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1 TheEllipsoid Method

Khachian showed in 1979 that linear programming can be datveolynomial time. We con-
sider LPs in inequality form:
max{ c'x; Ax< b} (LP)

The entries ofA, ¢, andb are assumed to be integral. The ellipsoid method is abotihges
feasibility. Optimization is done by binary search on thgeacbve function value, i.e., we test
feasibility of the following LP

c'x>cy and Ax<b (1)

for suitably chosen constants. More precisely, we compute an upper and a lower bound on the
optimum objective value and then perform binary search @niniterval.

The ellipsoid method is of limited practical value. Althduigs running time is polynomial,
it is usually outperformed by the Simplex algorithm and dganterior point methods (another
polynomial time algorithm for linear programming). Theigdloid method is of great theoretical
value as is can also be applied to implicitly defined LPs. bhdLPs, the constraints are not given
explicitly, but there is an algorithm (usually called, treeparation oracle”) that tells whether a
pointz satisfies all inequalities or not. In the latter case, it a&tarns a violated inequality.

This section is organized as follows. In Section 1.1 we ohiice the Ellipsoid method and in
Section 1.3 we discuss an application to an LP with expoaliynthany constraints. Sections 1.4
and 1.5 build intuition; we discuss the Ellipsoid method me@nd two dimensions. In the one-
dimensional case, the method is tantamount to binary sedmdfwo-dimensions, the ellipsoid
comes into play.

1.1 ThePrinciple

We discuss how to decide feasibility of a system
Ax<b. (LP)

The entries oA andb are assumed to be integral. l&be the maximum absolute value of any
entry ofAandb and letL = n(1+logn+logC). Then 2 = (2nC)".

Theorem 1 The Ellipsoid method solves linear programs in time polyiabim L.
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Algorithm 1 The Ellipsoid Method

initialize E to the ball with radius % centered at the origin. {SCE}
whilevol(E) > 2~ ("L do
if the centerz of E is feasible, stop and declare the problem feasible.
select an inequalitg;x < b; violated byz, i.e.,a,-Tz > by.
{for every pointx € S, we havea x < bj < alz.}
consider the “half-ellipsoid{1/2)E = EN {x a'x < &'z} which is the intersection of
E with a half-space whose boundary passes thraughd replaceE by the smallest (in
volume) ellipsoid containingl/2)E. {SCE}
end while
stop and declare the problem infeasible.

We show how to decide whether the feasible set is empty andddwd a feasible point if
there is one under the following additional assumptithe set of feasible points inside the ball
of radius4"" centered at the origin, has volume at least™ VL. We will justify this assumption
later.

In the sequel we usB to denote the set of feasible solutions inside the ball ofusad-
centered at the origin. Theis either empty or has volume at least® DL,

The Ellipsoid method is a generalization of binary searchbihary search we maintain an
interval that contains the solution. In each iteration, ast tvhether the midpoint of the interval
is a solution. If not, we proceed with one of two half-intdsval he Ellipsoid method generalizes
this strategy to arbitrary dimensions. The proper gereatatin of intervals are ellipsoids.

An ellipsoidE in R" consists of all pointx € R" satisfying an inequality of the form

(x—2)TQ(x-2) <1

wherez € R" is the center of the ellipsoid ar@is anyn x n positive definite matrix ForQ =1,

we have the unit ball centered atfor Q = diag(ay, ...,a,) with a > 0 for all i, we have an
ellipsoid with centez and axes of length/1,/a. An ellipsoid can also be viewed as the image
of the unit ball under the affine transformatior- R(x—z). A one-dimensional ellipsoid is an
interval.

The ellipsoid method maintains an ellipsddhat is known to contails, E is initialized to
the ball with radius - centered at the origin. In each iteration, we first check thleme of
E. If the volume ofE is smaller than 2™l Sis empty and we stop. Otherwise, we consider
the centerz of E. If zis feasible, we have found a feasible point and stogz i¢finfeasible, it
violates at least one of the inequalities definfigaya z > bj. Since the points ii$ satisfy this
inequality, we hava,-Tx <bj<agjzforallxe S Thus

SC (1/2E:=En{xa'x<alz}.

LA matrix Q is positive definite if for any nonzero vectgyone hasg/' Qy > 0. Positive definite matrices have
“roots”, i.e., there is a matriR such thatQ = R"R. In fact, a matrix is positive definite if there is a non-sitagu
matrix R such thaQ = R"R.



(1/2)E is the intersection oE with a half-space whose boundary containsee Figure 1. We
replacek by the smallest ellipsoid containirid/2)E.

What is the smallest ellipsoid, calli#, containing(1/2)E? Let us consider a special case:
E is the unit ball and the half-spacexs< 0, see Figure 2.

Lemmal Let E be the unit ball. Then
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where the next to last inequality follows frofy x,-2 < 1 and the last inequality follows from
x%+x1 < 0for —1 < x3 < 0. We have now shown th&nN {x; x; <0} C E’. We will not show
thatE’ is the smallest ellipsoid with this property. In Section $du can find the argument in
the two-dimensional situation.

We next turn to the volume bound. The volume of a ellipsoidrigoprtional to the product
of the lengths of its axes. All axes &f have length one and’ has one axis of Iengtﬁ% and



n— 1 axes of length / n{‘—il Thus

vol(E') _ n n2 "2
Vol(E) n+1 < )

where the inequality follows from [1+s) < sfor -1 < s. 1

How can we deal with the case of an arbitrary elliggeWe can derive the equations f6f
as follows:

1. translate space so that moved into the origin.

2. rotate space such that the axe&dfecome aligned with the coordinate axes.
3. scale the coordinates such tEabecomes the unit ball
4

. at this point the boundary &f is an arbitrary hyperplane through the origin, rotate space
again so as to turH into the half-space; < 0.

5. at this point we are in our special situation and hence kaow
6. apply steps 1 to 5 in reverse ordel&o

A nice fact about the transformations used in steps 1 to 5ais #ithough they change vol-
umes, they do not change the ratio of volumes and hence theltmuthe ratio of the volume of
E andE’ derived above stays true.

Lemma2 In every iteration, the volume of E shrinks by at least thédiac

1
f= —-—)<1.
X~ ot 2) <
The polynomiality of the method follows easily. We startlwén ellipsoid whose volume is
bounded by BL. Observe that the ball with radiug4fits into the box with side length -2
and hence its volume is bounded (&) = 8™L.



In each iteration the volume shrinks by a facfoand hence the volume of the ellipsoid after
k iterations is at mostk - 8™L. We stop, if the volume goes below @+1L. Thus if we enter
iterationk + 1, we must haveé*g™L > 2-(+1L orklog f +3n2L > —(n-+ 1)L or

_ —(n+ 1L—3nmL
- log f B

O(n3L).

One remark is needed at this point. The formulae for updatie@llipsoid involve additions,
multiplications, divisions, and roots. We have to carryntheut with finite precision. It can
be shown the the claims above stay essentially true, if &utations are carried out with-8
bits of precision. This proves Theorem 1 (modulo the unpnagsumptions). We turn to the
assumptions.

1.2 Details
We sketch how to guarantee the minimum volume assumptiorhawdo reduce optimization

to feasibility testing.

Minimum Volume: The solution toAx < b might be a single point. In the Ellipsoid method
one argues about the volume of the set of solutions and heaceant the situation that either
there is no solution or that the solution set has a certaimnum volume. This is easy to achieve
by perturbation. We need a Lemma about solutions to linestesys.

Lemma 3 Consider a system Ax b with non-singular A and dimension n. Assume that all
entries are integral bounded by C in absolute value. Theneihgies of Ab are rational
numbers whose numerator and denominator are bounded®@y; n

Proof: By Cramer’s rule, thg-th coordinate ok is (up to sign) equal to

detd
detA’

whereA' is obtained fromA by replacing theg-th column byb. The value of the determinant is
a sum ofn! terms, each bounded I§/'. Finally,n! <n". |

Lemma4 (Minimum Volume and L ocalization) Lete =1/(2n(nC)").
e Ax< b is feasible if and only if AX b+ €1 is feasible L is the vector of ones).

e Ifthe latter problem is feasible, the set of solutions iedide ball with radiugt"t centered
at the origin, has volume at leagt ("+1L



Proof: | want to give a feeling why this might be true. ClearlyAk < b is feasible, then the
perturbed system is feasible.

If Ax< bis not feasible, then there isya> 0 such thay" A= 0 andy’ b= —1 (this is Farkas’
Lemma). In other words, the LP

minimize 1y subjecttoy >0, yTA=0, y'Tb=—1

is feasible. Since basic solutions of LPs are solutiongid system, Lemma 3 gives us a bound
on the coordinates of a solutigntheir absolute value is bounded bYC".
Next consider the perturbed system and observe that

y' (b+€l) < —14+n(nC)"e < —1/2.

Thusy proves the infeasibility of the perturbed system. Assuntaéacontrary that there is an
with Ax < b+ £1. Multiplying this inequality byy" from the left yields 0< y" (b+¢£1) < —1/2,
a contradiction.

For the second part, assume feasibility of the perturbetésysThen the original system is
feasible and has a solutionwell inside the ball of radius™ (there is a feasible point whose
coordinates are bounded kyC)" and (nC)" < 4"%). Consider any’ whose coordinates differ
from the coordinates of by at mostd. Then

AX = AX+AX —x) <b+dnCl<b+el

whered is such thahCd = €. Thus the feasible region of the perturbed system contatuba
of side length @ and the volume bound follows (sin¢gd)" > 2— (DL, |

Feasibility and Optimization: We argue that if one can decide feasibility of LPs in polynalimi
time then one can compute optimal solutions in polynommaéti We first show how to deal with
unbounded LPs and then how to deal with bounded LPs.

An LP is unbounded if and only if it and the “companion LP" n{gk Ax < 0, cTx> 1} are
feasible. Thus we can decide unboundedness if we can desagiility. Observe first that if
both problems are feasible, say with feasible solutigrsndx], thenx;+tx; is feasible for the
original problem for any > 0. The objective value grows without bounds. ConversetpafLP
is unbounded, the simplex algorithm yielfsandx; such that +tx; is feasible for any > 0
and the objective functions grows as a functiort.ofort = 0, we conclude that; is feasible
for LP. The fact thak(j +tx; is feasible for every positiveimpliesAx; < 0 and the fact that the
objective function grows without bounds implias; > 0.

For a bounded LP, Lemma 3 tells us that the coordinates offitimal solution are bounded
by (nC)". Thus the objective value is bounded in absolute valuklby: nC(nC)". We use binary
search on the intervéd-M, +M] to determine the optimal objective value. Any search step is
feasibility test of an LP of the form

c'x<cy Ax<bh.
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When can we stop the search. beandx be two distinct vertices of the feasible set and

assume&’x £ c'x. Then
1

-
c (X—X)> —
( ) = (nc>2n
sincex — X is a vector of rationals with denominator at le&s€)?" and the entries of are
integral.

Thus we can stop the search after

log(2M - (nC)?") = O(LOW

iterations.

Summary: The ellipsoid method is not a practical method. Howevethiéoretical interest is
immense.

e First, it shows that linear programming is a polynomial tipreblem.

e Second, it shows that it suffices to have a “separation drémisolving LPs. A separation
oracle takes a poirt and tells whethee is feasible. Ifz is infeasible it also provides a
violated inequality. Observe that a separation oracld ihat is needed in step 4.

1.3 An Application: The Subtour Elimination LP

Let G = (V,E) be an undirected graph and tetE — R be a non-negative weight function on
the edges o6. The following integer linear program solves the Travel8ajesman Problem on
G. We have a variablg, associated with each edgef G. The variables are constrained to have
values O or 1. The intended meaning is that the eégath x. = 1 form the Traveling Salesman
Tour. Every tour must use exactly two of the edges incideantpvertex, i.e.,

Z xe=2 foreachveV (2)
eco(v)

whered(v) is the set of edges incident ¥o For a setS of vertices, letd(S) be the set of edges
having exactly one endpoint fa Then

Xe>2 foreachSCV with®#S#V. 3)
ecd(S)

Lemma5 The zero-one solutions of (2) and (3) are precisely the Thag&alesman tours.

Proof: A tour uses exactly two edges incident to every vertex. Megedor every seb of

vertices with 04 S+#V at least two edges of the tour have exactly one endpoi@t in
Conversely, consider a zero-one solution anléte the set of edges witlh = 1. SinceX

contains exactly two edges incident to every vertex, thesdgX form a set of disjoint cycles.



Assume that there is more than one cycle. &dte the vertex set of one of the cycles. Then
Y ecs(s) Xe = 0, a contradiction to (3). .

The constraints in (2) are calledkgree constraintend the constraints in (3) are called
subtour-elimination constraint€f course, the goal is to minimize the total cost of the edges
the tour, i.e.,

minimize Zcexe.
e

We next relax the conditior. € {0,1} to 0< X < 1. We obtain an LP. There ar@ Begree
constraints and™- 2 subtour elimination constraints. We show how to solve Itfiswith the
Ellipsoid method in polynomial time.

Assume that the edge costsare integers in the range from 0@ Then the objective value
of the LP lies between 0 anil; the objective value of the LP is not necessarily integrae W
want to find the smallest integeg such that the LP

Z CeXe < Cp and 0< Xe < 1 and(2) and(3)
e

is feasible. Thermy is a lower bound for the ILP. We use the Ellipsoid method.
We can start with a ball of radius, since we havenvariables bounded by orfel et zbe the
center of the current ellipsoid. We check the constraints

Z CeXe < Cp and 0< xe < 1 and(2)
e

by substitutingz for x. We check the subtour-elimination constraints algorittatiy.

We set up an auxiliary grap®’. G’ is isomorphic tdG; the weight of edge is equal taze (=
the entry of the vectaz indexed bye). We compute a minimum edge éuh G'. If the value of
this cut is less than two, it gives us a violated subtour-glanon constraint. If the value of this
cut is equal to two (why can it be no larger than two?), themoiwiolated subtour-elimination
constraint.

The result of this section is remarkable. We have an LP witlariables, one for each edge.
Hence the optimal solution is defined byof the constraints. Which constraints are relevant is
determined by the edge weights. There are exponentiallysaotour-elimination constraints.
The ellipsoid method finds the relevant constraints in pomgral time without inspecting all of
the constraints.

1.4 Binary Search

We start with a one-dimensional problem. Consider the ¥ahg situation.

2Argue that one can start with a ball of radius

3The pedestrian way of solving a min-cut problem is to iteater all pairs(a, b) of distinct vertices of5'. For
each pair one computes the minimdeb)-cut by a max-flow computation with soureeand sinkb. There are
more efficient algorithms known [SW97, KS96]. For an implernation see [MN99].



e The goalis to find am € R having a certain property or to tell that nax € R has property
P.

In the application to linear programminghas propertyp if it satisfies (1).

e We know that the se® of x having propertyP is either empty or an interval of length at
least/.

In the application to linear programming: the set of feastht either empty or is a convex
set of volume at leagt A convex set in one dimension is an interval.

¢ We know that the absolute value of axyith propertyP is bounded byJ.
In the application to linear programming: the feasible sebintained in a ball of radius.

e Given anx € R we can test whetherhas propertyp. If x does not have proper®), either
SC [—..x] or SC [X.. + ]. This follows from the fact thaBis an interval. We can tell
which of the two cases applies

In the application to linear programming: eithesatisfies all inequalities or we can find
an inequality violated by.

The problem just described can be solved by binary search.

1. Initialize an interval to [-U..U]. ThenSC I. In the course of the algorithm we will
shrinkl and maintain the invariar8C |I.

2. Ifthe length ofl is less thart, we stop and declare that there isxawith propertyP. This
is correct, sinc&S C | by our invariant and since a nonemghas a length of at leagt
Thus if the length of is less tharf, Smust be empty.

3. So assume that the lengthlak larger thar?. Letz be the midpoint of. If zhas property
P, we stop.

4. Otherwise, we repladeby either the left half or the right half dfand continue with step
2. We exclude the half which is known to contain no poinSiand hence the invariant
SC | is maintained.

We have already argued correctness of our method. Let usoexid the number of iterations.
After k executions of step four the lengthlois 22U, since we start with an interval of length
2U and since every execution of step four halves the lengthepirterval.

Assume that the loop body is executed 2 times, i.e., in thé&k+ 2-nd iteration we stop in
either step 2 or step 3. Since we did not stop in iterakier, the length of at the beginning of
thek + 1-st iteration (=end ok-th iteration) is at least. Thus 2°X(2U) > ¢ ork < log((2U)/¢).

4This item is usually called separation oraclethe word oracle emphasizes that, at least for the purpdshe o
current discussion, it is irrelevant how the decision is eyagparation indicates that the decision separdtesn
S.



Theorem 2 Binary search solves the search problem described aboveawinost

2U
2+I097

iterations.

Proof: by the preceding discussion. |

Before we generalize to higher dimensions, we observe thatnot really important that
the length ofl is halved in every iteration. Any reduction by a constantdaé¢ < 1 would do.
Assume the length dfis reduced by a factof < 1 in every iteration. Then the last paragraph
has to be changed to:

Assume that the loop body is executed 2 times, i.e., in thek+ 2-nd iteration we stop
in either step 2 or step 3. Since we did not stop in iteralien1, the length ofl at the

beginning of thek + 1-st iteration (=end ok-th iteration) is at least. Thus fX(2U) > ¢ or
k<log,¢((2U)/¢) = % Thus only the basis of the log-function changes.

1.5 TheEllipsoid Method in Two Dimension

The ellipsoid method generalizes binary search to highmedsion. We discuss the general-
ization to two dimensions. Let us first generalize our searciblem. Consider the following
situation.

e The goal is to find arx € R? having a certain propert or to tell that nox € R? has
propertyP.
In the application to linear programminghas propertyp if it satisfies (1).

e (Minimum Area) We know that the s&of x having property is either empty or a convex
set of area at leagt
In the application to linear programming: the set of feaskot either empty or has volume
at least/.

e (Localization) We know that any with propertyP is contained in a disk with radiug
centered at the origin.
In the application to linear programming: the feasible sebintained in a ball of radius.

e (Separation Oracle) Given ane R? we can test whether has propertyP. If x does not
have propertyP, there is a lind passing througtx such one of the (open) half-spaces
defined byl contains no point irs. This follows from the fact tha®is convex. We assume

that we can determine such a line and the empty open halegpaaivalently, the closed
half-spaced with boundaryl and containing)

In the application to linear programming: eithesatisfies all inequalities or we can find
one which is violated by.
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How can we generalize binary search? What is the proper gkzegion of the interval which is
known to contairS? Khachian showed that ellipses work. This leads to thewviatig algorithm.

1. Initialize E to the disk with radiug¢) centered at the origin. The®C E. In the course of
the algorithm we will shrinke and maintain the invariants that

e Eisan ellipse
e E containsS.

2. If the area oE is less thart, we stop and declare that there isxnwith propertyP. This
is correct, sinc& C | by our invariant and a non-emp8has an area of at lea&tThus if
the area oE is less thart, Smust be empty.

3. So assume that the areabofs larger thar!. Let z be the center oE. If zhas propertyp,
we stop.

4. Otherwise, by our assumption, we can determine a closkglaae H havingz in its
boundary and containin§. Define (1/2)E as the intersection dE andH. ThenSC
(1/2)E and the area ofl1/2)E is one-half the area d&.

Unfortunately,(1/2)E is not an ellipsoid. Here is where the ellipsoid method ges®hd
binary search. In binary sear¢h/2)l is an interval and hence we immediately proceed to
the next iteration. In the ellipsoid method we need one &irrdtep.

SetE to the smallest (in area) ellipse containifig 2)E, see Figure 1.

Clearly, if the method terminates, it terminates with therect answer. The key for the termina-
tion proof and the running time analysis is to show that tleaafE is multiplied by a factorf
less than one in every iteration.

How can we determine the smallest ellipsoid containih@?)E? Let us start with a par-
ticularly simple situation, see Figure E is a unit disk centered at the origin ahfdis the left
half-plane.

The figure suggests to use an elliggethat has its center on the negatix@xis, passes
through point§—1,0), (0,1) and(0, —1), and has axes parallel to the coordinate axes. Thus

E'={(xy) € R (x—c)/a)’+(y/b)? <1}
for appropriate constang b, andc.

Lemma6 Forc=—1/3, a=2/3, and b= 2/+/3, the ellipsoid E defined above containsfH.
Moreover,

areaE')  (2/3)> 43 <08

areaE) ,/1/3 9 —

and E is the smallest ellipse (in area) containing .
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Figure 1. The figure shows an ellipge and a halfspacél havingz, the center oE, on its
boundary;(1/2)E is the intersection oE andH. Enewis an ellipsoid containingl/2)E. It is
not the smallest such ellipsoid (my mastering of xfig did ndtise for this purpose).

(0,1)

(O!'l)

Figure 2: E is the unit disk andH is the left half-plane. The figure suggests that the smallest
ellipseE’ containingE NH has its center on the negatixexis, passes through poirts 1,0),
(0,1) and(0,—1), and has axes parallel to the coordinate axes.

Proof:

We have—1 < ¢ < 0 anda andb are the length of the axes of our ellipse> 0 andb > 0.
The area oE’ is mab and we are going to chooseandb such that the area is minimal. Since
(—1,0) lies on the boundary dt’, the length of the horizontal axis istlc. Thusa= 1+c.
We must clearly have®> 1. Thus—1/2 < ¢ < 0. Since(0,1) lies on the boundary d&’ we
have(c/(1+c))?+ (1/b)? = 1. Thus(1/b)? =1—(c¢/(14+¢))? = ((14¢)>—c?)/(1+c)? and
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henceb = (1+c)/+/1+ 2c. At this point, we are left with a single parameterFor anyc with
—1/2 < ¢ <0, the formulae above determiae@ndb.

The area ofE’ is mab= (1 +c)?/+/1+ 2c. Forc =0, E' is equal toE and the area is equal
to 77, the area of the unit disk. Fer= —0.1, the area oE’ is 110.9%/1/0.8 ~ 0.9rrand hence the
area ofE’ is only 90% of the area dE. We can do even better, but there is actually no need to
do so. Already at this point, we know that the number of iferet is logarithmic irlJ /2.

The area is minimizetfor c = —1/3. Then

areaE')  (2/3)> 43 <08

areaE) ,/1/3 9

The center ofE’ is at (—1/3,0) and the axes have length2and 2/3 respectively. Thus
1/a? = 9/4 and ¥/b? = 3/4.

We still need to verify thaE’ containsE N H. So let(x,y) be arbitrary withx? 4+ y? < 1 and
X< 0. Then

(x—c)2 y? 9 3 3
Z = =z <1.
2t =gt y2 x—|—2x+4+4 (¢ +y?) < x+2x+1_1

The next to last inequality follows froxf +y? < 1 and the last inequality follows fromf +x < 0
for -1 <x<0. ]

How can we deal with the case of an arbitrary elliggeWe can derive the equations f6f
as follows:

1. translate space so thais moved into the origin.

2. rotate the plane such that the axeg&dfecome aligned with the coordinate axes.
3. scalex andy-coordinates such th& becomes the unit disk
4

. at this point the boundary éf is an arbitrary line through the origin, rotate space again s
as to turnH into the left half-plane.

5. at this point we are in our special situation and hence kisow
6. apply steps 1 to 5 in reverse ordel&o

A nice fact about the transformations used in steps 1 to 5ais #ithough they change vol-
umes they do not change the ratio of volumes and hence thallwoutihe ratio of the volume of
E andE’ derived above stays true.

5The derivative of 1+ ¢)?//(1+ 2c) with respect ta is 2(1+¢)(1+¢) Y2 — (1+¢)?(1+2c)"3/2 = (2(1+
¢)(1+2¢) — (1+¢)?)(1+2c) 32 = (1+¢)(2(1+2c) — (1+¢))(1+2c)~%2. We have maxima foc = —1 (an
illegal value) and 2-4c—1—-c=0o0rx=—-1lorc=-1/3.
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Theorem 3 The ellipsoid method solves the two-dimensional searchl@no with at most

Wz log(4U?/¢)

iterations; f = 4/3/9.

Proof: We start with the disk of radiug centered at the origin. Its areait)? < 4U2. We
terminate when the area is smaller tifaand we reduce the area by a factoe 41/3/9 in every
iteration. Therefore the number of iterations is at mosttidhatated in the theorem. 1
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