MA4701. Optimización Combinatorial. 2013.

Profesor: José Soto

Complemento 3: Redes y flujos

1. Notación y propiedades de redes y flujos

- Una red es una 4-tupla (G, u, s, t) con G = (V, E) un grafo dirigido, $u: E \to \mathbb{R}_+$ una función no negativa de capacidades, s un nodo origen y t un nodo destino.
- A lo largo de esta unidad trataremos las funciones $x : E \to \mathbb{R}$ como vectores en \mathbb{R}^E , y usaremos indiferentemente notación $x(e) = x_e$, además usaremos la notación $x^{\text{OUT}}(v) = x(\delta^+(v)) x(\delta^-(v))$ y $x^{\text{IN}}(v) = -x^{\text{OUT}}(v)$, para todo $v \in V$.
- Un flujo factible en (G, u, s, t) es una función $f: E \to \mathbb{R}$ que satisface condiciones de capacidad: $(0 \le f_e \le u_e)$ para todo $e \in E$; y conservación: $f^{\text{OUT}}(v) = 0$, para todo $v \in V \{s, t\}$.
- El valor de un flujo es $f^{OUT}(s) = f^{IN}(t)$.
- Llamemos \overrightarrow{G} al grafo (V, \overrightarrow{E}) , donde $\overrightarrow{E} = E \dot{\cup} \overleftarrow{E}$, con \overleftarrow{E} una colección de arcos reversos para E, que se considera disjunta a E. Dado $e \in E$, llamamos \overleftarrow{e} a su reverso en \overleftarrow{E} . Similarmente, dado $e \in \overleftarrow{E}$, llamamos \overleftarrow{e} a su reverso en E.
- Dado un flujo factible en (G, u, s, t), definimos la red residual $(\overset{\leftrightarrow}{G}, u^f, s, t)$ como la red tal que

$$u^{f}(e) = \begin{cases} u_{e} - f_{e} & \text{para } e \in E. \\ f_{e} & \text{para } e \in E. \end{cases}$$

la cantidad $u^f(e)$ se conoce como la capacidad residual del arco e. Típicamente trabajaremos con la red modificada (G_o^f, u^f, s, t) donde G_o^f es el subgrafo de G_o^f con capacidades residuales estrictamente positivas (esta red es la que típicamente se conoce como red o grafo residual asociado a f).

■ Para cada flujo factible g en (G, u^f, s, t) , definimos naturalmente una función $\tilde{g} \colon E \to \mathbb{R}$ que satisface las condiciones de conservación en (G, u, s, t) (pero no necesariamente las de capacidad, pudiendo incluso tomar valores negativos) como sigue:

$$\tilde{g}_e = g_e - g_{\leftarrow}$$
, para todo $e \in E$.

Las siguientes propiedades son útil para trabajar con redes residuales.

Lemma 1. Si g es flujo factible en $(\overset{\leftrightarrow}{G}, u^f, s, t)$ entonces $f + \tilde{g}$ es flujo factible en (G, u, s, t). Además el valor de $f + \tilde{g}$ es la suma de los valores de f en (G, u, s, t) y de g en $(\overset{\leftrightarrow}{G}, u^f, s, t)$.

Demostración. Para todo $v \in V$, tenemos que

$$\begin{split} \tilde{g}(\delta_E^+(v)) &= g(\delta_E^+(v)) - g(\delta_{\stackrel{\leftarrow}{E}}^-(v)), \\ \tilde{g}(\delta_E^-(v)) &= g(\delta_E^-(v)) - g(\delta_{\stackrel{\leftarrow}{E}}^+(v)), \\ \text{con lo cual } \tilde{g}^{\text{OUT}}(v) &= \tilde{g}(\delta_E^+(v)) - \tilde{g}(\delta_E^-(v)) = (g(\delta_E^+(v)) + g(\delta_{\stackrel{\leftarrow}{E}}^+(v))) - (g(\delta_E^-(v)) + g(\delta_E^+(v))) \\ &= g(\delta_{\stackrel{\leftarrow}{E}}^+(v)) - g(\delta_{\stackrel{\leftarrow}{E}}^-(v)) = g^{\text{OUT}}(v). \end{split}$$

Gracias a esto, $(f + \tilde{g})_G^{\text{OUT}}(v) = f^{\text{OUT}}(v) - \tilde{g}^{\text{OUT}}(v) = f^{\text{OUT}}(v) - g^{\text{OUT}}(v)$ y como f y g son flujos factibles en sus respectivas redes, tenemos que $f + \tilde{g}$ satisface conservación. Por otro lado:

$$\operatorname{valor}_G(f + \tilde{g}) = f^{\text{OUT}}(s) + g^{\text{OUT}}(s) = \operatorname{valor}(f) + \operatorname{valor}(g).$$

Solo falta ver que $f + \tilde{g}$ satisface capacidad. En efecto, si $e \in E$ tenemos que:

$$f_e + \tilde{g}_e = f_e + g_e - g_{\leftarrow} \le f_e + g_e \le f_e + u_e^f \le u_e,$$

$$f_e + \tilde{g}_e = f_e + g_e - g_{\leftarrow} \ge f_e - g_{\leftarrow} \ge 0.$$

Lemma 2. Si f y f' son flujos factibles en (G, u, s, t) y $valor(f) \le valor(f')$ entonces existe un flujo factible g en (G_o^f, u^f, s, t) de valor valor(f') - valor(f) tal que $f' = f + \tilde{g}$.

Demostración. Consideremos el vector h = f' - f. Definamos $g : \stackrel{\leftrightarrow}{E} \to \mathbb{R}$ del siguiente modo. Sea $e \in E$. Si $h_e \ge 0$ entonces fijamos $g_{\stackrel{\leftarrow}{e}} := 0$ y $g_e := h_e \le f'_e - f_e \le u_e - f_e = u_e^f$. Si por otro lado $h_e < 0$ entonces fijamos $g_e := 0$ y $g_{\stackrel{\leftarrow}{e}} := -h_e = f_e - f'_e \le f_e = u_e^f$.

Del párrafo anterior deducimos que g es un vector que satisface capacidades en la red (G_o^f, u^f, s, t) . Por otro lado, para todo $e \in E$, $\tilde{g}_e = g_e - g_{\stackrel{\leftarrow}{e}} = h_e$. De aquí deducimos que $f' = f + \tilde{g}$ y que para todo v, $g_{G_o^f}^{\text{OUT}}(v) = h_G^{\text{OUT}}(v) = f_G^{\text{OUT}}(v) - f_G'^{\text{OUT}}(v)$, con lo que g satisface las condiciones de conservación. Por lo tanteo, g es un flujo factible en (G_o^f, u^f, s, t) .

Gracias a estos lemas deducimos por ejemplo que para todo flujo factible f y todo flujo máximo f^* en (G, u, s, t), el valor de un flujo máximo en (G_o^f, u^f, s, t) es igual al valor de f^* menos el valor de f.