Universidad de Chile Facultad de Ciencias Físicas y Matemáticas Departamento de Ingeniería Matemática 21 de Noviembre, 2013

Auxiliar #11.2MA1102-6 Álgebra Lineal. : Auxiliar Extra

Profesor: Alejandro Maass Auxiliar: Martín Castillo

P1. Sea $T: \mathbb{R}^3 \to \mathbb{R}^3$ una transformación lineal tal que su matriz representante con respecto a la base:

$$\mathcal{A} = \left\{ \begin{pmatrix} 1\\3\\2 \end{pmatrix}, \begin{pmatrix} 1\\1\\-1 \end{pmatrix}, \begin{pmatrix} 0\\1\\1 \end{pmatrix} \right\}.$$

(en el espacio de partida y en el de llegada) sea

$$M = \left(\begin{array}{rrr} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{array}\right).$$

- a) Encuentre la matriz N representante de T con respecto a la base canónica (en el espacio de partida y en el de llegada).
- b) ¿Existen bases \mathcal{B}_1 , \mathcal{B}_2 de \mathbb{R}^3 tales que la representante de T con respecto a \mathcal{B}_1 en la partida y \mathcal{B}_2 en la llegada sea $\begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$?
- c) Pruebe que M no es diagonalizable y concluya que N tampoco lo es.
- **P2.** Sea $a \in \mathbb{R}$. Se define una sucesión de números reales $(u_n)_{n \in \mathbb{N}}$ de la siguiente manera: $u_0 = 1$, $u_1 = a$, $(\forall n \geq 2)$

$$u_n = au_{n-1} - u_{n-2}.$$

Sean
$$x_0 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$
, $(\forall n \ge 1)$, $x_n = \begin{pmatrix} u_n \\ u_{n-1} \end{pmatrix}$.

- a) Demuestre que para todo $n \ge 0$ se tiene que $x_n = A^n x_0$ con $A = \begin{pmatrix} a & -1 \\ 1 & 0 \end{pmatrix}$.
- b) Demuestre que si |a| = 2 entonces A no es diagonalizable.
- c) Demuestre que si |a| > 2 entonces A es diagonalizable.
- d) Asumamos que |a|>2 y denotemos λ_1,λ_2 los valores propios de A. Demuestre que:
 - (i) $\begin{pmatrix} \lambda_1 \\ 1 \end{pmatrix}$ y $\begin{pmatrix} \lambda_2 \\ 1 \end{pmatrix}$ son vectores propios asociados a λ_1 y λ_2 respectivamente.

1

(ii) Para todo $n \in \mathbb{N}$ se tiene que $u_n = \frac{\lambda_1^{n+1} - \lambda_2^{n+1}}{\lambda_1 - \lambda_2}$.