
OPERATIONS RESEARCH
Vol. 56, No. 4, July–August 2008, pp. 992–1009
issn 0030-364X �eissn 1526-5463 �08 �5604 �0992

informs ®

doi 10.1287/opre.1080.0524
© 2008 INFORMS

The Pseudoflow Algorithm: A New Algorithm
for the Maximum-Flow Problem

Dorit S. Hochbaum
Department of Industrial Engineering and Operations Research and Walter A. Haas School of Business,

University of California, Berkeley, California 94720, hochbaum@ieor.berkeley.edu

We introduce the pseudoflow algorithm for the maximum-flow problem that employs only pseudoflows and does not
generate flows explicitly. The algorithm solves directly a problem equivalent to the minimum-cut problem—the maximum
blocking-cut problem. Once the maximum blocking-cut solution is available, the additional complexity required to find
the respective maximum-flow is O�m logn�. A variant of the algorithm is a new parametric maximum-flow algorithm
generating all breakpoints in the same complexity required to solve the constant capacities maximum-flow problem. The
pseudoflow algorithm has also a simplex variant, pseudoflow-simplex, that can be implemented to solve the maximum-
flow problem. One feature of the pseudoflow algorithm is that it can initialize with any pseudoflow. This feature allows
it to reach an optimal solution quickly when the initial pseudoflow is “close” to an optimal solution. The complexities
of the pseudoflow algorithm, the pseudoflow-simplex, and the parametric variants of pseudoflow and pseudoflow-simplex
algorithms are all O�mn logn� on a graph with n nodes and m arcs. Therefore, the pseudoflow-simplex algorithm is the
fastest simplex algorithm known for the parametric maximum-flow problem. The pseudoflow algorithm is also shown to
solve the maximum-flow problem on s� t-tree networks in linear time, where s� t-tree networks are formed by joining a
forest of capacitated arcs, with nodes s and t adjacent to any subset of the nodes.

Subject classifications : flow algorithms; parametric flow; normalized tree; lowest label; pseudoflow algorithm; maximum
flow.

Area of review : Optimization.
History : Received May 2001; revisions received December 2002, June 2003, June 2004, April 2005, May 2007; accepted

May 2007.

1. Introduction
The maximum-flow problem is to find in a network with a
source, a sink, and arcs of given capacities, a flow that sat-
isfies the capacity constraints and flow-balance constraints
at all nodes other than source and sink, so that the amount
of flow leaving the source is maximized.

The past five decades have witnessed prolific develop-
ments of algorithms for the maximum-flow problem. These
algorithms can be classified in two major classes: feasible-
flow algorithms and preflow algorithms. The feasible-flow
algorithms work with augmenting paths incrementing the
flow at every iteration. The first algorithm of this type was
devised by Ford and Fulkerson (1957). A preflow is a flow
that may violate the restriction on the balance of the incom-
ing flow and the outgoing flow into each node other than
source and sink by permitting excesses (more inflow than
outflow). It appears that the first use of preflow for the
maximum-flow problem was in work by Boldyreff (1955),
in a push-type algorithm with heuristically chosen labels.
Boldyreff’s technique, named “flooding technique”, does
not guarantee an optimal solution. The push-relabel algo-
rithm of Goldberg and Tarjan (1988) uses preflows, and is
efficient both theoretically and empirically.

The literature on maximum-flow algorithms includes
numerous algorithms. Most notable for efficiency among
feasible-flow algorithms is Dinic’s (1970) algorithm of

complexity, O�n2m�. An improved version of this algo-
rithm runs in time O�n3� (Karzanov 1974, Malhorta et al.
1978). Goldberg and Rao (1998) based their algorithm on
an extension of Dinic’s algorithm for unit capacity networks
with run time of O�min	n2/3�m1/2�m log�n2/m� logU� for
U the largest arc capacity. Goldberg and Tarjan’s (1988)
push-relabel algorithm with dynamic trees implementation
has complexity of O�mn logn2/m�, and King et al. (1994)
devised an algorithm of complexity O�mn logm/n logn n�.

We describe here a novel approach for solving the
maximum-flow and minimum-cut problems which is based
on the use of pseudoflow permitting excesses and deficits.1

Source and sink nodes have no distinguished role in this
algorithm, and all arcs adjacent to source and sink in the
maximum-flow problem instance are maintained saturated
throughout the execution of the algorithm. The method
seeks a partition of the set of nodes to subsets, some of
which have excesses, and some have deficits, so that all arcs
going from excess subsets to deficit subsets are saturated.
The partition with this property is provably a minimum cut
in the graph.

The pseudoflow algorithm uses a certificate of optimal-
ity inspired by the algorithm of Lerchs and Grossmann
(1965) for the maximum-closure problem defined on a
digraph with node weights. That algorithm was devised
for the purpose of finding the optimal solution (contour)

992



Hochbaum: The Pseudoflow Algorithm: A New Algorithm for the Maximum-Flow Problem
Operations Research 56(4), pp. 992–1009, © 2008 INFORMS 993

of the open-pit mining problem. The algorithm of Lerch
and Grossmann (1965) does not work with flows but rather
with a concept of mass representing the total sum of node
weights in a given subset. It is shown here that the concept
of mass generalizes in capacitated networks to the notion of
pseudoflow. The reader interested in further investigation of
the conceptual link between our algorithm and Lerchs and
Grossmann’s algorithm is referred to Hochbaum (2001).

The pseudoflow algorithm solves, instead of the
maximum-flow problem, the maximum blocking-cut prob-
lem (Radzik 1993). The blocking-cut problem is defined
on a directed graph with arc capacities and node weights
that does not contain source and sink nodes. The objec-
tive of the blocking-cut problem is to find a subset of the
nodes that maximizes the sum of node weights, minus the
capacities of the arcs leaving the subset. This problem is
equivalent to the minimum s� t-cut problem (see §3) that is
traditionally solved by deriving a maximum flow first.

At each iteration of the pseudoflow algorithm, there is
a partition of the nodes to subsets with excesses and sub-
sets with deficits such that the total excess can only be
greater than the maximum blocking-cut value. In that sense,
the union of excess subsets forms a superoptimal solution.
The algorithm is thus interpreted as a dual algorithm for the
maximum blocking-cut problem. If there are no unsaturated
arcs between excess subsets and deficit subsets, then the
union of the excess subsets forms an optimal solution to
the maximum blocking-cut problem. A schematic descrip-
tion of the partition at an iteration of the algorithm is given
in Figure 1.

The pseudoflow algorithm works with a tree structure
called a normalized tree. This tree preserves some infor-
mation about residual paths in the graph. The normalized
tree is used as a basic arcs tree in a simplex-like variant
of the pseudoflow algorithm, described in §10. We call this
variant the pseudoflow-simplex.

A part of the investigation here is on the sensitivity anal-
ysis of the maximum-flow problem using the pseudoflow

Figure 1. A schematic description of the graph during
the execution of the pseudoflow algorithm
with a partition to subsets of nodes of
excess/deficit marked +/−, respectively.

+

+

+

+

+

+

+

+

–

–

–

–

–

+–

algorithm. The goal of sensitivity analysis, or parametric
analysis, is to find the maximum flow as a function of
a parameter when source and sink adjacent arc capacities
are monotone nondecreasing and nonincreasing functions
of the parameter, respectively. We distinguish two types of
sensitivity analysis: In simple sensitivity analysis, we are
given k parameter values for the arc capacities functions,
and the problem is to find the optimal solution for each of
these values. In complete parametric analysis, the goal is
to find all the maximum flows (or minimum cuts) for any
value of the parameter.

Martel (1989) showed that a variant of Dinic’s algorithm
can solve the simple sensitivity analysis in O�n3 + kn2�.
Gallo et al. (1989) showed that simple sensitivity analy-
sis for k = O�n� and complete parametric analysis prob-
lems for linear functions of the parameter can be solved
in the same time as a single run of the push-relabel pre-
flow algorithm, O�mn logn2/m+km logn2/m�. The simple
sensitivity analysis was subsequently improved by Gusfield
and Tardos (1994) to O�mn logn2/m+ kn logn2/m� per-
mitting the increase of the number of parameter values to
k = O�m�, while still maintaining the same complexity.
We show here that both simple sensitivity analysis for k=
O�m logn� and complete parametric analysis can be per-
formed using the pseudoflow algorithm or the pseudoflow-
simplex algorithm in the same time as a single run,
O�mn logn+ kn�. The complete parametric analysis algo-
rithm can be extended to any monotone functions, for the
pseudoflow algorithm and its variants, and also for the
push-relabel algorithm by adding O�n logU� steps, where
U is the range of the parameter (Hochbaum 2003). The
pseudoflow and the pseudoflow-simplex algorithms are thus
the only alternatives to the push-relabel algorithm known
to date that can solve the complete parametric analysis
efficiently.

The contributions here include:
(1) A new algorithm for the maximum-flow problem of

complexity, O�mn logn�. This is the first algorithm specif-
ically designed for the maximum-flow problem that makes
use of pseudoflows.

(2) A new pseudoflow-based simplex algorithm for max-
imum flow, matching the best complexity of a simplex algo-
rithm for the problem (Goldberg et al. 1991).

(3) A simple sensitivity analysis algorithm for the
maximum-flow problem on k parameter values with the
pseudoflow algorithm of complexity, O�mn logn + kn�.
The pseudoflow-simplex algorithm for simple sensitivity
analysis also runs in O�mn logn+kn� time. This improves
on the previously best-known simplex-based algorithm of
Goldfarb and Chen (1997) for simple sensitivity analysis
with complexity O�mn2 + kn�.

(4) A complete parametric analysis with the pseud-
oflow or pseudoflow-simplex algorithms generating all
breakpoints for any monotone functions of the parameter
in O�mn logn + n logU� steps and in O�mn logn� steps
for linear functions. The pseudoflow-simplex is the first



Hochbaum: The Pseudoflow Algorithm: A New Algorithm for the Maximum-Flow Problem
994 Operations Research 56(4), pp. 992–1009, © 2008 INFORMS

simplex-based algorithm that performs the complete para-
metric analysis problem in the same complexity as a single
constant capacities instance.

(5) An efficient procedure for “warm starting” the algo-
rithm when the graph arcs and capacities are modified
arbitrarily.

(6) A linear-time algorithm for maximum flow on an s,
t-tree network, which is a network with tree topology (in
the undirected sense) appended by source and sink nodes
that are connected to any subset of the nodes of the tree.
This is used as a subroutine, e.g., in solving the minimum-
cost network flow (see Vygen 2002).

This paper is organized as follows. The next section
introduces notations and relevant definitions. In §3, we dis-
cuss the relationship of the maximum blocking-cut prob-
lem to the minimum-cut problem, the maximum-flow prob-
lem, and the maximum-closure problem. Section 4 intro-
duces the normalized tree and its properties. Section 5
describes the pseudoflow algorithm and establishes its cor-
rectness as a maximum blocking-cut algorithm. In §6, the
generic pseudoflow algorithm is shown to have pseudopoly-
nomial run time, a scaling variant is shown to have poly-
nomial run time, and a labeling variant is shown to have
strongly polynomial run time. Section 7 presents several
strongly polynomial variants of the pseudoflow algorithm.
In §8, it is demonstrated how to recover from a normalized
tree a feasible flow in time O�m logn� and O�m logn +
n logU�, respectively. At optimality, the flow amount is
equal to the capacity of the cut arcs and thus we con-
clude that the pseudoflow algorithm is also a maximum-
flow algorithm. In §9, we discuss the parametric features
of the algorithm and show that simple sensitivity analy-
sis and complete parametric analysis can be implemented
in O�mn logn� for linear functions, and with an additive
factor of O�n logU� for arbitrary monotone functions. The
pseudoflow-simplex and its parametric implementation are
presented in §10. Section 11 describes an implementa-
tion of the push-relabel algorithm as a pseudoflow-based
method. The methodologies of pseudoflow, the pseudoflow-
simplex, and the push-relabel algorithms are compared and
contrasted in §12. The online appendices contain a new
algorithm for normalizing any given tree in a network in
O�m� steps. The implications for efficient warm starts, min-
imum directed cuts, and a linear-time maximum-flow algo-
rithm for s, t-tree networks are discussed in the appendices
as well. An electronic companion to this paper is available
as part of the online version that can be found at http://
or.journal.informs.org/.

2. Preliminaries and Notations
For a directed graph G = �V �A�, the number of arcs is
denoted by m= �A� and the number of nodes by n= �V �.
A graph is called an s� t-graph if its set of nodes contains
two distinguished nodes s and t.

For P�Q ⊂ V , the set of arcs going from P to Q is
denoted by �P�Q� = 	�u� v� ∈ A � u ∈ P and v ∈ Q�. The

capacity of an arc �u� v� ∈ A is a nonnegative real number
cuv, and the flow on that arc is fuv. For simplicity, we set all
lower bound capacities to zero, yet all results reported apply
also in the presence of nonzero lower bounds. A pseudoflow
f in an arc capacitated s, t-graph is a mapping that assigns
to each arc (u� v) a real value fuv so that 0� fuv � cuv.

For a given pseudoflow f in a simple s� t-graph (con-
taining at most one arc for each pair of nodes), the residual
capacity of an arc �u� v� ∈A is cfuv = cuv−fuv and the resid-
ual capacity of the backwards arc (v�u) is cfvu = fuv. An arc
or a backwards arc is said to be a residual arc if its residual
capacity is positive. So, the set of residual arcs Af is Af =
	�i� j� � fij < cij and �i� j� ∈A or fji > 0 and �j� i� ∈A�.

For P�Q⊂ V , P ∩Q=�, the capacity of the cut sepa-
rating P from Q is C�P�Q�=∑

�u� v�∈�P�Q� cuv. For a given
pseudoflow f , the total flow from a set P to a set Q is
denoted by f �P�Q�=∑

�u� v�∈�P�Q� fuv. For a given pseud-
oflow f , the total capacity of the residual cut from a set P
to a set Q is denoted by Cf �P�Q�=∑

�u� v�∈�P�Q� cfuv.
Even though the underlying graph considered is directed,

the directions of the arcs are immaterial in parts of the algo-
rithm and discussion. An arc (u� v) of an unspecified direc-
tion is referred to as edge �u� v�. So, we say that �u� v� ∈A
if either (u� v) or �v�u� ∈ A. The capacity of an edge e is
denoted by ce. The flow on an edge e is denoted by fe.

The ordered list (v1� v2� � � � � vk) denotes a directed path
from v1 to vk with �v1� v2�� � � � � �vk−1� vk� ∈ A. A directed
path is said to be a residual path if �v1� v2�� � � � � �vk−1� vk� ∈
Af . An undirected path from v1 to vk is denoted by
�v1� v2� � � � � vk� with �v1� v2�� � � � � �vk−1� vk� ∈A.

An s� t-graph is called a closure graph if the only arcs
of finite capacities are those adjacent to the source and
sink nodes.

A rooted tree is a collection of arcs that forms an undi-
rected acyclic connected graph T with one node designated
as a root. A rooted tree is customarily depicted with the root
above and the tree nodes suspended from it below. A node
u is called an ancestor of node v if the (unique) path from
v to the root contains u. All nodes that have node u as an
ancestor are called the descendants of node u. Tv denotes
the subtree suspended from node v that contains v and all
the descendants of v in T . T�v�p�v�� = Tv is the subtree sus-
pended from the edge �v�p�v��. The parent of a node v,
denoted by p�v�, is the unique node that follows v on the
path from v to the root of the tree. All nodes that have node
v as a parent are the immediate descendants of v and are
called children of v. A child of v is denoted by ch�v�. We
will occasionally refer to the nodes or the arcs of a tree T
as the set T whenever there is no risk of ambiguity.

We introduce three related equivalent representations of
a graph: G, Gst , and Gext.

(1) The directed graph G = �V �A� has real node
weights wi for i ∈ V and (positive) arc capacities cij for
�i� j� ∈A.

(2) The graph Gst = �Vst�Ast� is an s� t-graph with
only arc capacities. It is constructed from the graph G as



Hochbaum: The Pseudoflow Algorithm: A New Algorithm for the Maximum-Flow Problem
Operations Research 56(4), pp. 992–1009, © 2008 INFORMS 995

follows: The set of nodes is Vst = V ∪ 	s� t�, and the set
of arcs Ast comprises of the arcs of A appended by sets
of arcs adjacent to s and t, A�s�, and A�t�. The arcs of
A�s�= 	�s� j� � wj > 0� connect s to all nodes of positive
weight, each of capacity equal to the weight of the respec-
tive node, csj = wj . Analogously, A�t� = 	�j� t� � wj < 0�
and cjt =−wj = �wj � for �j� t� ∈ A�t�. Zero weight nodes
are connected neither to the source nor to the sink. Thus,
Gst = �Vst�Ast�= �V ∪ 	s� t��A∪A�s�∪A�t��.

The inverse map from a graph Gst to a graph G is
as follows: A node weighted graph G = �V �A� is con-
structed by assigning to every node v adjacent to s a weight
wv = csv, and every node u adjacent to t is assigned a
weight wu =−cut . Nodes that are adjacent neither to the
source nor to the sink are assigned the weight zero. For a
node v adjacent to both s and t in Gst , the lower capacity
arc among the two of value $= min	csv� cvt� is removed,
and the value $ is subtracted from the other arc’s capac-
ity. Therefore, each node can be assumed to be adjacent
to either source or sink or to neither. The source and sink
nodes are then removed from Vst .

(3) The extended network, Gext, corresponds to an s,
t-graph Gst by adding to Ast , for each node v, two arcs
of infinite capacity—(t� v) and (v� s)—and then shrinking
s and t into a single node r called root. We refer to
the appended arcs from sink t as the deficit arcs and the
appended arcs to the source s as the excess arcs and denote
them by A
 = ⋃

v∈V 	�v� r� ∪ �r� v��. Figure 2 provides a
schematic description of such a network. The extended net-
work is the graph Gext = �V ∪ 	r��Aext�, where Aext = A∪
A�s�∪A�t�∪A
.

The maximum-flow problem is defined on a directed s,
t-graph, Gst = �Vs� t�Ast�. An arc of infinite capacity is
added from sink to source (t� s) to turn the problem into
a circulation problem. The standard formulation of the
maximum-flow problem with variable fij indicating the
amount of flow on arc (i� j) is

Max fts

subject to
∑
i

fki −
∑
j

fjk = 0 ∀k ∈ Vs� t�

0� fij � cij ∀ �i� j� ∈Ast�

Figure 2. An extended network prior to shrinking
source and sink into r .

ts V

Excess arc Deficit arc

ν
∞ ∞

The objective function value, which is also the total flow
leaving the source (or arriving at the sink) is denoted by
�f �. In this formulation, the first set of (equality) constraints
is called the flow-balance constraints. The second set of
(inequality) constraints is called the capacity constraints.
A “preflow” violates the flow-balance constraints in one
direction permitting nonnegative excess

∑
i fki−

∑
j fjk � 0.

A “pseudoflow” may violate the flow-balance constraints in
both directions. Capacity constraints are satisfied by both
preflow and pseudoflow.

Claim 2.1. For any pseudoflow in Gst , there is a corre-
sponding feasible flow on the graph Gext.

Proof. The feasible flow is constructed by sending the
excess or deficit of each node v back to node r via the
excess arc (v� r) or the deficit arc (r� v). �

Let f be a pseudoflow vector in Gst with 0 � fij � cij
and let inflow�D�, outflow�D� be the total amount of flow
incoming and outgoing to and from the set of nodes D. For
each subset of nodes, D ⊆ V , the excess of D is the net
inflow into D,

excess�D�= inflow�D�− outflow�D�

= ∑
�u� v�∈�V∪	s�\D�D�

fuv −
∑

�v�u�∈�D�V∪	t�\D�

fvu�

The excess of a singleton node v is excess�v�. A
negative-valued excess is called deficit, with deficit�D� =
−excess�D�.

For S ⊆ V , we let the complement of S be �S = V \S. The
complement sets used here are only with respect to V , even
for the graphs Gst and Gext.

Next, we introduce the maximum blocking-cut problem
and the concept of surplus of a set.

Problem Name: Maximum blocking-cut.
Instance: Given a directed graph G = �V �A�, node

weights �positive or negative� wi for all i ∈ V , and nonneg-
ative arc weights cij for all �i� j� ∈A.
Optimization Problem: Find a subset of nodes S ⊆ V

such that

surplus�S�=∑
i∈S

wi −
∑

i∈S� j∈�S
cij is maximum�

The notion of surplus of a set of nodes in G has related
definitions in the graphs Gst and Gext.

Definition 2.1. The surplus of S ⊆ V in the graph G is∑
j∈S wj −

∑
i∈S� j∈�S cij . The surplus of S ⊆ V in the graph

Gst is C�	s�� S� − C�S� �S ∪ 	t��. The surplus of S ⊆ V
in the graph Gext is

∑
j∈S� �r� j�∈A�s� crj −

∑
j∈S� �j� r�∈A�t� cjr −∑

�i� j�∈�S� �S� cij .

These definitions of surplus in the corresponding
graphs Gext, Gst , and G are equivalent: in Gext and Gst , the
definitions are obviously the same because the capacity of



Hochbaum: The Pseudoflow Algorithm: A New Algorithm for the Maximum-Flow Problem
996 Operations Research 56(4), pp. 992–1009, © 2008 INFORMS

the arcs in A�s� with endpoints in S is C�	s�� S�, the capac-
ity of the arcs in A�t� with endpoints in S is C�S� 	t��, and
C�S� �S∪	t��=C�S� 	t��+C�S� �S�. To see the equivalence
in Gst and G, observe that the sum of weights of nodes
in S is also the sum of capacities C�	s�� S� − C�S� 	t��,
where the first term corresponds to positive weights in S,
and the second term to negative weights in S. Therefore,

∑
j∈S

wj −
∑

i∈S� j∈�S
cij =C�	s�� S�−C�S� 	t��−C�S� �S�

=C�	s�� S�−C�S� �S ∪ 	t���

The expression on the left-hand side is the surplus of S
in G, whereas the expression on the right-hand side is the
surplus of S in Gst .

3. The Maximum-Flow and the Maximum
Blocking-Cut Problems

The blocking-cut problem is closely related to the
maximum-flow and minimum-cut problems as shown next.
This relationship was previously noted by Radzik (1993).

Lemma 3.1. For S ⊆ V , 	s�∪S is the source set of a mini-
mum cut in Gst if and only if �S� �S� is a maximum blocking
cut in the graph G.

Proof. We rewrite the objective function in the maximum
blocking-cut problem for the equivalent graph Gst:

max
S⊆V

�C�	s�� S�−C�S� �S ∪ 	t���

=max
S⊆V

�C�	s��V �−C�	s�� �S�−C�S� �S ∪ 	t���

=C�	s��V �−min
S⊆V

�C�	s�� �S�+C�S� �S ∪ 	t����

In the last expression, the term C�	s��V � is a constant from
which the minimum-cut value is subtracted. Thus, the set S
maximizing the surplus is also the source set of a minimum
cut and, vice versa—the source set of a minimum cut also
maximizes the surplus. �

We note that the blocking-cut problem has appeared
in several forms in the literature. The Boolean quadratic
minimization problem with all the quadratic terms having
positive coefficients is a restatement of the blocking-cut
problem.2 More closely related is the feasibility condition
of Gale (1957) for a network with supplies and demands,
or of Hoffman (1960) for a network with lower and upper
bounds. Verifying feasibility is equivalent to ensuring that
the maximum blocking cut is zero in a graph with node
weights equal to the respective supplies and demands with
opposite signs. If the maximum blocking cut is positive,
then there is no feasible flow satisfying the supply and
demand balance requirements. The names maximum block-
ing cut or maximum surplus cut were used for the problem
by Radzik (1993).

3.1. The Blocking-Cut Problem and the
Maximum-Closure Problem

The pseudoflow algorithm is a generalization of the
algorithm solving the maximum-closure problem in clo-
sure graphs, described in Hochbaum (2001). Indeed, the
blocking-cut problem generalizes the closure problem. The
maximum-closure problem is to find in a node weighted
directed graph a maximum weight subset of nodes that
forms a closed set, i.e., a set of nodes that contains all
successors of each node in the closed set. Picard (1976)
demonstrates how to formulate the maximum-closure prob-
lem on a graph G = �V �A� as a flow problem on the
respective Gst graph: All arc capacities in A are set to infin-
ity, a source node s and a sink node t are added to V
and arcs A�s� and A�t� are appended as in the description
of how to derive Gst from G( A�s� contains arcs from s
to all nodes of positive weight with capacity equal to that
weight, and A�t� contains arcs from all nodes of negative
weights to t with capacities equal to the absolute value of
the weight. In Gst , any finite cut C�S� �S ∪ 	t�� must have
�S� �S�=�. This implies that for such a finite cut, the set S
is closed. It follows that C�S� �S∪	t�� is equal to C�S� 	t��,
and thus Lemma 3.1 demonstrates that the source set of a
minimum cut is also a maximum weight closed set.

The blocking-cut problem generalizes the maximum clo-
sure problem by relaxing the closure requirement: Nodes
that are successors of nodes in S, i.e., nodes that are the
head of arcs with tails in nodes of S, may be excluded
from the set S, but at a penalty equal to the capacity of the
respective arcs.

From Lemma 3.1, we conclude that any maximum-flow
or minimum-cut algorithm solves the maximum blocking-
cut problem: The source set of a minimum cut is a max-
imum surplus set. The pseudoflow algorithm works in a
reverse direction by solving the maximum blocking-cut
problem first, which provides a minimum cut, and then
recovering a maximum flow.

4. A Normalized Tree
The pseudoflow algorithm maintains a construction called
a normalized tree after the use of this term by Lerchs and
Grossmann (1965). A normalized tree T = �V ∪ 	r��ET �
is defined on a spanning tree in Gext rooted in r so that
ET ⊆ A ∪⋃

v∈V 	�v� r� ∪ �r� v��. The children of r in such
a spanning tree are denoted by ri, and called the roots of
their respective branches (also referred to as trees or sub-
trees). In a normalized tree, only the branch roots ri are
permitted to carry nonzero deficits or excesses. For a given
pseudoflow f , a branch Tri is called strong if excess�Tri �=
excess�ri� = fri� r > 0, and weak otherwise. All nodes of
strong branches are considered strong, and all nodes of
weak branches are considered weak. Branches with zero
excess are called zero-deficit branches, and are considered
to be weak.



Hochbaum: The Pseudoflow Algorithm: A New Algorithm for the Maximum-Flow Problem
Operations Research 56(4), pp. 992–1009, © 2008 INFORMS 997

The tree T induces a forest of all the branches in G=
�V �A� formed by the set of arcs ET ∩A. The arcs in the
set ET ∩ A are called in-tree arcs, and the arcs in the set
A\ET are called out-of-tree arcs.

Recall that the root is placed at the top of the tree, so
that the reference to the downwards direction is equivalent
to “pointing away from the root,” and the upwards direction
is equivalent to “pointing toward the root.” The topology
of a normalized tree with three branches is illustrated in
Figure 3. The branch rooted at r1 is strong because the
amount of excess of the branch Tr1 (and of r1) is positive.
Branch Tr3 has nonpositive excess and is thus considered
weak.

Definition 4.1. A spanning tree T in Gext with a pseud-
oflow f in Gst is called normalized if it satisfies Proper-
ties 1, 2, 3, and 4.

Property 1. The pseudoflow f saturates all source-adja-
cent arcs and all sink-adjacent arcs A�s�∪A�t�.

Property 2. The pseudoflow f on out-of-tree arcs is equal
to the lower or the upper bound capacities of the arcs.

Property 3. In every branch, all downwards residual
capacities are strictly positive.

Property 4. The only nodes that do not satisfy flow-
balance constraints in Gst are the roots of their respective
branches.

Property 4 means that for T to be a normalized tree, the
arcs connecting the roots of the branches to r in Gext are
the only excess and deficit arcs permitted. It also means
that the excess of a branch is equal to the excess of its root,
excess�Tri �= excess�ri�.

It is shown next that a crucial property—the superopti-
mality property—is satisfied by any normalized tree and is
thus a corollary of Properties 1, 2, 3, and 4.

Figure 3. A schematic description of a normalized tree.

s  = r =   t

Excess ≤ 0Excess > 0

Deficit arc

WeakStrong

r1 r2 r3

Note. Each ri is a root of a branch.

Property 5 (Superoptimality). The set of strong nodes
of a normalized tree T is a superoptimal solution to
the blocking-cut problem. That is, the sum of excesses of
the strong branches is an upper bound on the maximum
surplus.

Proof. To establish the superoptimality property, we first
prove two lemmata. Recall that for a pseudoflow f and any
D⊆ V , the capacity of the residual cut from D to �D= V \D
is Cf �D� �D�=∑

�i� j�∈A∩�D� �D��cij − fij �+
∑

�j� i�∈A∩� �D�D� fji.

Lemma 4.1. For a pseudoflow f saturating A�s� ∪ A�t�,
surplus�D�= excess�D�−Cf �D� �D�.

Proof.

excess�D�=C�	s��D�−C�D� 	t��+ f � �D�D�− f �D� �D�

=C�	s��D�−C�D� 	t��+ f � �D�D�

−
(
C�D� �D�− ∑

�i� j�∈A∩�D� �D�

c
f
ij

)

=C�	s��D�−C�D�	t��−C�D� �D�+Cf �D� �D�

= surplus�D�+Cf �D� �D�� �

Definition 4.2. For a pseudoflow f saturating A�s� ∪
A�t� and a normalized tree T , we define surplusT �D� =
excess�D�−Cf ��D� �D�∩ T �.

From this definition and Lemma 4.1, it follows that
excess�D� � surplusT �D� � surplus�D�. All three terms
are equal when Cf �D� �D� = 0, which happens when
f � �D�D�= 0 and f �D� �D�=C�D� �D�.

Lemma 4.2. For a normalized tree T with pseudoflow f ,
strong nodes S and weak nodes �S, maxD⊆V surplus

T �D�=
surplusT �S�.

Proof. The maximum of excess�D� is attained for a set of
nodes D∗ that contains all the nodes of positive excess—
the roots of the strong branches—and excludes all nodes of
negative excess—the roots of weak branches. Recall that
all nonroot nodes have zero excess.

Suppose that for a strong branch B ⊆ S, only a proper
subset B1 ⊂ B is contained in D∗, where B1 contains
the root of the branch. Then, the set of residual arcs
in �B1� �B1� ∩ T is nonempty due to Property 3, and
surplus�B1� � surplus�B�. Thus, B maximizes the value
surplusT �D� for any D ⊆ B. Similarly, including any sub-
set of a weak branch that does not include the weak root
cannot increase the value of surplusT �D∗�. Therefore, the
maximum is attained for the set of all strong nodes S. �

In particular, observing that �S� �S� ∩ T = �, it fol-
lows that

excess�S�=max
D⊆V

surplusT �D��max
D⊆V

surplus�D��

Thus, the excess of the strong nodes S is an upper bound
on the value of the optimal solution to the blocking-cut
problem, and the superoptimality is proved. �



Hochbaum: The Pseudoflow Algorithm: A New Algorithm for the Maximum-Flow Problem
998 Operations Research 56(4), pp. 992–1009, © 2008 INFORMS

When the residual capacity of arcs in (S� �S) is zero,
then excess�S� = surplusT �S� = surplus�S�. With this and
Lemma 4.2, we have:

Corollary 4.1 (Optimality Condition). For a normal-
ized tree T with a pseudoflow f saturating A�s� and A�t�
and a set of strong nodes S, if Cf �S� �S� = 0, then S is a
maximum surplus set in the graph and �S� �S� is a maximum
blocking cut.

Definition 4.3. A normalized tree with pseudoflow f is
optimal if for the set of strong nodes S in the tree �S� �S�∩
Af =�.

Corollary 4.2 (Minimality). If S is the set of strong
nodes for an optimal normalized tree, then it is a minimal
maximum surplus set in the graph.

Proof. From the proof of Lemma 4.2, the maximum sur-
plus set contains all strong nodes. Therefore, a set strictly
contained in S cannot be a maximum surplus set. �

5. The Description of the Generic
Pseudoflow Algorithm

The algorithm begins with a normalized tree and an asso-
ciated pseudoflow saturating source and sink adjacent arcs
in Gst . An iteration of the algorithm consists of seeking a
residual arc from a strong node to a weak node—a merger
arc. If such an arc does not exist, the normalized tree is
optimal. Otherwise, the selected merger arc is appended
to the tree, the excess arc of the strong merger branch is
removed, and the strong branch is merged with the weak
branch. The entire excess of the respective strong branch
is then pushed along the unique path from the root of the
strong branch to the root of the weak branch. Any arc
encountered along this path that does not have sufficient
residual capacity to accommodate the amount pushed is
split and the tail node of that arc becomes a root of a new
strong branch with excess equal to the difference between
the amount pushed and the residual capacity. The process
of pushing excess and splitting is called normalization. The
residual capacity of the split arc is pushed further until it
either reaches another arc to split or the deficit arc adjacent
to the root of the weak branch.

To initialize the algorithm, we need a normalized tree.
One normalized tree, called a simple normalized tree, cor-
responds to a pseudoflow in Gst saturating all arcs A�s�
and A�t� and zero on all other arcs. In a simple normalized
tree, each node is a singleton branch for which the node
serves as a root as in Figure 4. Thus, all nodes adjacent
to source are strong nodes, and all those adjacent to sink
are weak nodes. All the remaining nodes have zero inflow
and outflow, and are thus of zero deficit and set as weak.
The following procedure outputs a simple normalized
tree.

Figure 4. A simple normalized tree where N�s�/N�t�
are the nodes adjacent to s/t, respectively.

s  =

N(s)

j k i

N(t)

r =   t
Excess( j ) = csj Deficit (i ) = cit

Excess = 0

WeakStrong

procedure Initialize 	Gst�
S =W =�.
begin
∀ �i� j� ∈A, fij = 0.
∀ �s� j� ∈A�s�, fsj = csj ; rj = j; excess�rj�= frj � r = csj ;
S← S ∪ 	j�.

∀ �j� t� ∈A�t�, fjt = cjt; rj = j; excess�rj�=−fr� rj =−cjt;
W ←W ∪ 	j�.

∀ j ∈ V \	S ∪W�; W ←W ∪ 	j�; rj = j;
excess�rj�= fr� rj = 0.

Output T =⋃
j∈V �r� rj �� S�W .

end

Another type of normalized tree, the saturate-all tree,
is generated by a pseudoflow saturating all arcs in the
graph Gst . Here, the branches are also singletons, and the
strong nodes are those that have incoming capacity greater
than outgoing capacity. Other types of initial normalized
trees are described in Anderson and Hochbaum (2002).

We first present the generic version of the pseudoflow
algorithm which does not specify which merger arc to
select. We later elaborate on selection rules for a merger
arc that lead to more efficient variants of the algorithm.

The input parameters to procedure pseudoflow consist
of a pseudoflow f in Gst saturating A�s�∪A�t�, a normal-
ized tree T associated with f , and the respective sets of
strong and weak nodes, S and W . As before, Af is the set
of residual arcs in A with respect to f .

procedure pseudoflow 	Gst� f � T � S�W�
begin
while �S�W�∩Af �= � do

Select �s′�w� ∈ �S�W�;
Let rs′ , rw be the roots of the branches containing s′

and w, respectively.
Let $= excess�rs′�= frs′ � r ;
Merge T ← T \�r� rs′ �∪ �s′�w�;
Renormalize {Push $ units of flow along the path
�rs′ � � � � � s

′�w� � � � � rw� r�:}
i= 1;
Until vi+1 = r ;

Let �vi� vi+1� be the ith edge on the path;



Hochbaum: The Pseudoflow Algorithm: A New Algorithm for the Maximum-Flow Problem
Operations Research 56(4), pp. 992–1009, © 2008 INFORMS 999

{Push flow} If cfvi� vi+1
� $ augment flow by $,

fvi� vi+1
← fvi� vi+1

+ $;
Else, split {�vi� vi+1�� $− cfvi� vi+1

};
Set $← cfvi� vi+1

;
Set fvi� vi+1

← cvi� vi+1
;

i← i+ 1
end

end
end

procedure split 	�a� b��M�
T ← T \�a� b�∪ �a� r�; excess�a�= far =M ;

{a is a root of a strong branch}
Af ←Af ∪ 	�b�a��\	�a� b��;
end

An illustration of the steps at one iteration is given in
Figure 5. The merger arc is (s�w). In Figure 5(a), the
weak and strong merger branches, Trw and Trs , are shown.
The subtrees Tw and Ts are contained in those branches.
Figure 5(b) shows the inversion of the path �rs� � � � � s� in
the strong branch that follows a merger. Edges e1 and e2 are
the only blocking edges found in the normalization process,
and the new partition following the split of those edges
is shown in Figure 5(c). The incoming flow into b is the
excess frs� r and the incoming flow into d is the amount that
got through (b�a), cfba.

The correctness of the generic algorithm follows first
from Lemma 6.1, shown in §6, proving that the algorithm
terminates. Second, at each iteration the excess is pushed
and arcs split so that the resulting tree is normalized and
all nonroot nodes satisfy flow-balance constraints in Gst .
The algorithm thus terminates with a normalized tree and
no residual arc between strong and weak nodes. This is the
certificate of optimality given in Corollary 4.1. Therefore,
at termination the set of strong nodes is the source set of a
minimum-cut and a maximum-surplus set.

Figure 5. The merger arc is (s�w); rs and rw are the roots of the strong and weak branches respectively; e1 = �b�a� is
the first split arc on the merger path; e2 = �d� e� is the second split arc. (a) Merger arc identified. (b) Inverting
the strong branch. (c) After renormalization.

Trs
Trw

Trw

Tw Ts

rs

sw

rw

r

WS

rs

Tw
s

r

rw

w

Ts

c

a

bd

(a) (b) (c)

rs

Tw

s

r

rw

w

Ts
Trs

a

b

c

d

e1

e2

6. The Complexity of the Pseudoflow
Algorithm

6.1. The Pseudopolynomiality of the Generic
Algorithm

The next lemma demonstrates that for integer capacities,
the generic algorithm is finite.

Lemma 6.1. At each iteration, either the total excess of the
strong nodes is strictly reduced, or at least one weak node
becomes strong.

Proof. Because downwards residual capacities are posi-
tive, a positive portion of the excess pushed arrives at the
weak branch. Then, either a positive amount of excess
arrives at rw, or some upwards arc (u�p�u�) in the weak
branch has zero residual capacity. In the first case, a posi-
tive amount of excess arrives at node rw and the total excess
is strictly reduced. In the latter case, there is no change in
excess but the nodes of the subtree T�u�p�u�� that include the
head of the merger arc, w, become strong. �

Let M+ =C�	s��V � be the sum of arc capacities in A�s�
and M− = C�V � 	t�� be the sum of arc capacities in A�t�.
These quantities are the total excess of the strong nodes
and the total deficit of the weak nodes in the initial simple
normalized tree. From Lemma 6.1, it follows that two con-
secutive reductions in total excess may be separated by at
most n mergers because each merger that is not associated
with a strict reduction in excess must result in a decrease
in the number of weak nodes. Thus, we have for integer
capacities:

Corollary 6.1. The complexity of the algorithm is
O�nM+� iterations.

The complexity expression in Corollary 6.1 depends on
the total sum of excesses in the initial tree. It is thus



Hochbaum: The Pseudoflow Algorithm: A New Algorithm for the Maximum-Flow Problem
1000 Operations Research 56(4), pp. 992–1009, © 2008 INFORMS

possible to take advantage of the symmetry of source and
sink and solve the problem on the reverse graph—reversing
all arcs and the roles of source and sink—resulting in
O�nM−� iterations. Therefore, the total number of itera-
tions is O�nmin	M+�M−��.

Corollary 6.2. The complexity of the algorithm is
O�nmin	M+�M−�� iterations.

It is important to note that even though the algorithm ter-
minates when total excess is zero, this is only a sufficient
condition for termination, not a necessary condition. At ter-
mination, both excess and deficit may be positive, as long
as the cut arcs (S�W ) are all saturated. This observation
leads to another corollary.

A procedure for feasible flow recovery is given in §8.
The feasible flow recovered in Gst has the flow on all
out-of-tree arcs unchanged. In particular, for an optimal
normalized tree, the flow saturates all arcs in (S�W ) and
(S�W ) is a minimum cut. We conclude that for optimum
minimum-cut value C�S�W�=C∗, the remaining excess at
termination is M+ − C∗. We then get a somewhat tighter
complexity expression,

Corollary 6.3. Let the minimum-cut capacity be C∗.
Then, the complexity of the algorithm is O�nC∗� iterations.

6.2. A Scaling Polynomial-Time Improvement

Using a standard technique for scaling integer arc capaci-
ties, the running time of the algorithm becomes polynomial.
This works as follows: Let P = �log2�max�i� j�∈Ast

	cij���−1.
Then, at each scaling iteration p�p= P�P−1� � � � �1�0, the
problem is solved with arc capacities, c̄ij = c̄ij ←�cij/2p�
for all �i� j� ∈ Ast . At the next iteration, the value of p is
reduced by one, thus adding one more significant bit to the
value of the capacities.

Now between two consecutive scaling iterations, the
value of the residual cut is increased by at most m scal-
ing units. This is because the residual cut capacity at the
end of the previous scaling iteration is zero, and when the
additional bit is added to the capacities of at most m arcs,
the value of the minimum cut in the graph is bounded by
this residual cut. With Corollary 6.3, this implies a running
time of O�mn� iterations per scaling step. Because there
are O�log�min	M+�M−��� scaling steps, we have

Corollary 6.4. The complexity of the scaling pseudoflow
algorithm is O�mn logmin	M+�M−�� iterations.

6.3. A Strongly Polynomial Labeling Scheme

We describe here a labeling scheme for the pseudoflow
algorithm, and show that it satisfies four invariants. The
pseudoflow algorithm satisfying these invariants is shown
to have complexity of O�mn logn�, which is strongly
polynomial.

In this section, a merger arc (s�w) has node s (which is
unrelated to the source node), the strong endpoint of the

merger arc, called the strong merger node, and w, called
the weak merger node.

Our labeling scheme is similar, but not identical, to the
distance labeling used in Goldberg and Tarjan (1988). The
basic labeling scheme restricts the selection of a merger
arc (s�w) so that w is a lowest label weak node among all
possible residual arcs in (S�W ).

Initially, all nodes are assigned the label 1, lv = 1
∀v ∈ V . After a merger iteration involving the merger
arc (s�w), the label of all strong nodes including the
strong merger node s can only increase to the label of w
plus 1. Formally, the statement Select �s�w� ∈ �S�W� is
replaced by

Select �s�w� ∈ �S�W�, so that lw =min�u� v�∈�S�W� lv;
{relabel} ∀v ∈ S, lv ←max	lv� lw + 1�.

The labels satisfy the following invariants throughout the
execution of the algorithm:

Invariant 1. For every arc �u� v� ∈Af , lu � lv + 1.

Invariant 2 (Monotonicity). Labels of nodes on any
downwards path in a branch are nondecreasing.

Invariant 3. The labels of all nodes are lower bounds
on their distance to the sink. Furthermore, the difference
between the labels of any pair of nodes u and v, lu − lv, is
a lower bound on the shortest residual path distance from
u to v.

Invariant 4. Labels of nodes are nondecreasing over the
execution of the algorithm.

We now prove the validity of the invariants:

Proof of Invariant 1. Assume by induction that the
invariant holds through iteration k, and prove that it holds
through iteration k+ 1 as well. Obviously, the invariant is
satisfied at the outset, when all labels are equal to one.
Consider a residual arc (u� v) after the relabeling at iter-
ation k + 1 and let arc (s�w) be the merger arc in that
iteration. Let lu, lv be the labels prior to the relabeling in
iteration k+1, and l′u, l

′
v be the labels after the relabeling is

complete. There are four different cases corresponding to
the status of the nodes at the beginning of iteration k+ 1.
u strong, v weak: At iteration k + 1, only the label of

node u can change because weak nodes are not relabeled.
The lowest label choice of w implies that lv � lw, and there-
fore l′u =max	lu� lw + 1�� lv + 1= l′v + 1.
u strong, v strong: Here, the inequality can potentially

be violated only when the label of u goes up and the label
of v does not. Suppose that the label of u has increased.
Then, l′u = lw + 1. If the label of v has not likewise
increased, then lv � lw + 1 and l′v = lv � lw + 1= l′u, so the
inequality is satisfied.
u weak, v strong: Only the label of v can change, and

then only upwards.
u weak, v weak: Weak nodes do not get relabeled, so,

by induction, the inequality is still satisfied at the end of
iteration k+ 1. �



Hochbaum: The Pseudoflow Algorithm: A New Algorithm for the Maximum-Flow Problem
Operations Research 56(4), pp. 992–1009, © 2008 INFORMS 1001

Proof of Invariant 2. Assume, by induction, that mono-
tonicity is satisfied through iteration k. The operations that
might affect monotonicity at iteration k+ 1 are relabeling,
merging, and splitting of branches. As a result of relabel-
ing, the nodes on the strong section of the merger path
�rs� � � � � s� are all labeled with the label lw + 1 because
previously all the labels of these nodes were �ls by the
inductive assumption of monotonicity. After merging and
inverting the strong branch, that path has the roles of par-
ents and children reversed along the path. But because the
nodes along the strong section of the path all have the same
labels, the monotonicity still holds. Monotonicity also holds
for all subtrees that are suspended from the merger path
nodes because the parent/child relationship is not modified
there, and all labels � lw + 1. �

Proof of Invariant 3. This is a corollary of Invariant 1.
Along a residual path, labels increase by at most one unit
for each arc on the path. Therefore, the difference between
the labels of the endpoints is less than or equal to the dis-
tance between them along any residual path. Formally, for
a residual path on k nodes (v1� v2� � � � � vk), we have

lv1
� lv2

+ 1� · · ·� lvk + k− 1�

Therefore, lv1
− lvk � k− 1. �

Invariant 4 is obviously satisfied because relabeling can
only increase labels.

Lemma 6.2. Between two consecutive mergers using
merger arc �s�w�, the labels of s and w must increase by
at least one unit each.

Proof. Let the label of w be lw = L during the first merger
using (s�w). After the merger’s relabeling, ls � L+1. Prior
to (s�w) serving again as a merger arc, flow must be pushed
back on (w� s) so that (s�w) may become an out-of-tree
residual arc. This can happen if
• w is above s in a strong branch and the strong merger

node is either s or a descendant of s. After such a merger,
the label of w must satisfy lw = ls � L+ 1. Or,
• (w� s) serves as a merger arc. But then w is relabeled

to be at least ls + 1 and lw � ls + 1� L+ 2.
In either case, lw � ls � L+ 1.
Upon repeated use of (s�w) as a merger arc, ls � lw+1�

L+2. Thus, the labels of s and w must increase by at least
one each between the consecutive mergers. �

Invariants 3 and 4 imply that no label can exceed n
because a label of a node increases only if there is a resid-
ual path from the node to a weak root. It follows that each
arc can serve as merger arc at most n−1 times throughout
the algorithm.

Corollary 6.5. The labeling pseudoflow algorithm exe-
cutes at most O�mn� mergers.

We now bound the number of edge splits throughout the
algorithm.

Corollary 6.6. There are at most O�mn� calls to pro-
cedure split throughout the execution of the pseudoflow
algorithm.

Proof. At any iteration, there are at most n branches
because there are only n nodes in the graph. Each call to
split creates an additional branch. The number of branches
after a merger can:
• Increase, when there are at least two splits.
• Remain unchanged, when there is exactly one split.
• Decrease by one when there is no edge split. In this

case, all the strong nodes in the branch containing the
strong merger node become weak.

Because there are only O�mn� iterations, the total accu-
mulated decrease in the number of branches can be at most
O�mn� throughout the algorithm. Therefore, there can be
at most O�mn+ n� edge splits. �

6.3.1. Data Structures. We maintain a set of n buck-
ets, where bucket k, Bk contains all the k-labeled branch
roots. The buckets are updated in the following cases:

(1) There is a merger and the root of the strong branch
no longer serves as root. Here, this root is removed from
its bucket.

(2) A root is relabeled, and then moved to another,
higher label bucket.

(3) A split operation creates a new root node. Here, the
new root node is inserted into the bucket of its label.

The number of bucket updates is thus dominated by the
complexity of the number of mergers and the number of
edge splits O�mn�.

For the tree operations, we use the data structure called
dynamic trees devised by Sleator and Tarjan (1983, 1985).
Dynamic trees is a data structure that manages a collection
of node disjoint trees. Among the operations enabled by
the dynamic trees data structure are:
findroot�v�—find the root of the tree that v belongs to.
findmin�v�—find the minimum key value on the path

from v to the root of its tree.
addcost(v�$)—add the value $ to the keys of all nodes

on the path from v to the root of its tree.
invert(v)—invert the tree that v belongs to so it is rooted

at v instead of at findroot�v�.
merge(u� v)—link a tree rooted at u with node v of

another tree so that v becomes the parent of u.
split(u�p�u�)—split the tree that u and p�u� belong to

so that the descendants of u form a separate tree Tu.
All these operations, and several others, can be per-

formed in time O�logn� per operation (either in amortized
time or in worst case depending on the version of dynamic
trees implemented; see Sleator and Tarjan 1983, 1985). The
only operation required for the pseudoflow algorithm which
is not directly available is the operation of finding the next
edge along the merger path that has residual capacity less
than the amount of excess $. We call the operation that
finds the first arc on the path from v to the root of the
tree with residual capacity less than $, FIND-FIRST(v�$).



Hochbaum: The Pseudoflow Algorithm: A New Algorithm for the Maximum-Flow Problem
1002 Operations Research 56(4), pp. 992–1009, © 2008 INFORMS

We note that FIND-FIRST can be implemented as a minor
modification of findmin(v), and in the same complexity as
findmin(v), O�logn�.

Lemma 6.3. The complexity of the labeling pseudoflow
algorithm is O�mn logn�.

Proof. The number of merger iterations is at most O�mn�
and the number of splits is O�mn�. Each iteration requires:

(1) Identifying a merger arc (s�w), if one exists, with w
of lowest label.

(2) Inverting and merging trees.
(3) Updating residual capacities along the merger path.
(4) Finding the next split edge on the merger path.
For operation (1), a merger arc can be identified effi-

ciently using several possible data structures. We show, in
the next section, that in all the labeling variants the search
for a merger arc initiates at a strong node of a specific
label. It is then established that scanning all arcs adjacent
to all strong nodes of label l requires only O�m� opera-
tions. This results in O�mn� steps to identify all merger
arcs throughout the algorithm, or O�1� steps on average per
merger arc.

Operations (2) and (3) use dynamic trees, and opera-
tion (4) is the FIND-FIRST operation. The complexity of
each of these operations is O�logn�. The total complexity
is therefore O�mn logn�. �

7. Strongly Polynomial Variants

7.1. The Lowest Label Variant

Under the lowest label variant, the selection rule depends
on the labels of strong nodes. The merger arc is selected
between a lowest label strong node of label l and a node
of label l− 1:

Select �s�w� ∈Af for s ∈ S satisfying ls =minv∈S lv
and lw = ls − 1;

{relabel} If no such arc exists and ∀ ch�s�,
lch�s� � ls + 1, relabel ls ← ls + 1.

Because s is of lowest label among the strong nodes, the
node labeled l − 1 is necessarily weak. The relabel is an
increase of the label of a single strong node by one unit
when it has no neighbor of lower label and all its children
in the strong branch have larger labels.

Lemma 7.1. Invariants 1, 2, 3, and 4 hold for the lowest
label variant.

Proof. Invariant 1 holds because the relabel of u occurs
only when for all residual arcs, (u� v) lu < lv + 1. After
increasing the label of u by one unit, the invariant inequal-
ity still holds.

The relabel operation satisfies the monotonicity invariant,
Invariant 2, by construction. Invariant 3 is satisfied because
it is a corollary of Invariant 1, and Invariant 4 is satisfied
by construction. �

The search for a merger arc is implemented efficiently
utilizing the monotonicity property. The strong nodes are
scanned in depth-first-search (DFS) order starting from a
lowest label root of a strong branch. Such a root node is
found easily in the lowest label nonempty bucket. Each
backtrack in the strong branch is associated with a relabel
of the corresponding node. For each node, we maintain a
neighbor-pointer to the last scanned neighbor in the adja-
cency list since the last relabel. When a node is relabeled,
this pointer is reset to the start position. A node that has
its pointer at the end position and has had all its neighbors
scanned for a potential merger is a candidate for relabeling.

Maintaining the status of out-of-tree arcs is easy as an arc
changes its status either in a merger, when the merger
arc becomes an in-tree arc; or in a split, when an in-tree
arc becomes out-of-tree. Either one of these cases happens
only O�mn� times throughout the algorithm and the update
of status for each takes O�1�. To summarize,

Lemma 7.2. Finding all merger arcs throughout a phase
requires at most O�m� operations for a total of O�mn�
operations for the entire algorithm.

Proof. Let phase l be the collection of iterations when the
lowest label among the strong nodes is l. From Invariant 3,
it follows that there are no more than n phases. The DFS
process scans all arcs in the normalized tree at most twice
per phase, and all out-of-tree arcs are scanned at most once
per phase. Therefore, during a single phase, the total com-
plexity of searching for merger arcs is O�m�. �

7.2. The Highest Label Variant

In the highest label variant, we select as strong merger
branch the one that has a highest label root node. The merg-
ers are still performed from a node of lowest label l in the
branch (rather than among all strong nodes) to a node of
label l− 1, and the relabeling rule is identical. Unlike the
lowest label variant, the head of the merger arc may not
be a weak node. Still, all the invariants hold as the proof
of Lemma 7.1 applies, and so does the complexity analy-
sis. Note that the search for merger arcs at each phase is
accomplished in O�m� as it relies only on the monotonicity
invariant.

7.3. A Hybrid Variant

Here, any strong branch can be selected to initiate the merg-
ers from. The merger sought at each iteration is from a
lowest label strong node in the selected branch, and thus
of label identical to the label of the root of the branch. As
before, all the variants and the complexity analysis are the
same as for the lowest label variant.

7.4. Free Arcs Normalized Tree

An arc (i� j) is said to be free with respect to a pseud-
oflow f if it is residual in both directions, 0 < fij < uij .
In the pseudoflow algorithm, a split occurs on arc (i� j)



Hochbaum: The Pseudoflow Algorithm: A New Algorithm for the Maximum-Flow Problem
Operations Research 56(4), pp. 992–1009, © 2008 INFORMS 1003

on the merger path when the amount of pushed excess $
strictly exceeds the residual capacity c

f
ij . Therefore, when

$ = c
f
ij , then arc (i� j) remains in the tree but is not free.

The free arcs variant of the algorithm splits an arc if the
excess pushed is greater or equal to the residual capacity.
The split branch resulting when the excess is equal to the
residual capacity has zero excess and is considered weak.
With this splitting rule, all in-tree arcs are free.

The free arcs variant tends to create smaller branches.
Note that the weakly polynomial complexity bound result-
ing from Lemma 6.1 does not apply for this case. The free
arcs variant was used for the bipartite matching pseudoflow
algorithm in Hochbaum and Chandran (2004), leading to
particularly small (up to three nodes) branches.

7.5. Global Relabeling

Because labels are bounded by the residual distance to the
sink, we can use a process of assigning labels that are equal
to the respective distances to the sink, provided that mono-
tonicity is satisfied in each branch. These labels are found
using breadth-first-search (BFS) from the sink in the resid-
ual network. To preserve monotonicity, the label assigned
to each node is the minimum between its distance to sink
and the maximum label of its children in the branch. We
call this labeling process global relabeling, after an analo-
gous process used for push-relabel. The frequency of use of
global relabeling should be balanced against the increased
complexity of performing BFS in the residual network to
identify the distance labels.

7.6. Delayed Normalization

A heuristic idea is to process a merger through merger arc
(s�w) while normalizing for the strong portion of the path
only, from rs to s and w. The normalization process in the
weak section of the merger path is delayed and the excess
at node w is recorded. After several mergers have been per-
formed, the normalization of the weak branches is executed
jointly for all the weak nodes by a single scan of the weak
branches. If several strong branches were merged to the
same weak branch, the weak sections of their merger paths
overlap. In that case, instead of normalizing each path sep-
arately, we normalize them jointly for a potential improve-
ment in the running time. The extent of improvement in
performance depends on the magnitude of the overlap and
on the overhead required.

8. Flow Recovery
At termination of the pseudoflow algorithm, we have a
minimum cut, but not a maximum feasible flow. We show
in this section how to construct a feasible flow from any
pseudoflow and a corresponding normalized tree, not nec-
essarily optimal.

Definition 8.1. A feasible flow f ′ is said to be associated
with a normalized tree T and pseudoflow f if all free arcs

of f ′ are in T , and if for all out-of-tree arcs �i� j� ∈ A\T ,
f ′
ij = fij .

If the normalized tree is optimal, then the cut between
strong and weak nodes is saturated and therefore the cor-
responding feasible flow is maximum.

Theorem 8.1. Every normalized tree with pseudoflow f
has a feasible flow in Gst associated with it that can be
constructed in O�m logn� time.

The following lemma is needed for the proof of the the-
orem. The concept of “strictly strong” or “strictly weak”
node refers to a node in a strong (respectively, weak)
branch with strictly positive excess (respectively, deficit).

Lemma 8.1. For any strictly strong node, there exists a
residual path either to the source or to some strictly weak
node.

Proof. Suppose not. Let v be a strictly strong node for
which there is no residual path to the source or to a strictly
weak node. Therefore, the set of nodes reachable from v in
the residual graph, R�v�, includes only nodes with nonneg-
ative excess.

Because no node is reachable from R�v� in the resid-
ual graph, inflow�R�v�� = 0, and thus in particular,
inflow�R�v�� − outflow�R�v�� � 0. On the other hand,
for all u ∈ R�v�, the excess is nonnegative, inflow�u� −
outflow�u�� 0. Now, because v ∈R�v�,

0� inflow�R�v��− outflow�R�v��
= ∑

u∈R�v�
�inflow�u�− outflow�u�� > 0�

This leads to a contradiction of the assumption. �

An analogous argument proves that for any strictly weak
node, there exists a residual path either to the sink or to a
strictly strong node.

Proof of Theorem 8.1. Given the pseudoflow f corre-
sponding to the normalized tree, a feasible flow is con-
structed by eliminating the positive excess at the roots
of strong branches and the negative excess at the roots
of (strictly) weak branches. This is done by using a pro-
cess analogous to flow decomposition, which decomposes
a feasible flow in an s� t-graph into a collection of up to
m simple s� t-paths and cycles. To use flow decomposition,
we construct a graph with source and sink nodes in which
the pseudoflow f is feasible by appending nodes and arcs
to the graph Gst as follows: let all strictly strong nodes in
Gst with respect to f be adjacent to a sink node t̄ with arcs
from the excess nodes to t̄ carrying the amount of excess.
These excess nodes include the node t with excess equal
to the total capacity of A�t�, C�A�t��. All strictly weak
nodes have arcs incoming to them from a node s̄ carrying
the deficit flow. The deficit nodes include the source node s
with deficit equal to the capacity of the arcs A�s�. The
resulting graph has a feasible flow from s̄ to t̄. Such a graph



Hochbaum: The Pseudoflow Algorithm: A New Algorithm for the Maximum-Flow Problem
1004 Operations Research 56(4), pp. 992–1009, © 2008 INFORMS

is shown in Figure 6(a) (where the quantity �excess�v�� is
denoted by Mv).

We first decompose the sum of all excesses (which is
the portion of the flow from the excess nodes other than
t to t̄). This is done by reversing the graph and the flows
on each arc with the amount of flow becoming the residual
capacity of each arc in the opposite direction. This graph
contains a residual path from every excess node to s̄ as
proved in Lemma 8.1. Once all the excesses have been
disposed of, there may be some strictly positive deficits
left. These are denoted by the flows cj in Figure 6(b). All
these deficits must now reach t̄ via t in the residual graph
because there are no other positive excess nodes left. Again,
flow decomposition is employed to send these deficits to t̄.

Figure 6. The graph in which flow decomposition
generates the corresponding feasible flow.
Here, Mv = �excess�v��. (a) The graph in
which excesses are eliminated. (b) The graph
after excesses have been eliminated and
before applying flow decomposition to elim-
inate deficits.

c(�(t))

c(�(t))

s

�(s)

rw1

rw1

rw2

rwp

rw2

rwp

Mrw1

Mrw2

Mrs2

s

�(s)

c(�(s))

(a)

s

Deficit nodes

Deficit nodes

G

t

�(t)

t

rs2

rs2

rs1

rs1

rsq

rsq

Excess nodes

(b)

s

G

t

�(t)

t

Excess nodes

cp

cs

c1

c2

0

0

0

Finding the flow paths can be done using DFS, where
at each iteration the procedure identifies a cycle or a path
along which flow is pushed back and eliminates at least
one bottleneck arc. The complexity of this DFS procedure
is O�mn�. A more efficient algorithm for flow decomposi-
tion using dynamic trees was devised by Sleator and Tarjan
(1985). The complexity of that algorithm is O�m logn�. �

In an optimal normalized tree, with a set of strong
nodes S, there are no residual arcs in (S� �S). In that case,
it follows from Lemma 8.1 that all positive excess is sent
back to the source s using paths traversing strong nodes
only, and all positive deficit is sent back to sink t via
weak nodes only. Thus, for an optimal normalized tree, the
pseudoflow saturates (S� �S), and the associated feasible flow
also saturates the arcs (S� �S). So, the flow on (S� �S) is equal
to the capacity of the cut C�S� �S�. Given the maximum
blocking-cut solution and minimum cut, the maximum flow
is therefore found in time O�m logn�, as proved in Theo-
rem 8.1. This is an alternative proof to the optimality of a
normalized tree with Cf �S� �S�= 0.

Remark 8.1. For closure graphs—graphs that have all arcs
not adjacent to source and sink, with infinite capacity—
the pseudoflow on the normalized tree is transformed to a
feasible flow in O�n� time (Hochbaum 2001). That algo-
rithm is more efficient for finding feasible flow than the
algorithm for general graphs because for closure graphs, all
out-of-tree arcs must have zero flow on them and the flow
decomposition involves only the arcs within the respective
branch. This is the case also for s� t-tree networks discussed
in the online appendix.

9. The Parametric Pseudoflow Algorithm
Whereas parametric analysis for general linear program-
ming problems is restricted to a sequence of changes of
one parameter at a time, for the maximum-flow prob-
lem parametric changes can be made simultaneously to
all source adjacent and sink adjacent capacities provided
that the changes are monotone nondecreasing on one side
and monotone nonincreasing on the other. In our discus-
sion, the capacities of arcs adjacent to source are mono-
tone nondecreasing functions of the parameter 5, e.g.,
asj +5bsj for bsj � 0, and the capacities of arcs adjacent to
sink are monotone nonincreasing functions, e.g., ait −5bit
for bit � 0. Gallo et al. (1989) showed how to solve
the parametric maximum-flow problem for a sequence
of k parameter values with the push-relabel algorithm in
O�mn logn2/m + km logn2/m� steps. For k = O�n�, this
complexity is the same as required for solving a constant
capacity maximum-flow instance (referred to here as a sin-
gle instance).

As in the introduction, the parametric analysis for a
given set of sorted parameter values, 51 < 52 < · · · < 5k,
is referred to as the simple sensitivity analysis. The com-
plete parametric analysis is more general and generates
all possible breakpoints b1 < b2 < · · · < bq , at which the



Hochbaum: The Pseudoflow Algorithm: A New Algorithm for the Maximum-Flow Problem
Operations Research 56(4), pp. 992–1009, © 2008 INFORMS 1005

minimal source set of a minimum cut is changing. (From
Lemma 9.1, q � n.) A complete parametric analysis solu-
tion provides the solutions for any parameter value 5.
Specifically, if 5 ∈ �bl� bl+1�, then �Sbl �

�Sbl �—a minimum
cut for the parameter bl—is also a minimum cut for 5. In
other words, the optimal solution for any given parame-
ter value is found from the complete parametric analysis
output by identifying the consecutive pair of breakpoints
between which the value lies.

To date, only the push-relabel algorithm has been shown
to solve the complete parametric analysis efficiently, in the
same complexity as a single instance. This was shown in
Gallo et al. (1989) for linear functions of the parameter.
In Hochbaum (2003), we demonstrated that the complete
parametric analysis can be implemented for any monotone
functions (for both push-relabel and pseudoflow) with an
additive run time of O�n logU�, where U is the range of
the parameter. This additive run time is the complexity of
finding zeroes of the monotone functions, which is provably
impossible to avoid (Hochbaum 2003).

We first show that the pseudoflow algorithm solves the
simple sensitivity analysis in O�mn logn+kn� time, which
is the complexity of solving a single instance for k =
m logn. The pseudoflow algorithm is then shown to solve
the complete parametric analysis in O�mn logn� for lin-
ear functions, and with an additive run time of O�n logU�
for arbitrary monotone functions. The pseudoflow-simplex
algorithm is later shown to solve the respective parametric
problems in the same complexities as the pseudoflow algo-
rithm. It is the only known simplex algorithm that solves
the simple sensitivity analysis in the same complexity as a
single instance, and substantially faster than other simplex
algorithms. Moreover, the pseudoflow-simplex algorithm is
the only simplex algorithm known to solve the complete
parametric analysis efficiently.

Let S5 be a minimal (maximal) source set of a mini-
mum cut in the graph G5 in which the capacities are set
as a function of 5. It is well known (e.g., Gale 1957)
that as 5 increases, so does the set S5. This can also be
deduced from the construction of an optimal normalized
tree: As 5 increases, all excesses of branches can only go
up. So, strong branches can only become “stronger,” while
some weak branches may become strong or have lesser
deficit. (The procedure of adjusting the normalized tree
for changes of capacities, renormalization, is given in the
online appendix.)

Lemma 9.1 (Nestedness). For k parameter values 51 <
52 < · · · < 5k, the corresponding minimal �maximal�
source set minimum cuts satisfy S51

⊆ S52
⊆ · · · ⊆ S5k .

Corollary 9.1 (Contraction Corollary). For 5 ∈
�51�52�, a source set of a minimum cut S5 in the graph
G5 in which the set S51

is contracted with the source and
�S52

− S51
is contracted with the sink, is also a source set

of a minimum cut in G5.

The key to the efficiency of the parametric solution is
to leave the distance labels unchanged between consecutive
calls to monotonically increasing values of the parameter.
Adjusting the graph for a new parameter value in the push-
relabel algorithm requires O�m logn2/m� time for a total of
O�mn logn2/m+ km logn2/m�. For the pseudoflow algo-
rithm, the normalized tree remains the same except that it
may require renormalization at a complexity of O�n� when
the value of the parameter is increased. The running time
is then O�mn logn+ kn�.

We now sketch briefly the main concepts of the com-
plete parametric analysis algorithm of Gallo et al. (1989),
mimicked here for the pseudoflow algorithm. Each call to
the algorithm is made with respect to a value 5∗ and an
interval �51�52�, where 5∗ ∈ �51�52� and where the graph
has the maximal source set of the minimum cut on G51

shrunk with the source, and the maximal sink set of the
minimum cut on G52

shrunk with the sink. Each such call
is provided with two free runs, one starting from G51

and
the other on the reverse graph starting from the solution
on G52

. For a given interval where we search for break-
points, we run the algorithm twice: from the lower endpoint
of the interval where the maximal source set of the cut
obtained at that value is shrunk into the source, and from
the highest endpoint of the interval where the maximal sink
set of the cut is shrunk into the sink. The runs proceed for
the graph and reverse graph until the first one is done. The
newly found cut subdivides the graph into a source set and
a sink set, G�1� and G�2�, with n1 and n2 nodes, respectively,
and m1 and m2 edges, respectively. Assuming that n1 � n2,
then n1 �

1
2n. In the smaller interval, corresponding to the

graph on n1 nodes, two new runs are initiated from both
endpoints. In the larger interval, however, we continue the
previous runs using two properties:
Reflectivity: The complexity of the algorithm remains the

same whether running it on the graph or reverse graph.
Monotonicity: Running the algorithm on a monotone

sequence of parameter values has the same complexity as
a single run.

The implementation of the complete parametric analy-
sis with pseudoflow requires two minimum-cut solutions,
one with minimal and one with maximal source sets. From
Corollary 4.2, the set of strong nodes at the optimal solu-
tion is a minimal source set. To find a maximal source set
minimum cut, we solve the problem in the reverse graph.
Alternatively, if using the free arcs variant, the set of strong
nodes appended with all zero-deficit branches that do not
have residual arcs to strictly weak branches forms a maxi-
mal source set. This collection of zero-deficit branches can
also be generated by a process of normalization, even if the
free arcs variant is not used.

Using the reflectivity and monotonicity properties for the
labeling pseudoflow algorithm, we choose a quantity Q to
be Q= c logn for some constant c, m1 �m. m2 �m, where
n1 + n2 � n+ 1 and n1 �

1
2n. Let T �m�n� be the running

time of the labeling parametric pseudoflow algorithm on



Hochbaum: The Pseudoflow Algorithm: A New Algorithm for the Maximum-Flow Problem
1006 Operations Research 56(4), pp. 992–1009, © 2008 INFORMS

a graph with m arcs and n nodes. The recursive equation
satisfied by T �m�n� is

T �m�n�= T �m1� n1�+ T �m2� n2�+ 2Qm1n1�

The solution to this recursion is T �m�n� = O�Qmn� =
O�mn logn�. This omits the operation of finding the value
of 5∗, which is done as the intersection of the two cut func-
tions for the parameter value 51 and the parameter value
52. This intersection is computed at most O�n� times, each
at O�1� steps for the linear functions. Computing the inter-
section of arbitrary monotone functions can be done in
O�logU� steps each with binary search, thus requiring an
additive factor of O�n logU�.

10. Pseudoflow-Simplex
A generic simplex network-flow algorithm works with a
feasible flow and a spanning tree of the arcs in the basis,
called the basis tree. All free arcs are basic, and are thus
part of the basis tree. A simplex iteration is characterized
by having one arc entering the basis, and one arc leaving
the basis.

A normalized tree can serve as a basis tree in the
extended network for a simplex algorithm that solves the
maximum blocking-cut problem. A merger arc qualifies as
an entering arc, but in the pseudoflow algorithm there are
potentially numerous leaving arcs (split arcs). The simplex
version of the pseudoflow algorithm removes the first arc
with the bottleneck residual capacity on the cycle begin-
ning at r� rs� � � � � s�w� � � � � rw� r . At each iteration, there is
precisely one split edge that may be such that the strong
merger branch is eliminated altogether when the excess
arc is the bottleneck (the residual capacities of all arcs on
the cycle are greater or equal to the amount of excess),
or the weak merger branch is eliminated when the deficit
arc is the bottleneck. The requirement to remove the first
bottleneck arc is shown below to be essential to retain the
downwards positive residual capacities in each branch—a
property of normalized trees. Removing a first bottleneck
arc on the cycle has been used previously in the concept of
a strong basis introduced by Cunningham (1976).

Our simplex algorithm for solving the maximum block-
ing-cut problem is called the pseudoflow-simplex algorithm.
Although the algorithmic steps taken by the pseudoflow
algorithm and the pseudoflow-simplex on the same normal-
ized tree can lead to different outcomes in the subsequent
iteration (see §12), the complexity of both algorithms is the
same.

Let an out-of-tree residual arc between a strong node s′

and a weak node w be referred to as an entering arc. The
cycle created by adding an entering arc to a normalized tree
is �r� rs′ � � � � � s

′�w� � � � � rw� r�, where r represents, as before,
the root in the extended network. The largest amount of the
flow that can be augmented along the cycle is the bottle-
neck residual capacity along the cycle. The first arc (u� v)

along the cycle starting with (r� rs′ ) attaining this bottleneck
capacity $ is the leaving arc, where

$= cfu�v =min
{
excess�rs′�� min

e∈�rs′ � ���� s′�w� ���� rw�
cfe �deficit�rw�

}

= min
e∈�r� rs′ � ���� s′�w� ���� rw� r�

cfe �

The new basis tree is T ∪ 	�s′�w��\	�u� v��. The roots
of the branches remain unchanged provided that neither u
nor v is the node r . If u = r , then the excess arc is the
bottleneck arc, and the strong branch Trs is eliminated and
joins the weak branch Trw . If v = r , then the deficit arc is
the bottleneck arc, and the weak branch is eliminated and
joined with Trs . This means that throughout the algorithm,
the number of branches is nonincreasing.

procedure pseudoflow-simplex	Gst� f � T � S�W�
begin
while �S�W�∩Af �= � do

Select �s′�w� ∈ �S�W�; {�s′�w� is the entering arc.}
{Leaving arc and flow update:}
Let $ be the minimum residual capacity along the

cycle �r� rs′ � � � � � s
′�w� � � � � rw� r�

attained first for arc �u� v�:
{If $> 0 push $ units of flow along the path
�rs′ � � � � � s

′�w� � � � � rw� r�:}
Until vi+1 = r ;

Let �vi� vi+1� be the ith edge on the path;
{Push flow} Set fvi� vi+1

← fvi� vi+1
+ $;

If fvi� vi+1
= cvi� vi+1

then
Af ←Af ∪ 	�vi+1� vi��\	�vi� vi+1��;

i← i+ 1
end
Set T ← T \	�u� v��∪ 	�s′�w��.

end
end

The four properties of a normalized tree apply at the end
of each iteration: the choice of the leaving arc as the first
bottleneck arc ensures that all downwards residual capaci-
ties remain positive (Property 3 of a normalized tree). This
is because other arcs on this path, which after the flow
update have zero residual capacity, are all in the weak side
of the tree, and the zero residual capacity is in the upwards
direction.

Lemma 6.1 applies to pseudoflow-simplex, so a sim-
plex iteration results in either a strict decrease in the total
(positive) excess, or at least one weak node becomes strong.
The complexity of pseudoflow-simplex is thus O�nM+�
iterations. Furthermore, the termination rule and all com-
plexity improvements still apply. The use of the labeling-
based selection rule for an entering arc with the dynamic
trees data structure leads to precisely the same complex-
ity as that of the labeling algorithm, O�mn logn�, although
some modification is required as noted next.

Although Invariants 1, 3, and 4 hold, the monotonic-
ity invariant does not hold for pseudoflow-simplex. The



Hochbaum: The Pseudoflow Algorithm: A New Algorithm for the Maximum-Flow Problem
Operations Research 56(4), pp. 992–1009, © 2008 INFORMS 1007

reason is that the tail of the split bottleneck arc may not
become the new root of the strong tree, and no inversion
takes place. So, when the bottleneck arc is within the weak
branch, the labels of the weak nodes that join the strong
branch are smaller than that of the strong merger node
which becomes their ancestor. This lack of monotonicity
disables the efficient scanning for merger arcs with DFS.
Instead, we use a dynamic tree representation of the nor-
malized tree with an additional set of key values indicating
the labels of the respective nodes. Finding a minimum key-
valued node in a branch requires O�logn� time at most,
and the updating of these keys all can be performed within
the run time dominated by the run time of the overall algo-
rithm, and therefore without increasing the complexity.

Because all properties of pseudoflow-simplex needed to
prove the complexity of solving the maximum-flow prob-
lem and its parametric versions are the same as those of
the pseudoflow algorithm, it follows that the complexity of
pseudoflow-simplex is the same as that of the pseudoflow
algorithm for these problems.

11. A Pseudoflow Variant of the
Push-Relabel Algorithm

It is possible to set up the push-relabel algorithm as
a pseudoflow-based algorithm. The advantage is that with
pseudoflow, the algorithm can be initialized with any
pseudoflow.3

We sketch the push-relabel algorithm: the algorithm
solves the maximum-flow problem in the graph Gst initial-
izing with a preflow saturating source adjacent arcs A�s�,
and setting all other flows to zero. The source is labeled n,
the sink is labeled zero, and all other nodes are labeled one.
An iteration of the algorithm consists of finding an excess
node of label �2n (or �n if we only search for a minimum
cut) and pushing, along a residual arc, the minimum of the
excess and of the residual capacity to a neighbor of lower
label. If no such neighbor exists, then the node is relabeled
to the minimum label of its out-neighbors in the residual
graph plus one. When no excess node of label �2n exists,
the algorithm terminates with a maximum flow.

The push-relabel algorithm works with a set of excess
nodes, but does not permit nodes with deficits. However,
in the extended network Gext, any pseudoflow is a feasible
flow. In particular, deficit nodes can be represented as bal-
anced nodes with flow on the deficit arcs equal to the deficit
amount. In Gext, it is possible to start the push-relabel algo-
rithm with any pseudoflow that also saturates sink-adjacent
arcs. This requires adding deficit arcs from the sink to all
generated deficit nodes by the given pseudoflow. Adding
excess arcs that go to the source from all excess nodes not
adjacent to source is not necessary because the push-relabel
algorithm can work with any arbitrary set of excess nodes.

With the added deficit arcs, the push-relabel algorithm
works without modification. Because the algorithm does
not generate strict deficits, there is no need to add new

deficit arcs during execution. At termination of the push-
relabel algorithm, some of the deficit arcs may carry posi-
tive flows on them. In that case, generating a feasible flow
can be done by the procedure described in §8.

Running push-relabel with pseudoflows permits the use
of arbitrary initial pseudoflows, notably, the “saturate-all”
initialization. This version of push-relabel allows the use of
warm starts. Also, experimental studies we conducted show
that for some classes of problems, the pseudoflow-push-
relabel utilizing some of the initialization schemes runs
faster than the standard push-relabel algorithm (Chandran
and Hochbaum 2003).

12. Comparing the Simplex, Pseudoflow,
and Push-Relabel Algorithms for
Maximum Flow

Here, we compare the strategies of three generic algo-
rithms for the maximum-flow problem: simplex (network
simplex), push-relabel, and pseudoflow. We also describe
the differences between the pseudoflow algorithm and
pseudoflow-simplex.

Two extreme strategies are manifested in the simplex and
push-relabel algorithms. Simplex is a “global” algorithm
that maintains a spanning tree in the graph and each iter-
ation involves the entire graph. Push-relabel, on the other
hand, is a “local” algorithm that can execute operations
based only on information at a node and its neighbors. In
that sense, push-relabel is a suitable algorithm a for dis-
tributed mode of computation, whereas simplex is not.

Our algorithm is positioned in a middle ground between
simplex and push-relabel: instead of maintaining individual
nodes as push-relabel does, it maintains subsets of nodes
with feasible flows within the subset or branch. These sub-
sets retain information on where the flow should be pushed
to—along the paths going between the roots of the respec-
tive branches. This path information is not captured in a
push-relabel algorithm that pushes flow guided only by dis-
tance labels toward lower label nodes without paths or par-
tial paths information.

The subsets of nodes maintained by the pseudoflow algo-
rithm tend to be smaller in size than those maintained by
simplex which are the subtrees rooted at a source-adjacent
or a sink-adjacent node (this latter point is made clearer
by contrasting the split process; see below). Moreover,
compared to pseudoflow-simplex, the pseudoflow algorithm
does not strive to increase flow feasibility. Pseudoflow-
simplex sends only an amount of excess that does not
violate the feasibility of any residual arc along the aug-
mentation path (the merger path in our terminology). In
contrast, the pseudoflow algorithm pushes the entire excess
of the branch until it gets blocked. This quantity is always
larger or equal to the amount pushed by simplex.

To contrast the split process in pseudoflow as compared
to the one in simplex, consider Figure 7. In Figure 7(a),
the merger arc is added, and edge (u� v) is identified for



Hochbaum: The Pseudoflow Algorithm: A New Algorithm for the Maximum-Flow Problem
1008 Operations Research 56(4), pp. 992–1009, © 2008 INFORMS

Figure 7. Comparing the split of an edge with an
update step in the simplex algorithm.

s w

rs

u

ν

rw

r

(a)

s

w

rs

u

ν

rw

r

s

w

u

rs

ν

rw

r

(b) (c)

pseudoflow as the first infeasible edge, or as leaving arc
for simplex. Figure 7(b) shows the resulting branches fol-
lowing “simplex-split” and Figure 7(c) shows the branches
after split. (In general, the choice of the split arc for sim-
plex may be different from the choice in the corresponding
iteration of the pseudoflow algorithm.) Note that the root-
ing of the branch on the left is different. For pseudoflow-
simplex, the set of roots of the normalized tree with which
the procedure works is always a subset of the initial set of
roots, whereas for pseudoflow, the set of the strong roots
can change arbitrarily.

Another aspect in which the two algorithms differ is that
pseudoflow performs several arc exchanges in the tree dur-
ing a single-merger iteration, whereas simplex performs
exactly one.

13. Electronic Companion
An electronic companion to this paper is available as part
of the online version that can be found at http://or.journal.
informs.org/.

Endnotes
1. We note that the concept of pseudoflow has been
used previously in algorithms solving the minimum-cost
network-flow problem.
2. We thank Michel Minoux for mentioning the Boolean
quadratic minimization problem’s relationship to the block-
ing-cut problem, and the anonymous referees for point-
ing out the references Radzik (1993), Gale (1957), and
Hoffman (1960).

3. We are grateful to an anonymous referee for pointing
out this possibility.

Acknowledgments
This research was supported in part by NSF award DMI-
0620677.

References
Anderson, C., D. S. Hochbaum. 2002. The performance of the pseud-

oflow algorithm for the maximum flow and minimum cut problems.
Manuscript, University of California, Berkeley.

Boldyreff, A. W. 1955. Determination of the maximal steady state flow
of traffic through a railroad network. J. Oper. Res. Soc. Amer. 3(4)
443–465.

Chandran, B., D. S. Hochbaum. 2003. Experimental study of the pseud-
oflow push-relabel algorithm. Manuscript, University of California,
Berkeley.

Cunningham, W. H. 1976. A network simplex method. Math. Program-
ming 1(1) 105–116.

Dinic, E. A. 1970. Algorithm for solution of a problem of maximal flow in
a network with power estimation. Soviet Math. Dokl. 11 1277–1280.

Ford, L. R., Jr., D. R. Fulkerson. 1957. A simple algorithm for finding
maximal network flows and an application to the Hitchcock problem.
Canad. J. Math. 9 210–218.

Gale, D. 1957. A theorem of flows in networks. Pacific J. Math. 7(1057)
1073–1082.

Gallo, G., M. D. Grigoriadis, R. E. Tarjan. 1989. A fast parametric
maximum flow algorithm and applications. SIAM J. Comput. 18(1)
30–55.

Goldberg, A. V., S. Rao. 1998. Beyond the flow decomposition barrier.
J. ACM 45 783–797.

Goldberg, A. V., R. E. Tarjan. 1988. A new approach to the maximum
flow problem. J. ACM 35 921–940.

Goldberg, A. V., M. D. Grigoriadis, R. E. Tarjan. 1991. The use of
dynamic trees in a network simplex algorithm for the maximum flow
problem. Math. Programming 50 277–290.

Goldfarb, D., W. Chen. 1997. On strongly polynomial dual algorithms for
the maximum flow problem. Special issue of Math. Programming,
Ser. B 78(2) 159–168.

Gusfield, D., E. Tardos. 1994. A faster parametric minimum-cut algorithm.
Algorithmica 11(3) 278–290.

Hochbaum, D. S. 2001. A new-old algorithm for minimum-cut and
maximum-flow in closure graphs. Networks 37(4) 171–193.

Hochbaum, D. S. 2003. Efficient algorithms for the inverse spanning tree
problem. Oper. Res. 51(5) 785–797.

Hochbaum, D. S., B. G. Chandran. 2004. Further below the flow decompo-
sition barrier of maximum flow for bipartite matching and maximum
closure. Submitted.

Hoffman, A. J. 1960. Some recent applications of the theory of linear
inequalities to extremal combinatorial analysis. R. Bellman, M. Hall
Jr., eds. Proc. Sympos. Appl. Math., Vol. 10. Combinatorial Analysis.
American Mathematical Society, Providence, 113–127.

Karzanov, A. V. 1974. Determining the maximal flow in a network with
a method of preflows. Soviet Math. Dokl. 15 434–437.

King, V., S. Rao, R. Tarjan. 1994. A faster deterministic maximum flow
algorithm. J. Algorithms 17(3) 447–474.

Lerchs, H., I. F. Grossmann. 1965. Optimum design of open-pit mines.
Trans. Canad. Inst. Mining, Metallurgy, Petroleum 68 17–24.

Malhorta, V. M., M. P. Kumar, S. N. Maheshwari. 1978. An O��V �3�
algorithm for finding maximum flows in networks. Inform. Proc. Lett.
7(6) 277–278.

Martel, C. 1989. A comparison of phase and nonphase network flow algo-
rithms. Networks 19(6) 691–705.



Hochbaum: The Pseudoflow Algorithm: A New Algorithm for the Maximum-Flow Problem
Operations Research 56(4), pp. 992–1009, © 2008 INFORMS 1009

Picard, J.-C. 1976. Maximal closure of a graph and applications to com-
binatorial problems. Management Sci. 22(11) 1268–1272.

Radzik, T. 1993. Parametric flows, weighted means of cuts, and frac-
tional combinatorial optimization. P. M. Pardalos, ed. Complex-
ity in Numerical Optimization. World Scientific, Hackensack, NJ,
351–386.

Sleator, D. D., R. E. Tarjan. 1983. A data structure for dynamic trees.
J. Comput. System Sci. 24 362–391.

Sleator, D. D., R. E. Tarjan. 1985. Self-adjusting binary search trees.
J. ACM 32 652–686.

Vygen, J. 2002. On dual minimum cost flow algorithms. Math. Methods
Oper. Res. 56 101–126.


