Universidad de Chile Facultad de Ciencias Físicas y Matemáticas Departamento de Ingeniería Matemática MA3802 Teoría de la Medida 17 de diciembre de 2013

Examen

Profesor: Jaime San Martín.

Auxiliares: Francisco Arana, Rodolfo Gutiérrez, Matías Pavez.

- P1. (a) Sea (X, \mathcal{B}, ν) un espacio de probabilidad con ν una medida no atómica. Recuerde que lo anterior implica que para todo $A \in \mathcal{B}$ y para todo $c \in [0, \nu(A)]$ existe $B \subseteq A, B \in \mathcal{B}$ con $\nu(B) = c$.
 - I) [2 pts.] Considere el conjunto $D = \left\{ \frac{m}{2^n} \mid m, n \in \mathbb{N} \right\} \cap [0, 1]$, los números diádicos en [0, 1]. Muestre que existe una familia $\{A_x\}_{x \in D} \subseteq \mathcal{B}$ tal que $\nu(A_x) = x$ para todo $x \in D$ y tal que para todo $x, x' \in D$ se tiene $A_x \subseteq A_{x'}$ o $A_{x'} \subseteq A_x$.
 - II) [2 pts.] Considere $f: X \to [0,1]$ dada por $f(y) = \inf\{x \in D \mid y \in A_x\}$. Pruebe que f es \mathcal{B} -medible y que $\nu(f^{-1}(A)) = \mu(A)$ para todo $A \in \mathcal{B}([0,1])$, donde μ es la medida de Lebesgue en [0,1]. Concluya que existe un conjunto no numerable y de medida 0 en \mathcal{B} .
 - (b) [2 pts.] Sea \mathcal{A} una σ -álgebra de \mathbb{N} . Pruebe que existe una colección de conjuntos $\{A_i\}_{i\in I}$ disjunta dos a dos con $\bigcup_{i \in I} A_i = \mathbb{N}$ tal que $\mathcal{A} = \sigma(\{A_i\}_{i \in I})$.

Indicación. Defina una relación de equivalencia

P2. Consideremos μ una medida finita definida en \mathcal{B} la σ -álgebra boreliana del intervalo [0, 1]. Definimos la función característica de μ como la función $\psi \colon \mathbb{R} \to \mathbb{C}$ siguiente

$$\psi(t) = \int e^{itx} d\mu(x) = \int \cos(tx) d\mu(x) + i \int \sin(tx) d\mu(x).$$

- (a) [1 pto.] Pruebe que ψ esta bien definida y que es una función continua.
- (b) [2 pts.] Pruebe que para T>0 las integrales siguientes están bien definidas y

$$\begin{split} \int_{-T}^{T} \frac{e^{-ita} - e^{-itb}}{it} \psi(t) dt &= \int \int_{-T}^{T} \frac{e^{it(x-a)} - e^{it(x-b)}}{it} dt \, d\mu(x) \\ &= 2 \int \text{sgn}(x-a) S(T|x-a|) - \text{sgn}(x-b) S(T|x-b|) \, d\mu(x), \end{split}$$

donde $S(u) = \int_0^u \frac{\sin(x)}{x} dx$, para $u \ge 0$, y sgn es la función signo. **Indicación.** Le puede ser útil usar la desigualdad $|e^{ir} - e^{is}| \le |r - s|$.

(c) [2 pts.] Usando que $\lim_{u\to\infty} S(u) = \frac{\pi}{2}$, demuestre que si $\mu(\{a\}) = \mu(\{b\}) = 0$ entonces

$$\lim_{T \to \infty} \frac{1}{2\pi} \int_{-T}^{T} \frac{e^{-ita} - e^{-itb}}{it} \psi(t) dt = \mu((a, b]).$$

- (d) [1 pto.] Suponga que μ y ν son medidas finitas en \mathcal{B} tales que $\mu(\{x\}) = \nu(\{x\}) = 0$ para todo $x \in \mathbb{R}$. Pruebe que si μ y ν tienen la misma función característica, entonces $\mu = \nu$.
- **P3.** Sea $(\Omega, \mathcal{F}, \mathbb{P})$ un espacio de probabilidad y $\{A_n\}_{n\in\mathbb{N}}$ una secuencia de eventos medibles. Recuerde que $\lim \sup A_n = \bigcap_{n \in \mathbb{N}} \bigcup_{m > n} A_m.$
 - (a) [2 pts.] Muestre que si $\sum_{n\in\mathbb{N}} \mathbb{P}(A_n) < \infty$, entonces $\mathbb{P}(\limsup A_n) = 0$.
 - (b) [4 pts.] Suponga que los $\{A_n\}_{n\in\mathbb{N}}$ son independientes. Pruebe que si $\sum_{n\in\mathbb{N}} \mathbb{P}(A_n) = \infty$, entonces $\mathbb{P}(\limsup A_n) = 1.$

Indicación. Le puede servir probar que

$$\mathbb{P}\left(\bigcap_{k=n}^{n+j} A_k^c\right) \le \prod_{k=n}^{n+j} \exp(-\mathbb{P}(A_k)).$$