Universidad de Chile Facultad de Ciencias Físicas y Matemáticas Departamento de Ingeniería Matemática MA3802 Teoría de la Medida 6 de diciembre de 2013

Auxiliar 16: Repaso C3

Profesor: Jaime San Martín.

Auxiliares: Francisco Arana, Rodolfo Gutiérrez, Matías Pavez.

P1. Sea X un espacio métrico compacto. Se dice que una colección de conjuntos $\mathcal{D} \subseteq \mathcal{B}(X)$ determina la convergencia débil si para cualquier sucesión de medidas borelianas de probabilidad (μ_n) y μ medida boreliana de probabilidad se tiene que

$$\mu_n(D) \to \mu(D)$$
 para todo $D \in \mathcal{D}$ tal que $\mu(\partial D) = 0$

implica que (μ_n) converge débilmente a μ .

(a) Sea $\mathcal{D} \subseteq \mathcal{B}(X)$ una colección de conjuntos que determina la convergencia débil. Muestre que

$$\mathcal{D}^{\nu} = \{ D \in \mathcal{D} \mid \nu(\partial D) = 0 \}$$

también lo hace.

Solución. Sea (μ_n) una sucesión de medidas borelianas de probabilidad que converge a una medida boreliana de probabilidad μ . Sea $D \in \mathcal{D}^{\nu}$ tal que $\mu(\partial D) = 0$. Notemos que esto es equivalente a que $(\mu + \nu)(\partial D) = 0$, porque sabemos que $\nu(\partial D) = 0$. Luego, como se tiene que

$$(\mu_n + \nu)(D) \rightarrow (\mu + \nu)(D)$$

porque $D \in \mathcal{D}$, concluimos que $\frac{\mu_n + \nu}{2}$ converge débilmente a $\frac{\mu + \nu}{2}$ (normalizamos para que sigan siendo medidas de probabilidad). Esto implica que μ_n converge débilmente a μ .

- (b) Muestre que $\mathcal{D}_{\nu} = \{D \in \mathcal{B}(X) \mid \nu(\partial D) = 0\}$ determina la convergencia débil para cualquier medida boreliana de probabilidad ν . Solución. Directo de la parte anterior y del hecho que $\mathcal{B}(X)$ determina la convergencia débil.
- **P2.** El objetivo de este problema es demostrar la ley fuerte de los grandes números, es decir, que si $\{X_n\}$ es una sucesión de variables aleatorias i.i.d. con media 0 en un espacio de probabilidad $(\Omega, \mathcal{F}, \mathbb{P})$, entonces $\frac{1}{N} \sum_{n=1}^{N} X_n \to 0$ c.s..

Decimos que dos secuencias de variables aleatorias $\{X_n\}$ e $\{Y_n\}$ son **equivalentes** si se cumple que

$$\sum_{n=1}^{\infty} \mathbb{P}(\{\omega \in \Omega \mid X_n(\omega) \neq Y_n(\omega)\}) < \infty.$$

Puede suponer conocido el siguiente resultado: si $\{X_n\}$ es una sucesión de v.a. independientes, entonces $\sum_{n=1}^{\infty} X_n$ es convergente c.s. si y sólo si existe una sucesión $\{Y_n\}$ de v.a. independientes con $\{X_n\}$ equivalente a $\{Y_n\}$ y tal que $\sum_{n=1}^{\infty} \mathbb{E}(Y_n)$ y $\sum_{n=1}^{\infty} \mathbb{V}\operatorname{ar}(Y_n)$ son convergentes.

Sea entonces $\{X_n\}$ una sucesión de variables aleatorias i.i.d. con media 0 en un espacio de probabilidad $(\Omega, \mathcal{F}, \mathbb{P})$. Se propone el siguiente esquema

(a) Sea $E_n = \{ \omega \in \Omega \mid |X_1(\omega)| \le n \}$. Pruebe que

$$\sum_{n=1}^{\infty} \frac{1}{n^2} \mathbb{E}(X_1^2 \mathbb{1}_{E_n}) < \infty.$$

Indicación: Puede ser útil que $\sum_{n=k}^{\infty} \frac{k^2}{n^2} \leq 2k$ para $k \geq 1$.

Solución. Definamos primero que

$$X = \sum_{n \in \mathbb{N}} X_1^2 \mathbb{1}_{E_n}.$$

Sea $\omega \in \Omega$ y $k \in \mathbb{N}$ tal que $k-1 < X_1(\omega) \le k$. Notemos que si n < k, entonces $\mathbb{1}_{E_n}(\omega) = 0$ y que si $n \ge k$ entonces $\mathbb{1}_{E_n}(\omega) = 0$ por lo que

$$|X(\omega)| = \sum_{n \in \mathbb{N}} X_1(\omega)^2 \mathbb{1}_{E_n}(\omega) = \sum_{n > k} X_1(\omega)^2 \le \sum_{n > k} k^2$$

y se concluye por la indicación.

(b) Sea $F_n = \{\omega \in \Omega \mid |X_n(\omega)| \le n\}$ e $Y_n = \mathbbm{1}_{F_n} X_n$. Pruebe que la sucesión de variables aleatorias $\{Y_n\}$ es independiente y que es equivalente a $\{X_n\}$.

Solución. La independencia es directa de que $\sigma(X_n \mathbb{1}_{F_n}) \subseteq \sigma(X_n)$, que es cierto porque F_n es $\sigma(X_n)$ medible (es una función que depende sólo de X_n).

Para ver la equivalencia, notemos que los eventos $\mathbb{P}(\{X_n \neq Y_n\})$ son independientes, ya que cada uno es $\sigma(X_n)$ medible. Luego, por el lema de Borel-Cantelli (no tienen que saberlo en la prueba, por si acaso XD), la afirmación

$$\sum_{n\in\mathbb{N}} \mathbb{P}(\{X_n \neq Y_n\}) = \infty$$

implica que con probabilidad 1 el evento $\{X_n \neq Y_n\}$ ocurre infinitas veces. Esto es claramente una contradicción, porque para ω fijo se tiene que $X_n(\omega) \neq Y_n(\omega)$ sólo ocurre para finitos $n \in \mathbb{N}$.

(c) Muestre que

$$\frac{1}{N} \sum_{n=1}^{N} \mathbb{E}(Y_n) \to 0.$$

Solución. Notemos que

$$\mathbb{E}(Y_n) = \mathbb{E}(X_n \mathbb{1}_{F_n}) = \mathbb{E}(X_1 \mathbb{1}_{F_n})$$

(lo último es cierto porque las v.a. son idénticamente distribuidas) por lo que

$$\frac{1}{N} \sum_{n=1}^{N} \mathbb{E}(Y_n) = \frac{1}{N} \sum_{n=1}^{N} \mathbb{E}(X_1 \, \mathbb{1}_{E_n}).$$

Por el TCD, se tiene que $\mathbb{E}(X_1 \mathbb{1}_{E_n}) \to \mathbb{E}(X_1) = 0$, por lo que se concluye lo deseado (los promedios parciales de una sucesión convergente convergen al mismo límite).

(d) Pruebe que

$$\sum_{n=1}^{\infty} \frac{1}{n^2} \operatorname{Var}(Y_n) < \infty$$

y concluya el resultado.

Solución. Notemos que

$$\mathbb{E}(Y_n^2) = \mathbb{E}(X_n^2 \mathbb{1}_{F_n}) = \mathbb{E}(X_1^2 \mathbb{1}_{E_n})$$

(donde la última igualdad nuevamente es cierta porque las v.a. son idénticamente distribuidas), por lo que

$$\sum_{n\in\mathbb{N}} \frac{1}{n^2} \mathbb{E}(Y_n^2) = \sum_{n\in\mathbb{N}} \mathbb{E}(X_1^2 \mathbb{1}_{E_n}) < \infty$$

por la parte (a). Además, $\mathbb{E}(Y_n)^2 \leq \mathbb{E}(|X_1|)^2$ por lo que

$$\sum_{n\in\mathbb{N}} \frac{1}{n^2} \mathbb{E}(Y_n^2) \le \sum_{n\in\mathbb{N}} \frac{\mathbb{E}(|X_1|)^2}{n^2} < \infty.$$