Universidad de Chile Facultad de Ciencias Físicas y Matemáticas Departamento de Ingeniería Matemática MA3802 Teoría de la Medida 7 de diciembre de 2013

Control 3

Profesor: Jaime San Martín.

Auxiliares: Francisco Arana, Rodolfo Gutiérrez, Matías Pavez.

- **P1.** Consideremos [0,1] con \mathcal{B} la σ -álgebra Boreliana. Denotamos por M al conjunto de todas las medidas (positivas) definidas en \mathcal{B} y finitas.
 - (a) El objetivo de este problema es demostrar que el conjunto $B = \{ \mu \in M : \mu([0,1]) \le 1 \}$ es compacto en la topología débil, que es metrizable (no lo pruebe) y está dada por

$$\mu_n \to \mu \text{ ssi } \forall f \in \mathcal{C}([0,1]) \text{ se tiene } \int f d\mu_n \to \int f d\mu.$$

Demostraremos que toda sucesión en B tiene una subsucesión convergente. Sea entonces (μ_n) una sucesión en B.

- I) [1,5 pts.] Sea $\{f_j\}_{j\in\mathbb{N}}\subseteq\mathcal{C}([0,1])$ un conjunto denso numerable en $\mathcal{C}([0,1])$, con la topología uniforme. Pruebe que existe una subsucesión (μ_{n_k}) de (μ_n) tal que $\lim_{k\to\infty}\int f_j\mu_{n_k}$ existe para todo $j\in\mathbb{N}$. Piense en un argumento diagonal.
- II) [1 pto.] Pruebe que $\lim_{k\to\infty} \int f\mu_{n_k}$ existe para cualquier $f\in\mathcal{C}([0,1])$. Para ello pruebe que $(\int fd\mu_{n_k})_k$ es de Cauchy. Definimos $L\colon\mathcal{C}([0,1])\to\mathbb{R}$ por

$$L(f) = \lim_{k \to \infty} \int f \mu_{n_k}.$$

- III) [2,5 pts.] Concluya.
- (b) [1 pto.] Pruebe que φ : $[0,1] \to M$ dado por $\varphi(x) = \delta_x$ define un homeomorfismo en su imagen al considerar la topología débil en M, pero que esto no es cierto al considerar la topología dada por la variación total en M que está asociada a la norma

$$\|\mu - \nu\| = |\mu - \nu|([0, 1]),$$

donde $|\mu - \nu|$ es la variación de la medida con signo $\mu - \nu$. Para ello, calcule $|\delta_x - \delta_y|$ para $x \neq y$.

- **P2.** Sea $(\Omega, \mathcal{F}, \mathbb{P})$ un espacio de probabilidad y $\{X_n\}_{n\in\mathbb{N}}$ una sucesión de variables aleatorias independientes, donde cada X_n tiene media 0 y varianza $\mathbb{E}(X_n^2) = \sigma_n^2 < \infty$. Se define $S_k = \sum_{i=1}^k X_i$.
 - (a) Sea $S_n^* = \max_{1 \le k \le n} |S_k|$. El objetivo de la primera parte del problema es probar que para todo $\varepsilon > 0$ se tiene que

$$\mathbb{P}(S_n^* \ge \varepsilon) \le \frac{1}{\varepsilon^2} \sum_{k=1}^n \sigma_k^2.$$

Para esto, siga los siguientes pasos:

- I) [0,5 pts.] Defina $\tau = \inf\{n \in \mathbb{N} : |S_n| \ge \varepsilon\}$ (por convención inf $\emptyset = \infty$). Muestre que $\{\tau \le n\}$ es $\sigma(X_1, \ldots, X_n)$ medible para todo $n \in \mathbb{N}$ y que $\{\tau \le n\} = \{S_n^* \ge \varepsilon\}$.
- II) [1 pto.] Muestre que si $j \neq \ell$ e i < j, entonces $\mathbb{E}(X_j X_\ell \mathbb{1}_{\tau=i}) = 0$.
- III) [1 pto.] Use la parte anterior para demostrar que para $k \leq n$

$$\mathbb{E}((S_n^2 - S_k^2) \mathbb{1}_{\tau = k}) = \mathbb{P}(\{\tau = k\}) \sum_{i=k+1}^n \mathbb{E}(X_i^2)$$

y concluir que

$$\mathbb{E}(S_n^2 \mathbb{1}_{\tau=k}) = \mathbb{E}(S_k^2 \mathbb{1}_{\tau=k}) + \mathbb{P}(\{\tau=k\}) \sum_{i=k+1}^n \mathbb{E}(X_i^2) \ge \varepsilon^2 \mathbb{P}(\{\tau=k\}).$$

- IV) [1,5 pts.] Concluya.
- (b) Suponga ahora que $\sum_{n=1}^{\infty} \sigma_n^2 < \infty$. Se desea probar que $\sum_{n=1}^{\infty} X_n$ converge casi seguramente. Para esto, siga los siguientes pasos:
 - I) [1 pto.] Sean $\varepsilon > 0$ y

$$T_m^n = \max_{0 \le k \le n-1} |S_{m+k} - S_m|, \quad T_m = \sup_{0 \le k} |S_{m+k} - S_m|.$$

Use la parte anterior para acotar $\mathbb{P}(\{T_m^n \geq \varepsilon\})$ y después $\mathbb{P}(\{T_m \geq \varepsilon\})$. Piense que $S_{m+k} - S_m = \sum_{j=m+1}^{m+k} X_j$.

II) [1 pto.] Defina $T = \inf_{m \in \mathbb{N}} T_m$. Pruebe que T = 0 c.s. y concluya el resultado.