CC3101 - Matemáticas Discretas para la Computación

Profesor: Pablo Barceló

Auxiliar: Christian von Borries

Auxiliar N°5

30 de Abril de 2014

- P1) En esta pregunta estudiaremos los números de Catalan. Son una sucesión que aparece en varios problemas de conteo.
 - a) Sea $n \in \mathbb{N}$. Muestre que los siguientes números son todos iguales:
 - La cantidad de strings de largo 2n con el alfabeto $\{(,)\}$ tal que los paréntesis están bien balanceados.
 - La cantidad de sucesiones a_1, \ldots, a_{2n} con coeficientes en $\{1, -1\}$ tal que para $k = 1, \ldots, 2n 1$ $\sum_{i=1}^k a_i \ge 0$ y $\sum_{i=1}^{2n} a_i = 0$.
 - Caminos en el plano $\mathbb{N} \times \mathbb{N}$ con movimientos (+0, +1) y (+1, +0) partiendo de (0, 0) y terminando en (n, n), pero sin pasar por debajo de la recta x = y.
 - Las particiones de $\{1, \ldots, n\}$ que no se cruzan: Una partición se dice que cruza si existen a, b, c, d tales que $a \le b \le c \le d$, $a \ y \ c$ están en un bloque de la partición y $b \ y \ d$ están en otro bloque de la partición.
 - La cantidad de permutaciones a_1, \ldots, a_n de $\{1, \ldots, n\}$ tales que no existe i < j < k que cumplan $a_i > a_j > a_k$.

(Y la lista sigue: En http://www-math.mit.edu/ rstan/ec/catalan.pdf hay 66 objetos combinatoriales que cuentan lo mismo.)

b) Al número anterior lo llamamos C_n , el n-ésimo número de Catalán. Muestre que los números de Catalán satisfacen la recurrencia

$$C_0 = 1$$
, $C_{n+1} = \sum_{i=0}^{n} C_i C_{n-i}$

- c) Cuente los caminos en el plano $\mathbb{N} \times \mathbb{N}$ con movimientos (+0, +1) y (+1, +0) que parten en el punto (0,0) y terminan en (n,n).
- d) Muestre que los caminos que parten de (1,0) y terminan en (n,n), pero que sí pasan por debajo de la recta y=x son la misma cantidad que los caminos que comienzan en (0,0) pero terminan en (n+1,n-1).
- e) Concluya que $C_n = \frac{1}{n+1} {2n \choose n}$.
- **P2)** Decimos que un conjunto A es egocéntrico si contiene a |A|.
 - a) ¿Cuántos subconjuntos de $\{1,\dots,n\}$ son egocéntricos?
 - b) Diremos que un conjunto es egocéntrico minimal si es egocéntrico y no contiene a otro conjunto egocéntrico como subconjunto propio. Encuentre una recurrencia para contar los subconjuntos egocéntricos minimales de $\{1, \ldots, n\}$ y soluciónela.
- **P3)** Una permutación π de $\{1, \ldots, n\}$ se dice conectada si no existe un k con $1 \le k < n$ tal que $\pi(\{1, 2, \ldots, k\}) = \{1, 2, \ldots, k\}$. Si p_n es la cantidad de permutaciones conectadas de $\{1, \ldots, n\}$, demuestre la siguiente recurrencia:

$$p_{n+1} = (n+1)! - \sum_{i=1}^{n} p_i(n+1-i)!$$

P4) BOGOSORT es un algoritmo de ordenación muy malo.

Algoritmo 1 BogoSort(A)

while A no está ordenado **do** desordenar A con una permutación al azar **end while**

- a) Muestre que la probabilidad que el algoritmo termina es 1.
- b) En esperanza, ¿cuántas veces entra el algoritmo en el ciclo while?