342
Manhattan metric 135
Manning 163
map algebra 9
map algebra See also r.mapcalc

105
map datum 14, 18
map datum, NAD27 17, 18
map datum, NAD83 17, 18
map datum, transformation 18
map datum, WGS84 18
map extent 56
map features 9
map legend 85
map mosaic 114
map printing 271
map projection 13
map projection, azimuthal 14
map projection, conformal 14
map projection, conic 14
map projection, cylindrical 14
map projection, equidistant 14
map projection, equivalent 14
map scale 8
map, import and geocoding scanned

66

mapset 24, 40
mapset, search path 35, 294
MASK 337
MASK See also r.mask 103
MASK, creating with r.mapcalc 111
massive DEM 147
MAT MATLAB format, import 64
MATLAB data, import 75
matrix filters 307
Maximum Likelihood classifier See

also MLC 315
MayaVi 81
meshes 9
metadata 86, 172, 291
mixed pixels 316, 321
mkdir 29
MLC 316, 318, 327
MODIS 5, 323
monitor, frames 263
monitor, list of displayed maps 84
monitor, multiple 32
monitor, size 263
monitor, split 263
movies See also animations 282
moving window 307
MPEG format, export 69
MrSID format, import 62
multimedia 12
multispectral data, classification 314
multitemporal data, analysis 323
multitemporal data, visualization 269
mv 29, 36
MySQL 10, 173
MySQL driver 176

NASA WorldWind 11, 210
national grid systems 15
NDVI 107, 304
netpbm tools 67, 69
network analysis 216
network file system (NFS) 54
nodes extraction 199
nodes, vector 9
noise distribution model 133
normality tests 196
North American Datum 1927 18
North American Datum 1983 18
North Carolina data set 27, 83, 355
NULL 70, 94, 103, 104, 107, 110
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NULL, filling data holes in a raster
maps 122

nviz 33, 210, 269, 273
nviz, controlling light 277
nviz, cutting planes 279
nviz, displaying raster maps 273, 275
nviz, displaying vector maps 276
nviz, exaggeration 280
nviz, key frame animations 280
nviz, map queries 279
nviz, multiple maps 273
nviz, multiple surfaces 279
nviz, raster resolution 275
nviz, saving settings 278
nviz, screen saving to file 278
nviz, scripting 283
nviz, surface properties 275
nviz, view control 274

objects, geometrical 7
oblique projection 15
octtrees 245
ODBC 10
OGR 50, 73
OGR library 48, 73
ogr2ogr 50, 178, 208
ogrinfo 50
Open Source software 1, 347
OpenGL 333
OpenLayers 365
OpenOffice.org 81
optimal route 138
optimum index factor method 292
Oracle 179
orthophoto 62, 161
OSGeo 3, 12, 365
oversampling 246
overshoot 191
overwrite, maps 25

pan 170
parallel line 198
parameter 25
parameter scans 283
Paraview 81, 166
parser 337
patching raster maps 124
path radiance 299
PCT 305

PERL 339
PERMANENT 24
permissions, file 335
PHP 334, 339
pipe 69, 98
pit See also depressions 144
pixel 8
plane, generate 114
PNG driver 269
PNG driver See also driver 269
point cloud 9
points 9, 169
points See also vector map 7
polygons 70
polygons, boundaries 201
polygons, vector 9
portability 331
PostGIS 10, 81, 179
PostgreSQL 10, 81, 173
PostgreSQL driver 176
Postscript output 271
POVRay format, export 81
PPM format, export 69
ppmtompeg 283
prevention measures factor 158, 382
prime meridian 15
primitives 70
Principal Component Transformation

See also PCT 305
profile 88
profile curvature 121
programmer’s manual 341
programming, GRASS 331
PROJ4 45
projection 47
projection parameters 45
projection transformation 45
projection, Gauss-Krüger 18
projection, Lambert Conformal Conic

17
projection, oblique 15
projection, State Plane 17
projection, transverse 15
projection, Transverse Mercator 18
projection, UTM 16
PS driver See also driver 269
ps.map 271
Public Domain software 2
Python 339
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PyWPS 11, 340

QGIS 365
QGIS (Quantum GIS) 26
QGIS, digitizing tool 190
QGIS, map file 365
quadtrees 244
query form 193
query, SQL 192
query, vector-raster 193

R software for statistical computing
See also R 196, 353

R, batch mode 363
R, contributed packages 354
R, current region 354
R, demo() 354
R, example() 355
R, gstat() 360
R, help pages 355
R, history() 355
R, installation 354
R, kriging 358
R, library() 355, 356
R, plot() 357
R, predict() 361
R, q() 355
R, readRAST6() 358
R, readVECT6() 356
R, spatial classes 353
R, spplot() 358
R, str() 356
R, summary() 356
R, surf.ls() 355
R, system() 358
R, univariate statistics 356
R, variogram() 360
R, writeRAST6() 362
r.average 128
r.buffer 133
r.carve 148
r.cats 86, 96, 100, 126
r.centroid 337
r.clump 102
r.colors 84, 124, 232, 265, 312, 319, 353
r.composite 69, 267, 293
r.contour 118, 119, 227
r.cost 137, 139
r.cross 126

r.describe 86
r.digit 92, 321, 327
r.drain 138
r.fill.dir 144
r.fillnulls 122
r.flow 143, 147
r.gwflow 156
r.his 267
r.in.ascii 60
r.in.aster 64
r.in.bin 63
r.in.gdal 58–60, 67, 339
r.in.gridatb 64
r.in.mat 64
r.in.poly 61
r.in.srtm 64
r.in.wms 64
r.in.xyz 61, 250
r.info 30, 86, 87, 104, 243, 246, 298
r.lake 149
r.li 153
r.li.edgedensity 155
r.li.mps 155
r.li.patchdensity 154
r.li.patchnum 153, 154
r.li.richness 153
r.li.setup 153, 154
r.li.shannon 155
r.li.simpson 153
r.line 116
r.los 152
r.mapcalc 91, 105, 125, 139, 143, 161,

298, 302, 321, 324, 328, 352
r.mapcalc, graph operators 112
r.mapcalc, MASK 111
r.mapcalc, NULL 110
r.mask 103, 337, 358
r.median 128
r.mfilter 308
r.mode 128
r.neighbors 126
r.null 104
r.out.ascii 61, 70
r.out.mpeg 269
r.out.ppm 69
r.out.ppm3 267, 293
r.out.vtk 69, 285
r.out.xyz 70
r.patch 124
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r.plane, r3.cross.rast 168
r.profile 90
r.proj 45, 47
r.random 117, 121, 202, 247
r.random.cells 93
r.random.surface 93
r.reclass 94, 102
r.reclass.area 97, 328
r.recode 97, 114
r.region 65
r.report 90, 100, 101, 130, 153, 160,

302, 337
r.resamp.interp 119, 120
r.resamp.rst 121
r.resamp.stats 123
r.rescale 97
r.rescale.eq 97
r.series 324
r.shaded.relief 142, 266
r.sim.sediment 164
r.sim.water 143, 163
r.slope.aspect 142, 233, 375
r.statistics 128
r.stats 70, 90, 91, 101, 102
r.sun 150
r.sunmask 150
r.support 59, 66, 86, 100
r.surf.area 132
r.surf.contour 234
r.surf.fractal 94
r.surf.idw 121, 233
r.terraflow 143, 147, 155
r.texture 128, 328
r.thin 116
r.timestamp 87
r.to.rast3elev 167
r.to.vect 115, 116, 188, 227, 302, 307,

327, 328
r.topidx 148, 155
r.topmodel 143
r.transect 90
r.univar 90, 104, 118, 337
r.volume 132
r.walk 139
r.water.outlet 145
r.watershed 143
r.what 88, 89, 300
r3.gwflow 156
r3.info 167

r3.mapcalc 168
r3.mask 168
r3.out.ascii 70
r3.out.vtk 69, 284
r3.stats 168
r3.to.rast 167
radiometric resolution 290
radiometric transformations 303
rainfall factor 158, 382
random points 202
random sampling 93, 202
raster category label 54
raster data model 7
raster data, floating point 107
raster data, integer 107
raster data, interpolation See also

interpolation 119
raster formats See also formats 58
raster formats, ASCII 58
raster formats, binary 58
raster formats, image 58
raster image, export 69
raster image, import 58
raster map types 54
raster maps, algebra 105
raster maps, assigning category labels

99
raster maps, assigning new attributes

100
raster maps, automated vectorization

115
raster maps, buffer 133
raster maps, color tables 84
raster maps, conversion between raster

map types 97
raster maps, create 92
raster maps, digitizing 92
raster maps, display 83
raster maps, filling data holes 122
raster maps, floating point 107
raster maps, import 58
raster maps, legend 85
raster maps, managing category labels

99
raster maps, mask 103
raster maps, metadata 86
raster maps, NULL 104
raster maps, patching 124
raster maps, profile 88
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raster maps, query 88
raster maps, reclassification 94
raster maps, resampling 56, 119
raster maps, resolution 56
raster maps, spatial filter 97
raster maps, subsets 91
raster maps, univariate statistics 90
raster maps, zoom 32, 91
raster model 8
reclassification 94
reclassified map, raster 55, 94, 314
reclassified map, vector 185
region 56
region data, import 75
region, align to resolution 57, 229
region, relative coordinates 57
region, saving 91
region, spatial extent 65
rejection map 316
remote sensing, lidar 249
remote sensing, lidar See also lidar

288
remote sensing, microwave 287
remote sensing, optical 287
remote sensing, thermal 287
reprojection 45
resampling 56
resampling, bicubic 119
resampling, bilinear 119
resampling, nearest neighbor 119
resampling, RST 121
resolution 8, 42, 119, 290
Revised Universal Soil Loss Equation

158
RGB color composites 292
RGB color model 310
rm 36
RMS error 68, 80, 243
roughness penalty See also surface

smoothness 237
route, optimal 138
routing 216
rows 8
RUSLE/RUSLE3D 158

satellite data, color composites 292
satellite data, groups 297
satellite data, image calibration 298
satellite data, image fusion 310

satellite data, radiometric preprocessing
297

satellite data, resolution 290
satellite data, surface temperature map

300
satellite data, thematic classification

314
satellite data, thermal channel 300
satellite data, variances 305
saturation 311
scale 8, 249
scale factor 15, 18
scanned map 66
scanned map, rectification 69
scatterplot 297
schema 176
script 335
scripts, Python 335
scripts, shell 335
sed 232, 334
segmentation 244
segmentation, aerial photo 326
segmented processing 244
segments, visible 246
Sequential Maximum A Posteriori

classifier See also SMAP 316
shaded terrain 142, 247
shadow map 150
SHAPE format, export 80
shell 334
shell scripts 335
shortest distances 136, 139, 201
shortest path 219
sidescan sonar 61
Simple Features 75, 197
simulations 12
sink See also depressions 144
sink filling 144
skeletonizing raster lines 115
slope 121
SMAP 315, 322, 326
smoothness seminorm See also

surface smoothness 237
soil factor 158, 382
soil loss, annual 158, 382
solar energy maps 150
source code structure 341
spaghetti maps 191
spatial analysis 12
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spatial convolution 307
spatial domain 307
spatial perturbation 202
spatial resolution 290
spectral resolution 290
spectrum, green vegetation 289
spectrum, infrared 287
spectrum, microwaves 288
spectrum, thermal 287
spectrum, unvegetated soil 289
spectrum, visible 287
spectrum, water 289
sphere 13
spheroid 14
splines 9, 230
SQL 173
SQL CAST 183
SQL queries 181
SQL, character substitution 183
SQL, column maintenance 179
SQL, column type casts 183
SQL, column type conversions 183
SQL, complex expressions 184
SQL, GRANT 179
SQL, LIKE 222
SQL, Null handling 182
SQL, pattern matching 182
SQL, REVOKE 179
SQL, SELECT 181
SQL, subquery expressions 182
SQL, table join 180
SQL, table maintenance 179
SQL, UPDATE 184
SQL, WHERE 181
SQLite 10, 173
SQLite driver 175
sqlite.db 175
SRTM 5, 60
standard parallel 14
State Plane Coordinate System 15, 17
stdout 69, 89
Stefan-Boltzmann equation 301
subgroup signature 322
sun illumination 150
sun position calculation 150
sunshine duration 152
surface calculation 132
surface smoothness 237
SVG format, export 81

SWIG 333

table join 206
tar 29, 36
Tasseled Cap transformation 300
temperature map 300
terrain effects 298
texture 328
thermal radiation 301
thin flexible plate splines 235
TIFF format, export 69
TIFF format, import 65
tiff, tfw file 59
tile boundaries, dissolving 206
time series 283, 323
time series analysis 323
timestamps 87
TIN 236
topographic parameters 121
topographic wetness index 148, 381
topology 9, 117, 169, 188
topology, skipping 251
training areas 315, 321, 322, 327
training areas, generating from auxiliary

maps 321
training map 319
transect 88
translucent map 266
Transverse Mercator 17
transverse projection 15
Triangulated Irregular Network 236
true map scale 15

undershoot 191
Universal Soil Loss Equation 158
Universal Transverse Mercator See

also UTM 15
UNIX, piping See also pipes 69
unixODBC driver 177
UPS 16
upslope contributing area 159
USLE/USLE3D 158
UTM 15, 16, 46

v.buffer 203
v.build 76, 197, 252
v.build.polylines 191, 198, 222
v.category 73, 173, 187, 213, 214, 229
v.centroids 202
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v.clean 75, 191, 197, 205, 213, 307
v.convert 70
v.db.addcol 179, 211, 218
v.db.addtable 179, 186, 214
v.db.connect 73, 179, 187
v.db.dropcol 179, 211
v.db.droptable 179
v.db.join 180
v.db.renamecol 179, 247
v.db.select 173, 182, 211, 213, 215, 221,

247
v.db.update 173, 179, 184, 186, 218,

319
v.delaunay 211
v.digit 75, 197, 206, 321, 327
v.digit, digitizing 189
v.digit, nodes snapping 191
v.dissolve 204
v.distance 201, 217, 224
v.drape 210
v.edit 191, 197, 204, 205, 220, 224
v.edit, digitizing 192
v.external 74, 179
v.extract 182, 204, 216, 222, 229, 321
v.extrude 209
v.hull 211
v.in.ascii 76, 137
v.in.db 211
v.in.dxf 78, 79
v.in.e00 75
v.in.garmin 76, 364
v.in.gpsbabel 76, 364
v.in.mapgen 75
v.in.ogr 25, 73, 74
v.in.region 47, 206
v.in.sites 70
v.in.wfs 78
v.info 30, 172, 186, 197
v.kernel 229
v.label 265, 272
v.lrs.create 221
v.lrs.label 221
v.lrs.segment 221
v.lrs.where 221
v.net 202, 216, 217
v.net.alloc 216
v.net.iso 216, 218
v.net.path 216
v.net.salesman 216

v.net.steiner 216
v.normal 196
v.out.ascii 75, 81, 117
v.out.dxf 81
v.out.ogr 210
v.out.vtk 285
v.overlay 206
v.parallel 203
v.patch 205, 247
v.perturb 202
v.proj 45, 47, 48, 77, 210
v.qcount 196
v.random 202
v.rast.stats 194
v.reclass 185
v.report 186, 192, 328
v.sample 194, 209
v.segment 198, 203
v.select 206, 208, 216
v.split 198, 210
v.support 172
v.surf.idw 232, 245
v.surf.rst 121, 122, 235, 244, 247
v.to.db 187, 199, 201, 205, 210, 211,

215
v.to.points 199, 202, 247
v.to.rast 136, 139, 227, 232, 234, 252,

321, 327, 358
v.to.rast3 167, 261
v.transform 78, 80, 209
v.type 202, 229
v.univar 196
v.vol.idw 261
v.vol.rst 235, 244, 260
v.volt.rst 235, 262
v.voronoi 211, 232
v.what 193
v.what.rast 193
v.what.vect 186, 193
variograms 348
vector color column 183
vector colors 170, 183
vector data, digitizing 187
vector data, geometry 196
vector data, SQL 173
vector data, topology 197
vector editing 224
vector geometry type 202
vector layer 186, 201
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vector map, geocoding 209
vector map, history 172
vector maps, 3D face 71
vector maps, area sizes 192
vector maps, areas 70
vector maps, attribute data 73
vector maps, centroid 70
vector maps, clipping 206
vector maps, columns 172
vector maps, common boundaries 188
vector maps, converting to raster model

227, 234
vector maps, digitizing See also

vectorization 189
vector maps, dissolving 204
vector maps, feature extraction 204
vector maps, gap 75, 197
vector maps, intersecting 206
vector maps, islands 71
vector maps, layer 73
vector maps, line length 192
vector maps, lines 70
vector maps, merging See also

patching 205
vector maps, nodes 70
vector maps, object type 70
vector maps, overshoot 197
vector maps, patching 205
vector maps, points 70
vector maps, polygon neighbors 215
vector maps, polylines 71
vector maps, querying 172
vector maps, reclassification 185
vector maps, selective object removal

205
vector maps, sliver 75, 197
vector maps, snapping 74, 188, 191
vector maps, topology 72, 169
vector maps, vertices 70
vector mask 206
vector model 7, 9
vector native directions 197
vector network analysis 216
vector points maps, spatial interpolation

230
vector points maps, transformation to

rasters 230
vector topology 197

vector, cookie cutter 206
vectorization, automated 115
vegetation index 107, 304
verbosity, commands 25
vertical units conversion 209
vertices extraction 199
vertices, vector 9
viewshed See also line of sight 152
visual analysis 263, 273
visualization 12, 263
visualization, in 2D See also d.rast

and See also nviz 263
visualization, in 3D 273
visualization, multiple maps 273
visualization, multitemporal data 269,

280
visualization, nviz 273
visualization, Paraview 284
volume 167
volume calculation 132
volume, curvatures 262
volume, gradients 262
volume, of excavation 132
volume-temporal interpolation 261
Voronoi polygons 230
voxel 8, 166, 258, 261
VTK format, export 81

walking person 139
watershed analysis 140
watershed outlet 145
waypoints, import 76
Web Processing Service 11, 340
Web Services 11, 26, 340, 365
WebGIS 340
WebGIS, OpenLayers 365
WebGIS, UMN/MapServer 365
WFS, import 78
wildcards 34, 269
WIND file 24
WMS, import 64
wxWidgets 333

xganim 157, 167, 260, 269
XML 333

zonal statistics 102
zoom 91, 170
zoom, nviz 274
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