Universidad de Chile Facultad de Ciencias Físicas y Matemáticas Departamento de Ingeniería matemática Cálculo Diferencial e Integral Sección 6 Semestre Primavera 2013

Clase Auxiliar N°5: Preparación Control 1

Profesor: Felipe Célèry Auxiliar: Bruno Aguiló

- **P1.** (a) Sea $f:[a,b] \to \mathbb{R}$ una función continua en [a,b] y dos veces derivable en (a,b). Prueba que si f alcanza su máximo global en $x_0 \in (a,b)$, entonces $f''(x_0) \le 0$ Indicación: Usa un desarrollo limitado de orden 2 de f en torno a x_0
 - (b) Sea $g:[0,1]\to\mathbb{R}$ una función continua y dos veces derivable en (0,1), la cual satisface

$$g''(x) = x^3 g(x) + g^2(x)g'(x), \quad \forall x \in (0,1)$$

Demuestra que si g(0) = g(1) = 0, entonces $g(x) \le 0$ en todo [0,1]Indicación: Argumenta por contradicción y usa la parte (a) donde corresponda

P2. Sea $f:[a,b] \to \mathbb{R}$ una función continua y dos veces derivable en (a,b) y P(x) un polinomio de grado 1. Si P(a) = f(a) y P(b) = f(b), se quiere probar que para cada $\bar{x} \in (a,b)$, $\exists \xi \in (a,b)$ tal que:

$$f(\bar{x}) = P(\bar{x}) + \frac{f''(\xi)}{2} (\bar{x} - a)(\bar{x} - b)$$

Para esto, procede como sigue:

- (a) Dado $\bar{x} \in (a, b)$, justifica que existe un único $\lambda \in \mathbb{R}$ para el cual la función $h(x) = f(x) P(x) \lambda(x a)(x b)$ se anula en \bar{x} $(h(\bar{x}) = 0)$.
- (b) Aplica el teorema del Valor Medio para h(x) en $[a, \bar{x}]$ y $[\bar{x}, b]$ justificando tus hipótesis.
- (c) Utiliza los resultados de (b) y el teorema del valor medio (o Rolle) en h'(x) para probar que $\exists \xi \in (a,b)$ tal que $h''(\xi) = 0$.
- (d) Utiliza (c) y la definición de h para calcular el valor de λ en función de ξ y ocupa este resultado y el punto (a). Concluye.
- **P3.** Considera la función definida por $f(x) = \frac{x}{\ln(x^2)}$. Se te pide:
 - (a) Dominio, paridad, signos de f.
 - (b) Continuidad, reparando donde corresponda. Asíntotas.
 - (c) Cálculo de f'(x) para $x \neq 0$ y, si es posible, f'(0). Analiza crecimientos. Encuentra máximos y mínimos (si es que existen).
 - (d) Cálculo de f''(x). Estudia concavidad, convexidad, inflexiones.
 - (e) Gráfico aproximado, señalando valores principales y recorrido.

P4. A partir de un círculo de papel de radio R, se desea construir un cono, recortando del círculo un sector circular \widehat{AOB} de ángulo central θ y juntando los trozos OA y OB de modo que coincidan. Se formará de esta manera un cono recto circular cuya base es un círculo de perímetro igual a la longitud del arco que queda después del corte, y cuya generatriz tiene longitud igual al radio del círculo original.

Para calcular el ángulo θ de modo que el cono formado como se indicó tenga volumen máximo, se te pide:

- (a) Demuestra que el radio basal r del cono es $r = R(1 \frac{\theta}{2\pi})$.
- (b) Demuestra que la altura h del cono es $h = R\sqrt{1 \left(1 \frac{\theta}{2\pi}\right)^2}$
- (c) Verifica que con la sustitución $x=1-\frac{\theta}{2\pi}$ el volumen del cono queda

$$V(x) = \frac{\pi}{3}R^3x^2\sqrt{1-x^2}.$$

- (d) Analiza la función V(x) indicando: Dominio, ceros, signos de V(x), paridad, cálculo de V'(x), crecimientos y deduce el valor de x que maximiza V(x).
- (e) Calcula el volumen máximo del cono y el ángulo θ que lo genera.