
6 Repeated Games with Complete Information

Motivating example: The Prisoners’ dilemma, again.

Note: payoffs here have been increased by 5 to avoid negative numbers

Dominant strategy solution is (Fink, Fink)

Cooperation may seem more plausible. One reason: participants may expect to interact

more in the future. If you “Fink” today, your opponent may retaliate in the future.

Simple device for getting at these issues: imagine that the game is repeated.

Two important cases: (i) potentially infinite repetitions, (ii) finite repetitions.

6.1 Infinitely repeated games

6.1.1 Some preliminaries

Terminology: The game played in each period is called the stage game. The dynamic

game formed by infinite repetitions of a stage game is called a supergame.
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Observations:

(i) Even if the stage game is finite, the associated supergame is not.

(ii) There are no terminal nodes. How do we assign payoffs?

Evaluating payoffs:

What we need: a mapping from strategy profiles into expected payoffs. (For finite games,

this is given by the composition of the mapping from strategy profiles into distributions

over terminal nodes, with the mapping from terminal nodes to payoffs.)

For repeated games, one can assume that payoffs are distributed immediately after each

play of the stage game. Then any strategy profile maps to a distribution of paths

through the game tree, and any path through the game tree maps to a sequence of

payoffs for each player i, vi = (vi(1), vi(2), ...).

Remaining issue: We need a mapping from strategy profiles to scalar payoffs for each player.

How do we get from payoff sequences to scalar payoffs?

General answer: assume that players have utility functions mapping sequences of payoffs

into utility: ui(vi)

Some specific answers:

(i) Use discounted payoffs: ui(vi) =
P∞

t=1 δ
t−1vi(t). Note: the discount factor may reflect

both time preference and a probability of continuation.

(ii) For the case of no discounting, we can use the average payoff criterion:

ui(πi) = lim
T→∞

µ
1

T

¶ TX
t=1

vi(t)

Another possibility for the case of no discounting: the overtaking criterion.

Strategies:
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The nature of strategies will depend upon assumptions about what is observed each time

the game is played.

For the time being, we will assume that, each time the stage game is played, all players can

observe all previous choices.

With this assumption, each sequence of choices up to (but not including) period t corre-

sponds to a separate information set (for each player) in period t. Consequently, we

proceed as follows.

Let ai(t) denote the action taken by player i in period t

Let a(t) = (a1(t), ..., aI(t)) be the profile of actions chosen in period t

A t-history, h(t), is a sequence of action profiles (a(1), ..., a(t−1)), summarizing everything

that has occurred prior to period t.

Since, by assumption, h(t) is observed by all players, there is, for each player, a one-to-one

correspondence between t-histories and period t information sets.

Consequently, a strategy is a mapping from all values of t ∈ {1, 2, ...} and all possible

t−histories to period t actions (for period 1, the set of 1-histories is degenerate).

6.1.2 Nash equilibria with no discounting

The prisoners’ dilemma

Illustration of a t-history: ((NF,NF ), (F,NF ), (F, F ), ..., (NF,F ))

Example of a strategy: σNi (t, h(t)) ≡ F for all t, h(t).

Note: this repeats the equilibrium of the stage game in every period.

Claim:If players use the average payoff criterion,
¡
σN1 ,σ

N
2

¢
is a Nash equilibrium.
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Demonstration: Check to see whether a player can gain by deviating from this strategy,

given that his opponent plays this strategy.

If the player sticks to the strategy, the sequence of payoffs will be vi(t) = 1 for all t. The

average payoff is 1.

If player i deviates to any other strategy while j sticks to σNj , the sequence of payoffs for i

contains zeros and one, so the average payoff cannot exceed 1.

Conclusion: Repeating the equilibrium of the stage game is a Nash equilibrium for the

supergame.

Remark: The same proposition obviously holds with discounting, and without discounting

using the overtaking criterion (a sequence of ones always beats a sequence of ones and

zeros).

Exercise: Prove that this point is completely general (it holds for all stage games).

Question: Can we get anything other than repetitions of the stage game equilibrium?

Another possible strategy:

In period 1, play NF

In period t > 1, play

⎧⎨⎩ F if h(t) contains an F

NF otherwise

With these strategies, the game would unfold as follows: Both players would play NF

forever. If any player ever deviated from this path, then subsequently both players

would play F forever.

Let’s imagine that both players select this strategy.

Claim: If players use the average payoff criterion to evaluate payoffs, this is a Nash equi-

librium.
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Demonstration: Check to see whether a player can gain by deviating from this strategy,

given that his opponent plays this strategy.

If the player sticks to the strategy, the sequence of payoffs will be vi(t) = 3 for all t. The

average payoff is 3.

Now consider a deviation to some other strategy. Let t0 be the first period t for which

this strategy dictates playing F when h(t) does not contain an F (if there is no such

t0, then the deviation also generates an average payoff of 3). If the player deviates to

this strategy, the sequence of payoffs will be

vi(t)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
= 3 for t < t0

= 4 for t = t0

≤ 1 for t > t0

(For t > t0, this follows because the opponents strategy will always dictate playing F ).

The associated average payoff is not larger than 1, and therefore certainly less than 3.

Consequently, this is a Nash equilibrium.

Remarks: (i) This example demonstrates that cooperation is possible. Cooperation is

sustained through the threat of punishment.

(ii) We cannot necessarily claim that the players will cooperate in this way, because there

are many other Nash equilibria.

Illustration: For all t, let h∗(t) be the t-history such that (i) a1(t0) = F for t0 < t odd,

and a1(t0) = NF for t0 < t even; (ii) a2(t0) = NF for all t0 < t. In words: player 1 has

alternated between NF and F , while player 2 has always chosen NF .

Consider the following strategies:

σ1 (t, h(t)) =

⎧⎨⎩ NF if h(t) = h∗(t) and t is even

F otherwise
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σ2(t, h(t)) =

⎧⎨⎩ NF if h(t) = h∗(t)

F otherwise

In other words, player 1 alternates between NF and F , while player 2 always plays NF

(the result is h∗(∞)). However, if either deviates from this path, both subsequently

play F forever.

Claim: When players use the average payoff criterion, there is also a Nash equilibrium

wherein both players select the preceding strategy.

Demonstration: As long as no player deviates, player 1’s payoffs alternate between 3 and

4, while 2’s payoffs alternate between 3 and 0. Average payoffs are 3.5 for player 1,

and 1.5 for player 2.

Now imagine that player i considers deviating to some other strategy. If this deviation has

any effect on the path of outcomes (and hence on payoffs), there must be some period

t0 in which the actions taken diverge from h∗(∞). Assuming that player j sticks with

its equilibrium strategy, vi(t) ≤ 1 for t > t0. Consequently, player i’s average payoff is

1. This is less than the payoff received by both players in equilibrium.

Question: What other outcomes are consistent with equilibrium?

We will proceed by the process of elimination.

Some definitions

First, we identify the set of feasible payoffs (including things that can be achieved through

arbitrary randomizations).

Let C = {w | w is in the convex hull of payoff vectors from pure strategy profiles in the

stage game}

Remark: C is potentially larger than the set of payoffs achievable through mixed strategies

in the stage game, since we allow for correlations.

169



For our example (the prisinors’ dilemma):

Can anything in C occur in equilibrium as an average payoff? No. Each player can assure

himself of a payoff of at least unity each period by playing F all of the time. Therefore,

we know that no player can get a payoff smaller than unity.

More generally, we define player i’s minmax payoff:

πmi = min
(δ1,...,δi−1,δi+1,...,δI)

max
δi

πi(δ)

This is the average payoff that player i can assure himself, simply by making a best response

to what everyone else is supposed to do (according to their strategies) in every period.

Player i cannot receive an average payoff less than πmi in equilibrium.

Consequently, define D = {w | w ∈ C and wi ≥ πmi for all i}

For our example (the prisoners’ dilemma):
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D is called the set of feasible and individually rational payoffs.

Finally, define E = {w | there is a Nash equilibrium with average payoff vector w}

Question: How does E compare with D? It’s reasonably clear that E isn’t larger, but

can it be smaller?

The folk theorem

The folk theorem: Consider a supergame formed by repeating a finite stage game an infi-

nite number of times. Suppose that players use the average payoff criterion to evaluate

outcomes. Then E = D.

Sketch of proof: The proof consists of three steps.

Step 1: E ⊆ D. We have already covered this.

Step 2: Consider any sequence of actions h0(∞) yielding average payoffs w ∈ D. Then

there exists a pure strategy Nash equilibrium for the supergame where this sequence

of actions is taken on the equilibrium path. We show this by contruction.
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Consider the following strategies. If play through period t−1 has conformed to h0(t), players

continue to follow h0(∞) in period t. If play has not conformed to h0(t), inspect the

actual history h(t) to find the first lone deviator (in other words, ignore any period in

which there are multiple deviators). If no lone deviator exists in any period prior to

t, then revert to following h0(∞) in period t. If the first lone deviator is i, then all

j 6= i play

δm−i = arg min
(δ1,...,δi−1,δi+1,...,δI)

max
δi

πi(δ)

while i plays some arbitrarily assigned action.

It is easy to check that this is a Nash equilibrium. If all players choose their equilibrium

strategies, the outcome is h0(∞), and the average payoff for i is wi ≥ πmi (since w ∈ D

by assumption). If player i deviates, then, assuming all others play their equilibrium

strategies, i will be the first deviator, and subsequently can do not better than πmi in

any period. This means that i’s average payoff will be no greater than πmi . Thus, the

deviation does not benefit i.

Step 3: For all w ∈ D, there exists a sequence of actions yielding average payoffs of w.

Idea: alternate actions to produce the same frequencies as the randomization. This is easy

if the randomization involves rational frequencies. If it involves irrational frequencies,

one varies the frequency in the sequence to achieve the right frequency in the limit.

Interpretation of the folk theorem: (i) Anything can happen. Comparative statics are

problematic.

(ii) The inability to write binding contracts is not very damaging. Anything attainable

through a contract is also obtainable through a self-enforcing agreement, at least with

no discounting. The equilibrium that gets played is determined by a process of ne-

gotiation. It is natural to expect players to settle on some self-enforcing agreement
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that achieves the efficient frontier. The precise location may depend upon bargaining

strengths.

6.1.3 Nash equilibria with discounting

Now imagine that players evaluate payoffs according the utility function ui(vi) =
P∞

t=1 δ
t−1vi(t).

For simplicity, take the rate of discounting δ ∈ (0, 1) to be common for all players.

Remark: We can think of δ as the product of a pure rate of time preference, ρ, and a

continuation probability, λ (measuring the probability of continuing the game in period

t + 1, conditional upon having reached t): δ = ρλ. In particular, assume that, if the

game ends, subsequent payoffs are zero (this is just a normalization). Let T be the

realized horizon of the game. Then expected payoffs are

∞X
k=1

"
prob(T = k)

kX
t=1

ρt−1vi(t)

#

=
∞X
k=1

"
λk−1(1− λ)

kX
t=1

ρt−1vi(t)

#

=
∞X
k=1

kX
t=1

£
λk−1(1− λ)ρt−1vi(t)

¤
=

∞X
t=1

∞X
k=t

£
λk−1(1− λ)ρt−1vi(t)

¤
=

∞X
t=1

"
ρt−1vi(t) (1− λ)λt−1

∞X
k=t

λk−t

#

=
∞X
t=1

(λρ)t−1 vi(t)

The magnitude of δ in any context will depend upon factors such as the frequency of

interaction, detection lags, and interest rates.

The prisoners’ dilemma
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Imagine again that both players use the following strategies:

In period 1, play NF

In period t > 1, play

⎧⎨⎩ F if h(t) contains an F

NF otherwise

If players discount payoffs at the rate δ, is this a Nash equilibrium?

If the player sticks to the strategy, the sequence of payoffs will be vi(t) = 3 for all t. The

discounted payoff is
∞X
t=1

3δt−1 =
3

1− δ

Now consider a deviation to some other strategy. Without loss of generality, imagine that

player i deviates to F in period 1. Player i knows that j will play F in all subsequent

periods (since this is dictated by j’s strategy). Consequently, it is optimal for i to

play F in all subsequent periods, having deviated in the first. Thus,

vi(t)

⎧⎨⎩ = 4 for t = 1

= 1 for t > 1

Player i’s discounted payoffs are

4 +
∞X
t=2

δt−1 = 4 +
δ

1− δ

Player i therefore finds the best deviation unprofitable when

3

1− δ
≥ 4 + δ

1− δ

This is equivalent to

δ ≥ 1
3

Thus, the strategies still constitute an equilibrium provided that the players do not discount

the future too much.

This is also true for the other equilibrium considered above.
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The folk theorem

Analysis of prisoners’ dilemma suggests that it becomes possible to sustain cooperative

outcomes as δ gets larger.

A natural conjecture: it is possible to sustain all feasible, individually rational cooperative

outcomes as δ → 1.

Problem: as δ → 1, discounted payoffs become unbounded. To discuss what occurs in the

limit, we need to renormalize payoffs.

Renormalize payoffs as follows:

ui(vi) = (1− δ)
∞X
t=1

δt−1vi(t)

Notice we can now think of utility as a weighted average of the single period payoffs,

ui(vi) =
∞X
t=1

µtvi(t),

where µt = (1− δ)δt−1, and
P∞

t=1 µt = 1.

With this normalization, the set of feasible discounted payoffs is C.

Moreover, as δ → 1, this converges to the average payoff criterion.

In this setting, the folk theorem needs to be restated slightly: for any w ∈ D with wi > πmi

for all i, there exists δ∗ < 1 such that for all δ ∈ (δ∗, 1), w is the payoff vector for some

Nash equilibrium.

The proof is very similar to that of the original folk theorem.
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6.1.4 Subgame perfect Nash equilibria

The equilibria constructed to establish the folk theorem may not be subgame perfect. Pun-

ishing a player through a minmax strategy profile may not be credible, since the punishers

may suffer. Can we sustain cooperation in SPNE?

The prisoners’ dilemma

Claim: All of the Nash equilibria considered above for the repeated prisoners’ dilemma

are SPNE.

Demonstration: All Nash equilibrium strategies necessarily consistute Nash equilibria in

all subgames that are reached along the equilibrium path. For any subgame off the

equilibrium path, the prescribed strategies are
¡
σN1 ,σ

N
2

¢
. All subgames are identical

to the original game, and
¡
σN1 ,σ

N
2

¢
is a Nash equilibrium for the original game. Thus,

we have a Nash equilibrium in every subgame.

Nash reversion

Generalization: The players can attempt to support cooperation by using repetitions of

a stage-game equilibrium as a punishment. These punishments are known as Nash

reversion (the players attempt to cooperate, but revert to a static Nash outcome if

someone deviates).

Formally, consider some arbitrary stage game, as well as the supergame consisting of the

infinitely repeated stage game. Assume that the stage game has at least one Nash equi-

librium. For any particular stage-game Nash equilibrium, a∗, consider the following

strategies:

σNi (t, h(t)) = a
∗
i for all t, h(t)

Now imagine that we want to support some particular outcome, h∗(∞), as an equilibrium

path. Let’s try to do this with the following strategies: If play through period t − 1
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has conformed to h∗(t), players continue to follow h∗(∞) in period t. If play has not

conformed to h∗(t), then players use σN .

Claim: If the aforementioned strategies constitute a Nash equilibrium, then the equilibrium

is subgame perfect.

Demonstration: We use precisely the same argument as for the prisoners’ dilemma. All

Nash equilibrium strategies necessarily constitute Nash equilibria in all subgames that

are reached along the equilibrium path. For any subgame off the equilibrium path,

the prescribed strategy profile is σN . All subgames are identical to the original game,

and σN is a Nash equilibrium of the original game. Thus, we have a Nash equilibrium

in every subgame.

Remark: Since σN is an equilibrium of the supergame irrespective of whether the players

use discounted payoffs, average payoffs, or the overtaking criterion, this claim is equally

valid for all methods of evaluating payoffs.

Implication: When one uses Nash reversion to punish deviations, it is particularly sim-

ple to build SPNE and check subgame perfection: one simply makes sure that the

equilibrum is Nash (equivalently, that no player has an incentive to deviate from a

prescribed choice on the equilibrium path).

The folk theorem

For some games, Nash reversion is as severe as minmax punishments.

Examples:

(i) The prisoners’ dilemma

(ii) Bertrand competition (minmax payoffs and Nash payoffs are both zero)

However, Nash reversion is frequently much less severe than minmax punishments.
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Example: Cournot competition (minmax payoffs are 0, while Nash profits are strictly

positive)

Question: Does the validity of the folk theorem depend, in general, on the ability to use

non-credible punishments (at least for stage games with the property that Nash payoffs

exceed minmax)?

Answer: Subject to some technical conditions, one can prove versions of the folk theorem

(with and without discounting) for SPNE. The proofs are considerably more difficult.

Implication: If the stage-game Nash equilibrium payoffs exceed minmax payoffs, then, for

δ sufficiently close to unity, there exist more severe punishments than Nash reversion.

Example:

This game has only one Nash equilibrium: (F , NF ). Note that this gives player 1 the

maximum possible payoffs. It is therefore impossible to force player 1 to do anything

through Nash reversion.
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Exercise: For this example, construct a SPNE in which (NF,NF ) is chosen on the

equilibrium path. Either use the average payoff criterion, or assume an appropriate

value for δ.

We will see another explicit example of punishments that are more severe than Nash rever-

sion when we analyze the dynamic Cournot model.

6.1.5 A short list of other topics

1. Repeated games with imperfect observability of actions.

2. Repeated games with incomplete information (reputation)

3. Heterogeneous horizons (models with overlapping generations, or both short and long-

lived players)

4. Renegotation

6.2 Finitely repeated games

One might think that finitely repeated games get to look a lot like infinitely repeated games

when the horizon is sufficiently long. This is correct for Nash equilibria (where credibility

is not required), but not for subgame perfect equilibria.

Theorem: Consider any finitely repeated game. Suppose that there is a unique Nash

equilibrium for the stage game. Then there is also a unique SPNE for the repeated

game, consisting of the repeated stage game equilibrium

Proof: By induction (with T denoting the number of repetitions).

For T = 1, the repeated game is the stage game, which has a unique Nash equilibrium

Now assume the theorem is true for T − 1. Consider the T -times repeated game. All

subgames beginning in the second period simply consist of the of the (T − 1)-times

repeated game, which, by assumption, has a unique SPNE. Thus, in a SPNE,

actions taken in the first period have no effect on choices in subsequent periods. In
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equilibrium first period choices must therefore be mutual best responses for the stage

game. This means that the first period choices must be the Nash equilibrium choices

for the stage game. Q.E.D.

Remarks:

(i) It is often said that a finitely repeated game “unravels” from the end, much like the

centipede game.

(ii) Cooperation may be possible when the stage game has multiple Nash equilibria.

Example:

There are two Nash equilibria: (b,B) and (c, C). (a,A) is Pareto superior, but it is not a

Nash equilibrium.

Imagine that the game is played twice in succession without discounting.

Strategies: Play a (A) in the first period. If the outcome in the first period was (a,A),

play b (B) in the second period; otherwise, play c (C).
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This is plainly a Nash equilibrium: any other strategy yields a gain of at most 1 unit in the

first period, and a loss of at least 2 in the second period.

It is also a SPNE, since it prescribes a Nash equilibrium in every proper subgame.

Remark: There are folk theorems for finite horizon games formed by repetitions of stage

games that possess multiple equilibria.

6.3 Applications

6.3.1 The repeated Bertrand model

Stage game: N ≥ 2 firms simultaneously select price. Customers purchase from the firm

with the lowest announced price, dividing equally in the event of ties. Quantity pur-

chased is given by a continuous, strictly decreasing function Q(P ). Firms produce with

constant marginal cost c. Let

π(p) ≡ (p− c)Q(p)

We assume that π(p) is increasing in p on [c, pm] (where pm is the monopoly price).

Observation: (i) Nash reversion involves setting p = c, which generates 0 profits. This

is also the minmax profit level. Thus, Nash reversion generates the most severe

possible punishment. Anything that can be sustained as an equilibrium outcome can

be sustained using Nash reversion as punishments. Therefore, we can, without loss of

generality, confine attention to equilibria that make use of Nash reversion.

(ii) The static Bertrand solution is unique. Thus, we know that no cooperation can be

sustained in SPNE for finite repetitions. Henceforth, we focus on infinite repetitions.

Analysis of equilibria:

Consider the following h(∞): both firms select some price p∗ ∈ [c, pm] in every period.
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Assuming that players discount future utility, when can we sustain this path as the outcome

of a SPNE?

Given the preceding observation, we answer this question by determining the conditions

under which this outcome can be supported as a Nash equilibrium using Nash reversion.

In equilibrium each firm receives a payoff of

∞X
t=1

π(p∗)

N
δt−1

If a firm deviates to a price higher than p, it obviously earns nothing. If it deviates to a

price below p, it will earn nothing in subsequent periods (since price will be driven to

marginal cost), and its current period profits are bounded above by π(p∗). Thus, no

firm has an incentive to deviate provided that

∞X
t=1

π(p∗)

N
δt−1 ≥ π(p∗)

This is equivalent to
1

1− δ
≥ N

which in turn implies

δ ≥ N − 1
N

Provided discounting is not too great, cooperation is possible.

Implications:

(i) Cooperation becomes more difficult with more firms. For N = 2, cooperation is sus-

tainable iff δ ≥ 1
2
. As N →∞, the threshhold discount factor converges to unity.

(ii) The equilibrium condition is independent of π, and therefore independent of p∗ (the

price we are attempting to sustain). For the Bertrand game, either everything is

sustainable, or nothing is sustainable.
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(iii) There is no longer a sharp discontinuity between one firm and two, as in the static

Bertrand model. However, given (ii), there is still a sharp discontinuity between some

N and N + 1, where the best cooperative equilibrium shifts from monopoly to perfect

competition.

6.3.2 The repeated Cournot model

Stage game: N = 2 firms simultaneously select quantities. The market clearing price is

given by Q(P ) = a− bQ. Firms produce with constant marginal cost c.

Let Qm = a−c
2b
denote monopoly quantity, and let πm = (a−c)2

4b
denote monopoly profits.

Let qc = a−c
3b
denote Cournot duopoly quantity, and let πc = (a−c)2

9b
denote Cournot duopoly

profits (both per firm).

Observation: If the static Cournot equilibrium is unique, we know that it is impossible to

sustain cooperation in SPNE for finitely repeated games. Henceforth we focus on

infinitely repeated games.

Analysis of equilibria using Nash reversion:

Consider the following h(∞): each firm sets Q
m

2
in every period.

Assuming that players discount future utility, when can we sustain this path as the outcome

of a SPNE, using Nash reversion?

In equilibrium each firm receives a payoff of

∞X
t=1

πm

2
δt−1 =

1

1− δ

(a− c)2
8b

Imagine instead that the firm makes a static best response to Qm

2
(this is its best possible

deviation). Best response profits given that the rival plays Q
m

2
are 9

64
(a−c)2
b
. In every
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subsequent period (after the deviation occurs), the deviating firm earns the static

Cournot profits, πc. The deviation therefore yields discounted profits of

9

64

(a− c)2
b

+
δ

1− δ

(a− c)2
9b

The proposed strategies therefore form an equilibrium iff

9

64

(a− c)2
b

+
δ

1− δ

(a− c)2
9b

≤ 1

1− δ

(a− c)2
8b

Rearranging this expression yields

δ ≥ 9

17
>
1

2

Implication: Using Nash reversion, it is easier to get cooperation with Bertrand than with

Cournot. In the static setting, Bertrand is more competitive. Consequently, Nash

reversion punishments are more severe.

Exercise: We know that Cournot profits decline with the number of firms. This means

that, for the repeated Cournot game, Nash reversion punishments become more se-

vere with more firms. Does the preceeding “implication” mean that, for Cournot,

cooperation is easier to sustain with more firms? If not, why not?

Remark: The preceeding concerns the sustainability of the monopoly outcome. One can

perform a similar calculation for other quantities. In contrast to the Bertrand model,

it turns out that it is easier to sustain less cooperative outcomes (that is, the threshhold

discount factors are lower). Indeed, for Cournot, it is possible to sustain some degree

of cooperation (profits in excess of πc) for all δ > 0. This is a consequence of the

envelope theorem: as one reduces quantities starting at the Cournot equilibrium, the

improvement in profits is first-order, but the change in the difference between profits

and best-deviation profits is second order.

Exercise: For the linear Cournot model, solve for the most profitable symmetric equilib-

rium sustained by Nash reversion, as a function of the discount factor, δ.
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Alternative punishments

Motivation: From the folk theorem, it is obvious that more severe punishments may

be available than Nash reversion. In principle, the associated strategies could be

extremely complex, which would make them difficult to analyze.

Under some circumstances, however, it is possible to characterize the most severe pun-

ishments within large classes of strategies, and to show that the associated strategies

have a relatively simple “stick and carrot” structure. We illustrate using the Cournot

model.

Definitions: A symmetric stick-and-carrot equilibrium for the repeated Cournot model is

characterized by two levels of quantity, qL and qH , with qL < qH .

Let gi(qi, qj) denote firm i’s profits when it produces qi and j produces qj. Assume we have

chosen qL and qH so that gi(qL, qL) > gi(qH , qH).

We define a stick-and-carrot strategy, σsc(t, h(t)), by induction on t:

(i) σsc(1, h(1)) = qL (start by playing qL).

(ii) Having defined σsc(t−1, h(t−1)) for all feasible histories h(t−1), we define σsc(t, h(t)) as

follows. If qi(t−1) = σsc(t−1, h(t−1)) for i = 1, 2, then σsc (t, (h(t− 1), q(t− 1))) = qL.

Otherwise, σsc (t, (h(t− 1), q(t− 1))) = qH .

In words, the choice between qL and qH is always determined by play in the previous period.

If firms have played their prescribed choices in the previous period, then they play qL.

If one or both deviated in the previous period, they play qH .

When both players select stick-and-carrot strategies, play evolves as follows. On the

equilibrium path, (qL, qL) is played every period. If a firm deviates in a single period

t− 1, both players play (qH , qH) in the following period as a punishment, after which

they return to (qL, qL) forever. Notice that, if a player deviates, this strategy requires
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the player to participate in its own punishment in the following period by playing

qH . If it refuses and instead deviates in the punishment period, the punishment is

prolonged. If, on the other hand, it cooperates in its punishment, the punishment

period ends and cooperation is restored. Thus, there is both a “stick” (a one-period

punishment) and a “carrot” (a reward for participating in the punishment). Use of the

carrot can lead players to willingly participate in a very severe one-period punishment.

Analysis of equilibrium: We now derive the conditions under which (σsc,σsc) is a SPNE

for the infinitely repeated Cournot game. Using the standard dynamic programming

argument, it suffices to check single-period deviations.

Given the stationary structure of the game and of the equilibrium, there are only two

deviations to check: from σsc (t, h(t)) = qL, and from σsc (t, h(t)) = qH .

From qL we have:

gi
¡
γi(q

L), qL
¢
− gi

¡
qL, qL

¢
≤ δ

£
gi
¡
qL, qL

¢
− gi

¡
qH , qH

¢¤
From qH we have:

gi
¡
γi(q

H), qH
¢
− gi

¡
qH , qH

¢
≤ δ

£
gi
¡
qL, qL

¢
− gi

¡
qH , qH

¢¤
Specialize to the case where the “carrot” is the monopoly outcome, and the “stick” is the

competitive outcome (price equal to marginal cost). That is, qL = a−c
4b
and qH = a−c

2b
.

Then these expressions can be rewritten as

(a− c)2
16b

≤ δ
(a− c)2
8b

(a− c)2
64b

≤ δ
(a− c)2
8b

Notice that the second expression is redundant. The first simplifies to δ ≥ 1
2
.

186



Implications: Since 1
2
< 9

17
, these strategies allow the firms to sustain the monopoly

outcome at lower discount rates than with Nash reversion. Indeed, they can now

achieve the monopoly outcome for the same range of discount factors as with the

infinitely repeated Bertrand model.

Remark: The stick used here yields zero profits for a single period. One can also use more

severe sticks that yield negative profits for a single period. Under some conditions,

this allows one to construct punishments that yield zero discounted payoffs. The firms

are willing to take losses in the short-term because they expect to earn positive profits

in subsequent periods.

6.3.3 Cooperation with cyclical demand

Motivation: There is some evidence indicating that oligopoly prices tend to be counter-

cyclical (oligopolists are more prone to enter price wars when demand is strong). If

one thinks in terms of conventional supply and demand curves, this is counterintuitive.

Note: the evidence is controversial.

Insight: The ability to sustain cooperation depends generally on the importance of the

future relative to the present (we saw this with respect to the role of δ). When the

present looms large relative to the future, cooperation is more difficult to sustain. This

is what occurs during booms.

Model:

Demand is random. Each period, one of two states, H or L, is realized. The states are

equally probable, and realizations are independent across periods. Demand for state

i is Qi(p), with QH(p) > QL(p) for all p.

N firms acting Bertrand competitors.

Production costs are linear with unit cost c.

187



Notation:

Let πk(p) represents industry profits in state k with price p:

πk(p) ≡ (p− c)Qk(p)

Let πmk denote industry monopoly profits in state k:

πmk = max
p

πk(p)

Equilibrium analysis:

Conditions for equlibrium:

Consider any stationary, symmetric equilibrium path such that both firms select the price

pH in state H and pL in state L.

Construct equilibrium strategies using Nash reversion (here, these are the most severe

possible subgame perfect punishments since they yield zero profits)

Given the stationary structure of the problem and the usual dynamic programming argu-

ment, we need only check to see whether the firms have incentives to make one period

deviations in each state.

For state H: µ
N − 1
N

¶
πH(pH) ≤

µ
δ

1− δ

¶ ∙
1

2
πH(pH) +

1

2
πL(pL)

¸
1

N

For state L: µ
N − 1
N

¶
πL(pL) ≤

µ
δ

1− δ

¶ ∙
1

2
πH(pH) +

1

2
πL(pL)

¸
1

N

Note that the right-hand sides of these expressions are the same, since the future looks

the same irrespective of the current demand state. For any given price, the left-hand

side is greater for the high demand state. Therefore, a given price is more difficult to

sustain for the high demand state than for the low demand state.
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Specialized paramateric assumptions:

Before going further, we will simplify the model by making some parametric assumptions:

(i) Q = θ − p

(ii) θ ∈ {θL, θH} = {1, 2}

(iii) c = 0

(iv) N = 2

Under these assumptions, πk(p) = p(θk − p), πmL = 1
4
, pmL =

1
2
, πmH = 1, and p

m
H = 1.

Question: When do we get the full monopoly solution, pmL in state L, and p
m
H in state H?

Look back at the constraints. If the constraint is satisfied for monopoly in state H, then it

is also satisfied for monopoly in state L. Therefore, we need only check the constraint

for state H. Substituting, we have

1 ≤
µ

δ

1− δ

¶ ∙µ
1

2
× 1
¶
+

µ
1

2
× 1
4

¶¸
This is equivalent to δ ≥ 8

13
.

Note: Since 8
13
> 1

2
, it is more difficult to sustain full monopoly here than in the Bertrand

model with time-invariant demand.

Question: What happens for lower δ?

We know pmH becomes unsustainable for state H. However, the constraint for pmL in the

low state holds with strict inequality at δ = 8
13
. Consequently, one would still expect

it to hold for slightly smaller δ.

Proceed as follows: Assume that, for some δ < 8
13
, pmL is sustainable. Calculate the highest

level of sustainable profits, πH , for state H. If πH ≥ πmL , then the initial assumption

is valid, and we have an equilibrium.
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To compute the highest level of sustainable profits, πH , for state H under the aforemen-

tioned assumption, we substitute into the equilibrium constraint:

πH ≤
µ

δ

1− δ

¶ ∙
1

2
πH +

µ
1

2
× 1
4

¶¸
For the highest sustainable level of state H profits, this constraint holds with equality.

Rearranging yields

πδ
H =

δ

8− 12δ

One can check the following:

For δ =
8

13
, πδ

H = 1 = πmH

For δ =
1

2
, πδ

H =
1

4
= πmL

Thus, as long as δ ∈
£
1
2
, 8
13

¤
, the assumption that πmL is sustainable is valid.

Exercise: Verify that, when δ < 1
2
, the only SPNE outcome involves repetitions of the

static Bertrand outcome (price equal to marginal cost). As in the standard repeated

Bertrand model, no cooperation is sustainable for discount factors below 1
2
.

Properties of equilibrium:

(i) πδ
H (sustainable profits in the high demand state) is increasing in δ. Graphically:
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(ii) Comparison of prices in the two states

For δ ≥ 8
13
, pH = pmH > p

m
L = pL. Prices move pro-cyclically (higher in booms).

For δ = 1
2
, πH = πmL . To achieve the same profits in the high demand state as in the low

demand state, prices must be lower in the high demand state. Therefore, prices move

counter-cyclically.

To find the best cooperative price in state H for δ = 1
2
, we set pH(2−pH) = πmL =

1
4
, which

yields pH = 1−
¡
3
4

¢1/2
.

Graphically, the most cooperative sustainable prices look like this:

Conclusion: There is a range of discount factors over which the best sustainable price

moves countercyclically.
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6.3.4 Multimarket contact

Motivation: In certain circles, there is a concern that large, conglomerate enterprises are

anticompetitive.

Corwin Edwards: When firms come into contact with each other across many separate

markets (geographic or otherwise), opportunistic behavior in any market is likely to

be met with retaliation in many markets, and this may blunt the edge of competition.

Is this reasoning correct from the perspective of formal game theory?

(i) It is correct that, with multimarket contact, deviations may lead to more severe punish-

ments involving larger numbers of markets. However,

(ii) Knowing this, if a firm were to deviate from a cooperative agreement, it would deviate

in all markets. Consequently, it is not obvious that multimarket contact does anything

more than increase the scale of the problem.

It turns out that multimarket contact can facilitate cooperation, but not for the reasons

suggested by Edwards.

The central insight:

Notation:

i denotes firm

k denotes market

Gik denotes the net gain to firm i from deviating in market k for the current period, for a

particular equilibrium

πcik denotes the discounted payoff from continuation (next period forward) for firm i in

market k, assuming no deviation from the equilibrium in the current period.
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πpik denotes the discounted “punishment” payoff from continuation (next period forward)

for firm i in market k, assuming that i deviates from the equilibrium in the current

period.

Equilibrium conditions when markets are separate:

For each i and k,

Gik + δπpik ≤ δπcik

Note that there are N ×K such constraints.

Equilibrium conditions when markets are linked strategically:

For each i, X
k

Gik + δ
X
k

πpik ≤ δ
X
k

πcik

Notice that there are N constraints.

Implication: Multimarket contact pools incentive constraints across markets. This may

enlarge the set of outcomes that satisfies the incentive constraints.

For example, the set {(x, y) | x ≤ 4 and y ≤ 4} is strictly smaller than the set {x, y |

x+ y ≤ 8}.

As it turns out, pooling incentive constraints strictly expands the set of sustainable out-

comes, and in particular improves upon the best cooperative outcome, in a number of

different circumstances. We will study one of them.

Illustration: Slack enforcement power in one market

Idea:When there is more enforcement power than needed to achieve full cooperation in

one market, the extra enforcement power can be used in another market where full

cooperation is not achievable. We will consider two examples.
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Example #1: Differing numbers of firms in each market.

Suppose firms produce homogeneous goods in each market and compete by naming prices

(Bertrand)

Imagine that there are two markets. There are N firms in market 1 and N + 1 firms in

market 2. Moreover,
N − 1
N

< δ <
N

N + 1

From our analysis of the infinitely repeated Bertrand problem, we know that the monopoly

price is sustainable for market 1:

∞X
t=1

π(pm1 )

N
δt−1 > π(pm1 )

However, no cooperative price p2 > c is sustainable for market 2:

∞X
t=1

π(p2)

N + 1
δt−1 < π(p2)

Thus, if single-market firms operate in both markets, market 1 will be monopolized, while

market 2 will be competitive.

Now suppose that N conglomerate firms operate in both markets, and that one single-

market firm operates in market 2. Let 1−α denote the share of market 2 served by the

single-market firm. We will attempt to sustain a cooperative arrangement wherein the

N conglomerate firms divide the remaining share (α) equally. The incentive constraint

for the single-market firm is:

∞X
t=1

(1− α)π(p2)δ
t−1 ≥ π(p2)

This is equivalent to the requirement that α ≤ δ. Thus, the conglomerate firms must cede

at least the share 1− α to the single-market firm to deter the single-market firm from

deviating.
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For the conglomerate firms, the incentive constraint becomes
∞X
t=1

∙
π(pm1 )

N
+ α

π(p2)

N

¸
δt−1 ≥ π(pm1 ) + π(p2)

We will attempt to sustain a cooperative arrangement that cedes as little market share to

the single-market firm as possible (α = δ). Making this substitution and rearranging,

we obtain (after some algebra):

π(p2) ≤ π(pm1 )

Ã
δ − N−1

N
N
N+1
− δ

!µ
N

N + 1

¶
Under our assumptions (cooperation is sustainable in market 1 but not in market 2), the

RHS of this inequality is strictly positive. Thus, through multimarket contact, one

can always sustain p2 > c in market 2 without sacrificing profits in market 1. If δ is

sufficiently close to N
N+1

(cooperation in market 2 is almost sustainable in isolation),

one can achieve monopoly profits in market 2. Note that the conglomerate firms

always cede a larger market share to the single-market share to sustain cooperation.

Example #2: Cyclical demand

Consider the model analyzed in the preceding section. Imagine that there are two such

markets, and that the same firms operate in both markets. Suppose moreover that the

demand shocks in these markets are perfectly negatively correlated (so that there is

always a market in stateH and a market in stage L). Since the markets are symmetric,

this means that there is really only one demand state. Pooling incentive constraints

across markets, we obtain: µ
N − 1
N

¶
[πH(pH) + πL(pL)]

≤
µ

δ

1− δ

¶ ∙
1

2
πH(pH) +

1

2
πL(pL)

¸
2

N

After cancellation, one obtains

N − 1 ≤ δ

1− δ
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This is equivalent to δ ≥ N−1
N
, which is exactly the same as for the simple repeated Bertrand

model. For example, with N = 2, we obtain full cooperation in both states for all

δ ≥ 1
2
.

Remark: As the correlation between the demand shocks rises, the gain to multimarket

contact declines. When the shocks are perfectly positively correlated, there is no gain.

This implies that the potential harm from multimarket contact is greater when the

markets are less closely related.

6.3.5 Price wars

Motivation: Price wars appear to occur in practice. However, in the standard model,

one only obtains price wars off the equilibrium path. This means they happen with

probability zero.

Insight: One can generate price wars on the equilibrium path by considering repeated games

in which actions are not perfectly observable. To enforce cooperation, the players must

punish outcomes that are correlated with deviations. But sometimes those outcomes

occur even without deviations, setting off a price war. In that case, the punishments

must be chosen very carefully to assure that the consequences of the occasional war do

not outweigh the benefits of cooperation.

Model:

N = 2 firms produce a homogeneous good with identical unit costs c

The firms compete by naming prices (Bertrand); indifferent consumers divide equally be-

tween the firms.

Firms do not observe each others’ price choices, even well after the fact.

Demand in each period is either “high” or “low”
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Low demand states occur with probability α. Consumers purchase nothing.

High demand states occur with probability 1− α. Consumer purchase Q(p).

Realizations of demand are independent across periods.

The firms cannot directly observe the state of demand, even well after the fact.

A firm only observes its own price and the quantity that it sells.

Let pm denote the solution to maxp(p− c)Q(p) ≡ πm.

Analysis of equilibrium:

Object: sustain pm

Problem: if a firm ends up with zero sales, there are two explanations: (i) demand is low,

and (ii) its competitor has deviated. It cannot tell the difference.

To sustain pm, the equilibrium must punish deviations. The only alternative is to enter a

punishment phase (price war) any time a firm has zero sales.

Key difference from previous models: the trigger for a price war occurs with strictly positive

probability in equilibrium.

Because price wars will actually occur, the firms want the consequences of these wars to be

no more severe than absolutely necessary to sustain cooperation. We no longer use

grim strategies that involve punishing forever.

“Trigger price” strategies:

Charge pm initially.

As long as firm i has played pm and made positive sales (or played p > pm) in all previous

periods, it continues to play pm
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If, in any period t− 1, firm i either deviated to p < pm or made zero sales, the game enters

a punishment phase in period t.

In the punishment phase, both firms charge p = c for T periods.

When the punishment phase is over, the strategies reinitialize, treating the first non-

punishment period as if it were the first period of the game.

Value functions:

Let V c denote the expected present value of payoffs from the current period forward when

play is not in a punishment phase.

Let V p denote the expected present value of payoffs from the current period forward in the

first period of a punishment phase.

These valuations are related as follows:

V c = (1− α)

∙
πm

2
+ δV c

¸
+ α [0 + δV p]

V p =
T−1X
s=0

(δs × 0) + δTV c

Substituting in the first expression for V p using the second expression yields:

V c = (1− α)

∙
πm

2
+ δV c

¸
+ αδT+1V c

Next we solve for V c:

V c =
(1− α)π

m

2

1− δ(1− α)− αδT+1

Deviations:

Now we evaluate the profitability of a deviation. Plainly, there is no incentive to deviate

during a punishment phase (the prescribed actions constitute the equilibrium for the

stage game). We need only check the desirability of deviating outside of punishment
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phases. The best possible deviation is to slightly undercut pm. The expected present

value of the resulting profits is given by

V d = (1− α) (πm + δV p) + α (0 + δV p)

= (1− α)πm + δT+1V c

Deviations are unprofitable as long as V c ≥ V d. This requires

V c ≥ (1− α)πm + δT+1V c

This is equivalent to:

V c ≥ πm(1− α)

1− δT+1

Now we substitute the expression for V c derived above. The πm term cancels — as in

the standard repeated Bertrand model, the feasibility of cooperation is all or nothing.

Rearranging terms yields the equilibrium condition:

2δ(1− α) + (2α− 1)δT+1 ≥ 1

The length of the punishment period:

Note that the equlibrium does not hold for T = 0 (the left hand side reduces to δ)

An increase in T reduces the absolute value of the second term on the LHS. This can

increase the value of the LHS only if 2α− 1 is negative. In that case, the value of the

LHS remains bounded below 2δ(1−α). Consequently, the equilibrium holds for some

T > 0 if and only if

(i) 2α− 1 < 0, and

(ii) 2δ(1− α) > 1
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Condition (ii) implies condition (i), so we only need to check (ii). When (ii) is satisfied,

cooperation is possible. The best cooperative equilibrium involves the least severe

punishments consistent with incentive compatibility. This requies us to pick the

smallest value of T satisfying the equilibrium condition.

Note that (ii) can be rewritten as

(ii)0 δ > 1
2(1−α)

For the special case of α = 0, this gives δ > 1
2
, which is the correct answer for the Bertrand

model when there is no observability problem.

Conclusions:

(i) Price wars are observed in equilibrium.

(ii) Price wars are set off by declines in demand. (Note that this contrast with the model

of cyclical demand, in which prices fall when demand is high. The key difference

concerns observability.)

When an equilibrium price war occurs, everyone knows that no one deviated. It may

seem odd to enter a punishment phase under those circumstances. However, if the

firms didn’t punish this non-deviation, the incentives to comply with the cooperative

agreement would vanish.

(iii) Equilibrium price wars are transitory.

(iv) Imperfect observability makes cooperation more difficult (it raises the threshhold value

of δ).
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