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Abstract

This paper studies strategic information transmission in a finite horizon environment where,

each period, a privately informed expert sends a message and a decision-maker takes an action. We

show that communication in this dynamic environment is drastically different from in a one-shot

game. Our main result is that full information revelation is possible. We provide a constructive

method to build such fully revealing equilibria, and show that complicated communication, where

far-away types pool together, allows dynamic manipulation of beliefs to enable better information

release in the future. If communication is restricted to be monotonic partitional, full revelation is

impossible. Finally, we show how conditioning future information release on past actions improves

incentives for information revelation.
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Biased experts impede information transmission, which has serious consequences in many sit-

uations: Worse projects are financed, beneficial reforms are blocked, and firms may fail to reward

the most productive employees. The seminal analysis of strategic information transmission by

Crawford and Sobel (1982) has had a number of applications, ranging from economics and political

science, to philosophy and biology.1 In that paper, a biased and privately informed expert and a

decision-maker interact only once. The conflict of interest results in coarse information revelation,

and in some cases, in no information revelation at all. There are, however, many environments in

which the expert and receiver interact repeatedly and information transmission is dynamic. Many

sequential decisions have to take place, and the decision-maker seeks the expert’s advice prior to

each decision.

We study strategic information transmission in a dynamic, finite-horizon extension of the Craw-

ford and Sobel setup. Each period, the expert sends a message and the decision-maker takes an

action. Only the expert knows the state of the world, which remains constant throughout the game.

We maintain all other features of the Crawford and Sobel (1982) environment, in particular the

conflict of interest between the expert and decision-maker. The goal is to investigate the extent to

which conflicts of interest prevent information transmission in multi-period interactions.

Our most surprising and diffi cult-to-establish finding (Theorem 1) shows that full information

revelation is possible. We show this result in a challenging environment where the horizon is finite,

and both players are fully patient. The construction of the fully revealing equilibrium relies on

two key novel features. The first is the use of what we call “separable groups”: the expert employs

a signaling rule in which far-apart types pool together initially, but eventually find it optimal

to separate and reveal the truth. The second feature is to make advice contingent on actions:

the expert promises to reveal the truth later, but only if the decision-maker follows his advice

now; this initial advice, in turn, is designed to reward the expert for revealing information. In

a nutshell, communication in a multi-period interaction is facilitated via an initial signaling rule

that manipulates posteriors (in a way that enables precise information release in the future), initial

actions which reward the expert for employing this signaling rule, and trigger strategies which

reward the decision-maker for choosing these initial actions. Moving from a one-shot to finitely-

repeated game often leaves the qualitative feature of equilibria unchanged; we show here that finite

repetition has a drastic impact of the equilibrium nature of strategic communication.

We now explain in more detail our construction of a fully revealing equilibrium. We first show

that it is possible to divide all states into separable groups. A separable group is a finite set of

states (types) which are suffi ciently far apart that each type would rather reveal the truth, than

mimic any other type in his group. The expert’s initial signaling rule reveals the separable group

1For a survey with applications across disciplines see Sobel (2009).
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containing the truth; therefore, this creates histories after which it is common knowledge that the

decision-maker puts probability one on a particular separable group, at which point the types in

this group will find it optimal to separate. The idea of initially pooling together far-away types,

who will then later have an incentive to separate, was first proposed in Krishna and Morgan (2004);

they demonstrated how this could increase information revelation in dynamic games, and we have

pushed the idea further to demonstrate that if the initial groups are finite and chosen in the right

way, it is possible for the decision-maker to extract all information from a biased expert. The

division of all types into separable groups is quite delicate, because, given that there is a continuum

of types, we need to form a continuum of such groups. The expert anticipates that once he joins

a separable group, he will forgo his informational advantage. For the expert to join the separable

group containing his true type, we have to make sure that he does not want to mimic a nearby type

by joining some other separable group. This is done via our choice of initial actions, which ensure

that any future gain to the expert from mimicking some other type is offset by the initial cost.

These expert-incentivizing actions are not myopically optimal for the decision-maker, so we employ

trigger strategies: the expert (credibly) threatens to babble in the future if the decision-maker fails

to choose the actions that he recommends at the beginning. The final part of the proof then shows

that we can design the separable groups and initial actions such that the decision-maker would

rather follow the expert’s initial advice, knowing that he will then eventually learn the exact truth,

than choose the myopically optimal action in the initial periods, knowing that he will then never

learn more than the separable group containing the truth.

In a follow-up section (Section 4.1), we adapt our construction to a continuous-time setting,

obtaining some more attractive results and generalizations. In particular, Theorem 1 proves that

full information revelation is possible when the decision-maker and expert are both perfectly patient

with quadratic-loss preferences, but only for some horizons, some priors (held by the decision-maker)

over the state space, and when the conflict of interest between expert and decision-maker is small;

moreover, the welfare properties of the equilibrium are both diffi cult to calculate, and in some

cases, not very appealing. Proposition 4 shows that with a trivial modification to the timeline,

and for the same set of priors covered by Theorem 1, our construction yields also a fully revealing

equilibrium for any pair of discount factors, so long as the decision-maker is at least as patient as

the expert. Our second main result, Theorem 2, shows that in a continuous-time setting with an

impatient expert (positive discount rate), a suffi ciently patient decision-maker, and a suffi ciently

long horizon, our fully revealing equilibrium works for nearly all priors over the state space; the

conflict of interest may also be larger than in Theorem 1, and the proofs for the decision-maker do

not rely on quadratic-loss preferences. Moreover, the decision-maker’s average payoff loss (compared

to a full information setting) goes to zero as he becomes perfectly patient.
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We emphasize several additional differences between dynamic and static communication games.

First, we emphasize that fully revealing equilibria cannot have the monotonic partitional structure

from Crawford and Sobel (1982): if attention is restricted to monotonic partition equilibria, learning

quickly stops. Moreover, we argue that non-monotonic equilibria can be strictly Pareto superior to

all dynamic monotonic equilibria. Welfare properties of equilibria also differ in a dynamic setup.

Crawford and Sobel (1982) show that, ex ante, both the expert and the decision-maker will (under

typical assumptions) prefer equilibria with more partitions. We provide an example that shows that

it is not necessarily the case for dynamic equilibria.2 We also present an example in which dynamic

monotonic partition equilibria can strictly Pareto-dominate the best static equilibrium, and an

example showing that non-monotonic equilibria can strictly Pareto dominate the best dynamic

monotonic equilibrium.

Our work shows that the nature of dynamic strategic communication is quite distinct from

its static counterpart. In the static case, because of the conflict of interest between the decision-

maker and the expert, nearby expert types have an incentive to pool together, precluding full

information revelation. The single-crossing property also implies that at equilibrium, the action

is a monotonic step function of the state. These two forces make complex signaling (even though

possible) irrelevant. In the dynamic setup, the key difference is that today’s communication sets

the stage for tomorrow’s communication. Complex signaling helps in the dynamic setup, because

it can generate posteriors that put positive probability only on expert types who are so far apart,

they have no incentive to mimic each other; this is what enables fully revealing equilibria.

Related Literature

Crawford and Sobel (1982) is the seminal contribution on strategic information transmission.

That paper has inspired an enormous amount of theoretical work and myriads of applications.

Here we study a dynamic extension. Much of the previous work on dynamic communication has

focused on the role of reputation; see, for example, Sobel (1985), Morris (2001), and Ottaviani

and Sorensen (2006a, 2006b). Some other dynamic studies allow for multi-round communication

protocols, but with a single round of action(s). Aumann and Hart (2003) characterize geometrically

the set of equilibrium payoffs when a long conversation is possible. In that paper, two players —

one informed and one uninformed —play a finite simultaneous-move game. The state of the world

is finite, and players engage in direct (no mediator) communications, with a potentially infinitely

long exchange of messages, before simultaneously choosing costly actions. In contrast, in our model,

only the informed party sends messages, the uninformed party chooses actions, and the state space

is infinite. Krishna and Morgan (2004) add a long communication protocol to Crawford and Sobel

2A similar phenomenon occurs when communication is noisy, as shown in an example of the working paper version
of Chen, Kartik, and Sobel (2007). In their example, a two-step partition Pareto dominates a three-step partition.
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(1982)’s game, and Goltsman, Hőrner, Pavlov and Squintani (2009) characterize such optimal

protocols.3 Forges and Koessler (2008a, 2008b) allow for a long protocol in a setup where messages

can be certifiable. In all those papers, once the communication phase is over, the decision-maker

chooses one action. In our paper, there are multiple rounds of communication and actions (each

expert’s message is followed by an action of the decision-maker). The multiple actions correlate

incentives in a way that was not possible in these earlier works: the expert is able to condition his

advice on the decision-maker’s past behavior, and additionally, the decision-maker is able to choose

actions which reward the expert appropriately for following a path of advice that ultimately leads

to revelation of the true state.

In our setup, the dynamic nature of communication enables full information revelation. In

contrast, full information revelation is not possible in the dynamic setup of Anderlini, Gerardi,

and Lagunoff (2012), who consider dynamic strategic communication in a dynastic game, and show

that if preferences are not fully aligned, “full learning” equilibria do not exist.4 Renault, Solan,

and Vielle (2011) examine dynamic sender-receiver games, and characterize equilibrium payoffs (for

quite general preferences) for an infinite-horizon model in which the state space is finite, the state

may change each period according to a stationary Markov process, and both players are patient.

In contrast, we assume a continuous state space with persistent information, and our focus is on

the possibility of full information revelation in finite time.5

Our model bears some similarities to models of static strategic communication with multiple

receivers. In those models the expert cares also about a sequence of actions, but in contrast to

our model, those actions are chosen by different individuals. An important difference is that in

our model, the receiver cares about the entire vector of actions chosen; in those models, each

receiver cares only about his own action. This enables our use of trigger strategies, which we find

is a necessary feature of equilibria with eventual full information revelation. Still, some of the

properties of the equilibria that we obtain also appear in the models with multiple receivers. For

example, our non-monotonic example presented in Section 3 resembles Example 2 of Goltsman and

3They examine the optimal use of a 3rd party, such as a mediator or negotiator, to relay messages. For the expert,
our model is equivalent to a one-shot model with a mediator: his expected payoff is the same whether he induces a
sequence of actions (at)Tt=1, or a probability distribution over these actions. For the decision-maker, our model makes
things easier in some ways (our expert can condition future advice on the DM’s past actions), and more diffi cult in
some ways (in our model, the decision-maker knows for sure that the initial actions he’s asked to choose are nowhere
near the true state).

4 In their model, the state space is finite (0 or 1), and there is no perfectly informed player: each receiver gets
a signal about the state and a message from his predecessor, and then becomes the imperfectly informed advisor to
the next player.

5 Ivanov (2011) allows for a dynamic communication protocol in a setup where the expert is also initially unin-
formed, and the decision-maker controls the quality of information available to the expert. He employs separable
groups, but in a much different informational setting: His decision-maker has a device that initially reveals (to the
expert only) the separable group containing the truth, and contains a built-in threat to only reveal the exact state if
the expert reports this information truthfully. Compared to our model, this eliminates all incentive requirements for
the decision-maker, and imposes an additional cost on the expert (namely, he will fail to learn the truth himself) if
he fails to follow the prescribed strategy, thus weakening the required incentive constraints.
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Pavlov (2008). It is also similar to Example 2 in Krishna and Morgan (2004).6

Full information revelation is possible in other variations of the Crawford and Sobel (1982)

setup: When the decision-maker consults two experts as in Battaglini (2002), Eso and Fong (2008),

and Ambrus and Lu (2010); when information is completely or partially certifiable, as in Mathis

(2008); and when there are lying costs and the state is unbounded as in Kartik, Ottaviani, and

Squintani (2007). In the case of multiple experts, playing one against the other is the main force

that supports truthful revelation. In the case of an unbounded state, lying costs become large and

support the truth. In the case of certifiable information, one can exploit the fact that messages are

state-contingent to induce truth-telling. All these forces are very different from the forces behind

our fully revealing construction.

1 Motivating Example: An Impatient Financial Advisor

One of the most stark results of the static strategic communication game is that there is no equi-

librium with full information revelation. Although the state can take a continuum of values, the

expert sends at most finitely many signals to the decision-maker. That is, a substantial amount of

information is not transmitted.

In this example, we show how to construct a fully revealing equilibrium when the expert is

myopic, using just two stages. There are two essential ingredients of this example. First, the set

of types that pool together in the first period are far enough apart that they can be separated in

the second period: that is, each possible first-period message is sent by a separable group of types.

Second, each separable group induces the same optimal (for the decision-maker) first-period action.

This implies that the expert does not care which group he joins (since a myopic expert cares only

about the 1st-period action, which is constant across groups).

Example 1 Fully revealing equilibrium with impatient experts (δE = 0).

Suppose there is an expert (financial advisor) and a decision-maker (an employee). The expert

knows the true state of the world θ, which is drawn from a uniform distribution on [0, 1] and remains

constant over time. The players’payoffs in period t ∈ {1, 2} depend on both the state, θ, and on
the action chosen by the decision-maker, yt. More precisely, payoffs in period t are given by

uEt (yt, θ, b) = − (yt − θ − b)2 and uDMt (y, θ) = − (yt − θ)2 . (1)

where b > 0 is the expert’s “bias”. The expert is myopic, with δE = 0; the construction works for

any discount factor for the decision-maker.

6Equilibria can be non-monotonic also in environments where the decision-maker consults two experts as in
Krishna and Morgan (2001).
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The expert employs the following signaling rule. In period 1, expert types {1
8−ε;

3
8 +ε, 4

8 +ε, 1−ε}
pool together and send the message mε, for all ε ∈ [0, 1

8 ]. For all state pairs {1
8 + ε̃, 7

8 − ε̃} with
ε̃ ∈ (0, 1

4), the expert sends a message mε̃. That is, we have two types of separable groups, indexed

by ε and ε̃. Given this signaling rule, the best response of the decision-maker in period 1 is to

choose:

y1(mε) =
1
8 − ε+ 3

8 + ε+ 4
8 + ε+ 1− ε

4
= 0.5 for all ε ∈ [0,

1

8
],

y1(mε̃) =
1
8 + ε̃+ 7

8 − ε̃
2

= 0.5 for all ε̃ ∈ (0,
1

4
).

In period 2, the expert reveals the truth, and so the decision-maker chooses an action equal to the

true state. After any out-of-equilibrium initial message, the decision-maker assigns equal probability

to all states, leading to action yout1 = 0.5. After any out-of-equilibrium second-period message, the

decision-maker assigns probability 1 to the lowest type in his information set (prior to the off-path

message), and accordingly chooses an action equal to this type.

We now argue that this is an equilibrium for any b < 1
16 :

First, notice that all messages (even out-of-equilibrium ones) induce the same action in period

1. Hence, the expert is indifferent between all possible first-period messages if he puts zero weight

on the future. So, in particular, a myopic expert will find it optimal to send the “right”message,

following the strategy outlined above. Now consider, for example, the history following an initial

message mε. The decision-maker’s posterior beliefs assign probability 1
4 to each of the types in{

1
8 − ε,

3
8 + ε, 4

8 + ε, 1− ε
}
. The expert’s strategy at this stage is to tell the truth: so, if he sends a

message that he is type k ∈
{

1
8 − ε,

3
8 + ε, 4

8 + ε, 1− ε
}
, then the decision-maker will believe that

k is the true state, and accordingly will choose action k; if the expert deviates to some off-path

message, then the decision-maker will assign probability 1 to the lowest type in his information set,
1
8 − ε, and accordingly choose action

1
8 − ε. Therefore, to prove that the expert has no incentive to

deviate, we need only show that each expert type k ∈
{

1
8 − ε,

3
8 + ε, 4

8 + ε, 1− ε
}
would rather tell

the truth, than mimic any of the other types in his group. Type k prefers action k to k′ whenever

− (k − k − b)2 ≥ −
(
k′ − k − b

)2 ⇔ (
k′ − k

) (
k′ − k − 2b

)
≥ 0

i.e., whenever k′ < k, or whenever k′ > k + 2b. So in particular, to make sure that no type in{
1
8 − ε,

3
8 + ε, 4

8 + ε, 1− ε
}
wishes to mimic any other type in this group, it is suffi cient to make

sure that every pair of types are at least 2b apart. Since the closest-together types in the group, 3
8 +ε

and 4
8 + ε, are separated by 1

8 , we conclude that the group is separable whenever
1
8 > 2b⇔ b < 1

16 .

And similarly after messages mε̃.

This construction does not apply with a more patient expert (δE > 0), because it does not
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provide a forward-looking expert with incentives to join the “right”separable group. For example,

consider type 3
8 , and suppose that b = 1

16 . The truthful strategy is to reveal group {
1
8 ,

3
8 ,

4
8 , 1}

in period 1, and the tell the truth in period 2, inducing actions (y1, y2) =
(

1
2 ,

3
8

)
. However such

strategy cannot be part of an equilibrium if δE > 0. The best deviation for θ = 3
8 is to mimic

type 3
8 + 1

16 —initially claiming to be part of the group
{

1
8 −

1
16 ,

3
8 + 1

16 ,
4
8 + 1

16 ,
7
8 −

1
16

}
, and then

subsequently claiming that the true state is 3
8 + 1

16 —thereby inducing actions (y1, y2) =
(

1
2 ,

3
8 + 1

16

)
.

This deviation then leads to no change in the first-period action, but the 2nd-period action is now

equal to type 3
8’s bliss point,

3
8 + 1

16 . When δE > 0 we need to provide the expert with better

incentives to join the “right”separable group: since θ prefers θ + b’s action in the future, he must

prefer his own action now. This is much more complex, but in Section 4, we show how to construct

such separation-inducing actions.

2 The Model

We extend the classic model of Crawford and Sobel (1982) to a dynamic setting. There are two

players, an expert (E) and a decision-maker (DM), who interact for finitely many periods. The

expert knows the true state of the world θ ∈ [0, 1], which is constant over time and is distributed

according to the c.d.f. F, with associated density f . Both players care about their discounted

payoff sum: when the state is θ and the decision-maker chooses actions yT = (y1, .., yT ) in periods

1, 2, ..., T, payoffs are given by:

expert: UE(yT , θ, b) = ΣT
t=1δ

t−1
E uE(yt, θ, b)

DM: UDM (yT , θ) = ΣT
t=1δ

t−1
DMu

DM (yt, θ)

where b > 0 is the expert’s “bias” and reflects a conflict of interest between the players, and

δE , δDM are the players’discount factors. We assume that uE(yt, θ) and uDM (yt, θ, b) satisfy the

conditions imposed by Crawford and Sobel (1982): for i = DM,E, ui (·) is twice continuously
differentiable, ui1(y, θ) = 0 for some y and ui11 (·) < 0 (so that ui has a unique maximizer y for

each pair (θ, b)), and that ui12 (·) > 0 (so that the best action from an informed player’s perspective

is strictly increasing in θ). Most of our main results will make the more specific assumption that

preferences are quadratic, as given by (1) .

At the beginning of each period t, the expert sends a (possibly random) message mt to the

decision-maker. The decision-maker then updates his beliefs about the state, and chooses an action

yt ∈ R that affects both players’payoffs. Let yDM (θ) and yE(θ) denote, respectively, the decision-

maker’s and the expert’s most preferred actions in state θ; we assume that for all θ, yDM (θ) 6= yE(θ),

so that there is a conflict of interest between the players regardless of the state.

The decision-maker observes his payoffs only at the end of the game. (If the decision-maker

8



could observe his payoff each period, the problem would be trivial, as he could simply invert his

payoff to determine the true state θ. As usual, we could alternatively assume stochastic payoffs, with

suffi cient noise that the decision-maker is unable to learn anything about the state from observing

his payoff realizations).

A strategy profile σ = (σi)i=E,DM , specifies a strategy for each player. Let ht denote a history

that contains all the reports submitted by the expert, mt−1 = (m1, ...,mt−1), and all actions chosen

by the decision-maker, yt−1 = (y1, ..., yt−1), up to stage t. The set of all feasible histories at t

is denoted by Ht. A behavioral strategy for the expert, σE , consists of a sequence of signaling

rules that map [0, 1]×Ht to a probability distribution over reportsM. Let q(m |θ, ht ) denote the
probability that the expert reports message m at history ht when his type is θ. A strategy for the

decision-maker, σDM , is a sequence of maps from Ht to actions. We use yt(m |ht ) ∈ R to denote
the action that the decision-maker chooses at ht given a report m. A belief system, µ, maps Ht to

the set of probability distributions over [0, 1]. Let µ(θ|ht) denote the decision-maker’s beliefs about
the experts’s type after a history ht. A strategy profile σ and a belief system µ is an assessment.

We seek strategy profiles and belief systems that form Perfect Bayesian Equilibria, (PBE).

In the paper we use the terminology as follows.

Definition 1 An equilibrium is called babbling if for all m with q(m |θ, ht ) > 0, all θ ∈ [0, 1], all

ht and t, we have that yt(m |ht ) = ŷ.

In other words, we call an equilibrium babbling if the same action is induced, with probability

one, for all states θ ∈ [0, 1] and all t ∈ T.

Definition 2 We call a signaling rule q uniform if q(m |θ, ht ) is uniform, with support on [θi, θi+1]

if θ ∈ [θi, θi+1].

Definition 3 A partition equilibrium is one in which, at each period t and history ht, the expert

employs only uniform signaling rules.

In other words, in a partition equilibrium, the expert follows a pure strategy in which, for any

message m, the set of types sending message m is connected (an interval).

Definition 4 An equilibrium is fully revealing if there exists T̂ ≤ T such that for all θ ∈ [0, 1], and

all histories along the equilibrium path, the expert reveals the true state with probability one by time

T̂ , and accordingly yt(θ) = yDM (θ) ∀t ≥ T̂ .

We first briefly summarize the findings of the one-shot strategic information transmission game

of Crawford and Sobel (1982), in which uniform signaling rules are the canonical form of commu-

nication. We then study properties of uniform signaling in our dynamic setup.
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2.1 Uniform Signaling: The Canonical Static Communication

Crawford and Sobel (1982) show that in a one-shot strategic information transmission game, all

equilibria are equivalent to partition equilibria: the expert follows a pure strategy in which intervals

of types pool together, by sending the same message, inducing actions which are increasing step

functions of the state. Communication is then coarse; even though the state θ takes a continuum

of values, only finitely many different actions are induced.

The reasons behind this result can be summarized as follows. Fix an equilibrium of the one-shot

game and let y(θ) denote an action induced when the state is θ. The conflict of interest between

the expert and the decision-maker implies that at most finitely many actions can be induced at

equilibrium. Together with the single-crossing condition and the fact that uE (·) is strictly concave
in y, this implies that equilibrium actions are an increasing step function of the state. Importantly,

Crawford and Sobel (1982) show that, without loss of generality, the actions induced at equilibrium

can be taken to arise from uniform signaling rules. This result follows from the observation that all

messages inducing the same action y can be replaced by a single message. Therefore, more complex

signaling rules play no role in the static setup.

2.2 Uniform Signaling: A Special Kind of Dynamic Communication

We now focus on simple partitional communication protocols (uniform signaling) and study their

properties in our dynamic setup. We show two results. The first result is that with monotonic

partition equilibria, the decision-maker never learns the truth:

Proposition 1 For all horizons T , there exist no fully revealing monotonic partition equilibria.

This result follows almost immediately from Crawford and Sobel (1982). A short sketch of the

argument is as follows. Suppose, by contradiction, that there exists a fully revealing monotonic

partition equilibrium. Then, there exists a period T̂ ≤ T in which the last subdivision occurs, with
yt(θ) = yDM (θ) for all t ≥ T̂ . Then, the incentive constraint at time T̂ for type θ to not mimic

type θ + ε is(
1 + δ + δ2 + ...+ δT−T̂−1

)
uE
(
yDM (θ) , θ, b

)
≥
(

1 + δ + δ2 + ...+ δT−T̂−1
)
uE
(
yDM (θ + ε) , θ, b

)
and similarly for type θ + ε. These conditions are equivalent to the static equilibrium conditions

in Crawford and Sobel (1982), who proved that they imply that at most finitely many actions can

be induced at an equilibrium of a static game, a contradiction to full revelation.

We now proceed to show that if all static equilibria are babbling, then all dynamic monotonic

partition equilibria are equivalent to babbling.
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Proposition 2 If all static equilibria are equivalent to the babbling equilibrium, then all dynamic

monotonic partition equilibria are equivalent to babbling.

Proof. See Appendix A.

Note that the logic of the arguments used to establish Propositions 1 and 2 applies also to an

infinite horizon environment.

Now we move on to show that dynamic monotonic partition equilibrium can Pareto-dominate

all equilibria of the one-shot game. In Appendix B, we construct a two-period example in which

δE = δDM = 1, the state θ is uniformly distributed on [0, 1], and preferences are given by (1) , with

b = 1
12 . In the most informative static equilibrium, the state space is partitioned into two pieces,[

0, 1
3

]
∪
[

1
3 , 1
]
, inducing actions 1

6 and
4
6 . On the other hand, there exists a partition equilibrium of

the two-period game in which the state space is divided ultimately in three sub-intervals, [0, 0.25]∪
[0.25, 0.45833] ∪ [0.458 33, 1], and which is (ex-ante) strictly Pareto superior to repetition of the

static equilibrium.

However, in dynamic settings it is also possible to have equilibria with more partitions that

are inferior to ones with less (we present an example of such an equilibrium in Appendix C). This

happens because a larger ultimate number of partitions may require extensive pooling earlier on,

inducing overall lower welfare. This finding is in contrast to Crawford and Sobel (1982), who

show that under their Condition M (essentially a unique equilibrium for each partition size N),

equilibria can be easily Pareto ranked: both the expert and the decision-maker prefer (ex ante) the

equilibrium with the highest number of partitions.7 Our findings suggest that Pareto comparisons

in dynamic cases are less straightforward, even if we restrict attention to monotonic partitional

equilibria.

We proceed to study the role of complex signaling in our dynamic game.

3 An Example with Complex Signaling and Dynamic Information

Revelation

In this section, we present an example in which the expert employs a complex signaling rule, which

induces non-monotonic actions. In this example, the bias is so severe that in a static setting, all

equilibria would be babbling. We show that even in these extreme bias situations, some information

can be revealed with just two rounds. This equilibrium has the feature that the decision-maker

learns the state quite precisely when the news is either horrific or terrific, but remains agnostic for

7The equilibrium with the largest number of partitions is the only equilibrium that satisfies the “no incentive to
separate”(NITS) condition (Chen, Kartik, and Sobel (2008)).
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intermediate levels. Finally we show that for a range of biases, this non-monotonic equilibrium is

Pareto superior to all monotonic ones.

Example 2 Dynamic equilibria can be non-monotonic

Consider a two period game where δE = δDM = 1, types are uniformly distributed on [0, 1] and

preferences are given by (1). We will construct an equilibrium with the following “piano teacher”

interpretation: a child’s parent (the decision-maker) wants the amount of money he spends on

lessons to correspond to the child’s true talent θ, whereas the piano teacher (expert) wants to

inflate this number. In our equilibrium, parents of children who are at either the bottom or top

extreme of the talent scale get the same initial message, “you have an interesting child” (m1(1)

below), and then find out in the second period whether “interesting”means great (m2(3)) or awful

(m2(1)); parents of average children are told just that in both periods. More precisely, let the expert

use the following signaling rule:

In period 1, expert types in [0, θ) ∪ (θ̄, 1] send message m1(1) with probability 1, and types in

[θ, θ̄] send message m1(2) with probability 1. In period 2, the expert adopts the following signaling

rule: types in [0, θ) send message m2(1), types in [θ, θ̄] send a message m2(2), and types in (θ̄, 1] send

m2(3) (all with probability 1). With this signaling rule, the optimal actions for the decision-maker in

period 1 are y1(1) = θ2−θ̄2
+1

2(θ−θ̄+1)
, y1(2) = θ+θ̄

2 ; in period 2, they are y2(1) = θ
2 , y2(2) = θ+θ̄

2 , y2(3) = 1+θ̄
2 .

After any out-of-equilibrium message, the decision-maker assigns equal probability to all states in

[θ, θ], and so will choose action yout = θ+θ̄
2 . With these out-of equilibrium beliefs, no expert type

has any incentive to send an out-of-equilibrium message.

In order for this to be an equilibrium, type θ must be indifferent between message sequences

A ≡
(
m1(1),m2(1)

)
and B ≡

(
m1(2),m2(2)

)
:

−
(
θ2 − θ̄2

+ 1

2(θ − θ̄ + 1)
− θ − b

)2

−
(
θ

2
− θ − b

)2

= −2

(
θ + θ̄

2
− θ − b

)2

(2)

and type θ̄ must be indifferent between message sequences B and C ≡
(
m1(1),m2(3)

)
:

−
(
θ2 − θ̄2

+ 1

2(θ − θ̄ + 1)
− θ̄ − b

)2

−
(

1 + θ̄

2
− θ̄ − b

)2

= −2

(
θ + θ̄

2
− θ̄ − b

)2

. (3)

At t = 2 it must also be the case that type θ prefers m2(1) to m2(3), and the reverse for type θ̄:

that is −( θ2 − θ− b)
2 ≥ −(1+θ̄

2 − θ− b)
2 and −(1+θ̄

2 − θ̄− b)
2 ≥ −( θ2 − θ̄− b)

2. The global incentive

compatibility constraints, requiring that all types θ < θ prefer sequence A to B and that all types

θ > θ prefer C to B, reduce to a requirement that the average induced action be monotonic, which

12



is implied by indifference constraints (2) , (3) .8

A solution of the system of equations (2) and (3) gives an equilibrium if 0 ≤ θ < θ̄ ≤ 1. We

solved this system numerically, and found that the highest bias for which it works is b = 0.256. Here,

the partition cutoffs in our equilibrium are given by θ = 0.0581, θ̄ = 0.9823. The corresponding

optimal actions for period 1 are y1(1) = 0.253, y1(2) = 0.52, and for period 2 they are y2(1) = 0.029,

y2(2) = 0.52, y2(3) = 0.991. Note that while the first period action is non-monotonic, the average

action ȳ = y1+y2

2 is still weakly increasing in the state. Ex ante payoffs are −0.275 for the expert,

and −0.144 for the decision-maker.

Recall that in a one-shot game with quadratic preferences, the only equilibrium is the babbling

one whenever b > 1
4 . Proposition 2 implies that at b = 0.256, if we restricted attention to monotonic

partition equilibria, we would again find only a babbling equilibrium, in which the decision-maker

chooses action yB = 0.5 in both periods: this yields ex-ante payoffs of −0.298 to the expert, −0.167

to the decision-maker, strictly worse than in our above construction.

Our example therefore illustrates how allowing for non-monotonic equilibria can both increase

the amount of information revelation, and can also strictly Pareto-dominate the best static equi-

librium. By pooling together the best and the worst states in period 1, the expert is willing to

reveal in period 2 whether the state is very good or very bad. It also has the following immediate

implication:

Proposition 3 There exist non-monotonic equilibria that are Pareto superior to all monotonic

partition equilibria.

We now move on to our first main result, showing that our dynamic setup correlates the incen-

tives of the expert and decision-maker in such a way that full information revelation is possible.

4 Learning the Truth when the Expert is Patient

When the expert is patient rather than myopic, getting him to reveal the truth is much more

complicated, as we previewed in Section 1. In this section, we construct a fully revealing equilibrium

for the quadratic preferences specified in (1) . The equilibrium relies on two main tools: separable

groups, and trigger strategies. These tools have no leverage in single-round communications, but

are powerful in dynamic communications.

8Rearranging (3) , the LHS is greater than the RHS for type θ (so he prefers C to B) iff(
θ − θ

) ( y1(1)+y2(3)
2

− y1(2)

)
> 0, so we need

y1(1)+y2(3)
2

> y1(2) for this to hold ∀θ > θ. This is implied by (3) : adding

2
(
y1(1)+y2(3)

2
− θ − b

)2

to both sides and factoring yields
(
y1(2) − θ − b

)2−( y1(1)+y2(3)
2

− θ − b
)2

=
(
y1(1)−y2(3)

2

)2

≥

0, so we need
∣∣y1(2) − θ − b

∣∣ ≥ ∣∣∣ y1(1)+y2(3)2
− θ − b

∣∣∣ ; since y1(2) < θ + b, this implies y1(2) ≤
y1(1)+y2(3)

2
, as desired.

And similarly at θ.
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The equilibrium works as follows: in each period, the expert recommends an action to the

decision-maker. Initially, each action is recommended by finitely many (at most four) expert types,

who then subdivide themselves further into separable groups of two with an interim recommenda-

tion. If the decision-maker chooses all initial actions recommended by the expert, then the expert

rewards him by revealing the truth in the final stage of the game, recommending an action y(θ) = θ.

If the decision-maker rejects the expert’s early advice, then the expert babbles for the rest of the

game, and so the decision-maker never learns more than the separable group containing the truth.

We provide here an outline of how we construct fully revealing equilibria for quadratic prefer-

ences. This is followed by the statement of our first main theorem, with full proof details given in

Appendix D.

Equilibrium Outline: Separable Groups

Rather than having intervals of types pool together, we construct pairs of far-away types (“part-

ners”) who pool together in the initial periods. The advantage is that once the expert joins one of

these separable groups, revealing the two possible true states to the decision-maker, we no longer

need to worry about him mimicking nearby types: his only options are to tell the truth, or to mimic

his partner. Of course, an important part of the proof is to ensure that each expert type wants

to join the “right” separable group. For a myopic expert, this is straightforward: if the expert

cares only about the first-period action, then to make him join the right group, it is suffi cient that

the first-period action be constant across groups. (In fact, the myopic expert result relied only on

separable groups, without the need for trigger strategies: we were able to group types such that

the (constant) action recommended by each group was equal to the average type within the group,

i.e. so that it coincided with the decision-maker’s myopically optimal choice). For a patient expert,

the construction is significantly more involved, as it must take dynamic incentives into account.

In particular, the actions induced in the initial stages cannot be flat: if this were the case, then

an expert who cares about the future would simply join whichever separable group leads to the

best future action. Hence, for a patient expert, we need to construct initial action functions which

provide appropriate incentives: if type θ knows that some type θ′ will get a more favorable action

in the revelation phase, then type θ’s group must induce an initial action which is more favorable

to type θ than that induced by (θ′)’s group.

Equilibrium Outline: Strategies

Before we proceed with the sketch, it is useful to simplify notation and work with a scaled type

space by dividing all actions and types by b. When we say that “type θ ∈ [0, 1
b ] recommends u(θ)

in period 1, for disutility (u(θ)− θ − 1)2”, we mean that (in the unscaled type space) “type θb

recommends action u(θ)b, for disutility (u(θ)b− θb− b)2 = b2 (u(θ)− θ − 1)2”.
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We first partition the scaled type space [0, 1
b ] into four intervals, with endpoints [0, θ1, θ2, θ3,

1
b ].

The separable groups are as follows: at time t = 0, each type θ ∈ [0, θ1] pools with a partner

g(θ) ∈ [θ2, θ3] to send a sequence of recommendations (u1(θ), u2(θ)) , and then reveal the truth at

time t = 2 iff the decision-maker followed both initial recommendations. Each type θ ∈ [θ1, θ2]

initially pools with a partner h(θ) ∈ [θ3,
1
b ] to recommend a sequence (v1(θ), v2(θ)) , then revealing

the truth at time T − τ (τ < T − 2 a time parameter to be determined) iff the expert followed

their advice.9 For the purpose of this outline, take the endpoints θ1, θ2, θ3 as given, along with

the partner functions g : [0, θ1] → [θ2, θ3]; h : [θ1, θ2] → [θ3,
1
b ], and recommendation functions

u1, u2, v1, v2. In the appendix, we derive the parameters and functions that work, and provide the

full details of how to construct fully revealing equilibria.

We now describe the strategy for the expert and for the decision-maker. For notational purposes

it is useful to further subdivide the expert types into three groups: I, II, and III.

At time t = 0, there are then three groups of experts. Group I consists of types θI ∈ [θ1, θ2]

with their partners h
(
θI
)
∈
[
θ3,

1
b

]
. Group II consists of all types θII ∈ [0, θ1] whose initial

recommendation coincides with that of a Group I pair, together with their partners g(θII) ∈ [θ2, θ3].

Group III consists of all remaining types θIII ∈ [0, θ1] and their partners g(θIII) ∈ [θ2, θ3]. In other

words, we divided the types in intervals [0, θ1] ∪ [θ2, θ3] into two groups, II and III, according to

whether or not their initial messages coincide with that of a group I pair.

The timeline of the expert’s advice is as follows:

↓ ↓ ↓ ↓ ↓
Phase 1 (t = 0) Phase 2 (t = 2α0) Phase 3 (t = 2αa) Phase 4 (t = 2) Phase 5 (T − τ)

Group I : v1

Groups II, III : u1

Group I :

switch to v2

Groups II, III :

switch to u2

Groups II, III :

reveal the truth

Group I :

reveal the truth
Figure 1: Timeline

where 0 < α0 ≤ αa < 1 are specified in the appendix (Section D.2.1).

In words: in the initial phase, types in Group I recommend v1: v1

(
θI
)

= v1

(
h
(
θI
))
, while

types in Groups II and III recommend the action u1: u1

(
θII
)

= u1

(
g
(
θII
))
. Importantly, the

recommendations for the types in Groups I and II coincide (while Group III recommendations

do not coincide with those of any Group I pair): for every θI in Group I, there exists θII in Group

II with v1

(
θI
)

= u1

(
θII
)
. This is why, for ease of exposition, we have a subdivision into Groups

II and III; upon receiving a recommendation v1(θI) = u1(θII), the decision-maker believes that it

could have come from any of the types in
{
θI , h

(
θI
)
, θII , g

(
θII
)}
(see footnote 25 in Section D.2.1

for why this is needed). At time t = 2α0, group I pairs {θI , h(θI)} change their recommendation
9Note that u1, u2, v1, v2 are functions of θ, and that in our construction, the expert’s messages (“recommenda-

tions”) are equal to the actions that he wants the decision-maker to take, and the decision-maker can then infer the
expert’s separable group from the message.
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to v2(θI) = v2(h(θI)), while Groups II and III continue to follow the recommendation function

u1 (that is, they do not yet change their advice). Thus, at this stage, the decision-maker learns

whether he is facing a Group I, II or III pair. At time t = 2αa ≥ 2α0, group II and III pairs

switch to the recommendation function u2, where αa may depend on the specific pair.10 Group I

continues to follow the recommendation function v2, revealing no further information at this stage.

At time t = 2, group II and III pairs separate: each type θII or θIII in [0, θ1] sends a message

equal to his type (thus revealing the truth for the final T − 2 periods), and similarly their partners

g(θII), g(θIII) send messages equal to their own types. At time T−τ > 2, Group I pairs {θI , h(θI)}
separate, with type θI recommending action θI and type h(θI) recommending h(θI) for the final

τ periods. It should be noted that the times at which the decision-maker is instructed to change

his action (2α0, 2αa, T − τ) are not necessarily integers in our construction. In a continuous-time

setting, this clearly poses no problem; in discrete time, we can deal with integer constraints via

public randomization and/or scaling up the horizon, as explained in the Appendix (D.2.6).

The decision-maker’s strategy is to follow all on-path recommendations. An off-path recom-

mendation at time t = 0 is treated as a mistake coming from the pair {0, g(0)}, and subsequent
off-path recommendations are simply ignored as errors (full details at the start of Section D.1 in

the Appendix).

To summarize: In the initial phase, separable groups are formed. Each expert type sends a

recommendation sequence of the form

 v1(θI)︸ ︷︷ ︸
2α0 periods

, v2(θI)︸ ︷︷ ︸
T−τ−2α0 periods

 or

 u1(θi)︸ ︷︷ ︸
2αa periods

, u2(θi)︸ ︷︷ ︸
2(1−αa) periods

 ,

with i ∈ {II, III}, and such that for all θI ∈ [θ1, θ2] there exists θII ∈ [0, θ1] with v1(θI) = u1(θII).

During these phases, the decision-maker is able to infer the separable group containing the expert’s

true type, but, rather than choosing the corresponding myopically optimal action, he chooses

the actions u1, u2, v1, v2 recommended by the expert. These action functions are constructed to

provide the expert with incentives to join the right separable group at time 0. The final phases

are the revelation phases: the separable groups themselves separate, revealing the exact truth to

the decision-maker, provided that he has followed all of the expert’s previous advice; any deviation

results in babbling by the expert during the revelation phase.

Incentivizing the Expert

Finally, we briefly explain the construction of the functions (u1, u2) and (v1, v2) , and the cor-

responding partner functions g, h (and endpoints θ1, θ2, θ3), which are given parametrically in the

Appendix (see equations (14) , (15)). For the expert, three sets of constraints must be satisfied:

10 In Proposition D3 in the appendix, we describe Group II, III types and their recommendations parametri-
cally, as functions of a variable a. Then, in Lemma D7.1, we choose αa to ensure the desired overlap of the u1, v1

recommendation functions.
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Expert Local IC:

The first set of constraints can be thought of as local incentive compatibility constraints—that

is, those applying within each type θ’s interval [θi, θi+1]. These (dynamic) incentive compatibility

constraints ensure that, say, the agent θ ∈ [0, θ1] prefers to induce actions u1(θ) (for 2αa periods),

u2(θ) (for 2(1 − αa) periods), and then reveal his type θ for the final T − 2 periods, than e.g. to

follow the sequence
(
u1(θ′), u2(θ′), θ′

)
prescribed for some other type θ′ in the same interval [0, θ1]

(and analogously within each of the other three intervals). For types θ ∈ [0, θ1], this boils down to

a requirement that u1, u2 satisfy the following differential equation,

2αau
′
1(θ) (u1(θ)− θ − 1) + 2(1− αa)u′2(θ) (u2(θ)− θ − 1) = T − 2 (4)

and that the “average”action, 2αau1(θ) + 2(1−αa)u2(θ) + (T −2)θ, be weakly increasing in θ. We

provide a more detailed explanation and solution of this equation in the Appendix, Section D.3.1,

and derive similar equations for the other three intervals.

Note that a longer revelation phase (that is, an increase in the RHS term (T −2) in (4)) requires

a correspondingly larger distortion in the action functions u1, u2 : if the expert anticipates a lengthy

phase in which the DM’s action will match the true state (whereas the expert’s bliss point is to the

right of the truth), then it becomes more diffi cult in the initial phase to provide him with incentives

not to mimic the advice of types to his right. This is why a longer horizon does not trivially imply

better welfare properties.

Expert Global IC:

The next set of constraints for the expert can be thought of as “global”incentive compatibility

constraints, ensuring that no expert type wishes to mimic any type in any other interval. In the

appendix, we show that this boils down to two additional requirements: each endpoint type θ1, θ2, θ3

must be indifferent between the two equilibrium sequences prescribed for his type (for example, type

θ1 must be indifferent between sequences

u1(θ1)︸ ︷︷ ︸
2αa

, u2(θ1)︸ ︷︷ ︸
2(1−αa)

, θ1︸︷︷︸
T−2

 and
v1(θ1)︸ ︷︷ ︸

2α0

, u2(θ1)︸ ︷︷ ︸
T−τ−2α0

, θ1︸︷︷︸
τ

), and
the “average”action must be either continuous or jump up at each endpoint (see Appendix Lemma

D.3.2, with further details in Section D.3.1).

Expert Separation:

The final constraint requires that each pair of types indeed be “separable”, that is, suffi ciently far

apart that each type would rather tell the truth than mimic his partner. In our rescaled type space

with quadratic preferences, this requires choosing partner functions g, h satisfying |g(θ)− θ| ≥ 2
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and |h(θ)− θ| ≥ 2, which we do in the appendix (Section D.1.2). It turns out to be very tricky to

satisfy the global incentive compatibility constraints together with the local constraints: it in fact

requires a minimum of two distinct actions prior to the revelation phase (this is why e.g. Group

III pairs must change their recommendation from u1 to u2 at time 2αa, even though doing so

reveals no further information), and that the type space be partitioned into a minimum of four

intervals. Moreover, for any partition into four intervals, there is in fact only one partner function

g : [0, θ1] → [θ2, θ3] that works, and we believe that there is no partition which would allow

for expert-incentivizing action functions which are myopically optimal from the decision-maker’s

perspective. This is why our construction relies on trigger strategies: the expert only reveals the

truth if the decision-maker follows all of his advice.

We graph the equilibrium actions u1, v1 in the left-most graph, the u2, v2 in the middle graph,

and the average action for b = 1
60. 885 and T = 4 :
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Incentivizing the decision-maker:

Suppose that the expert recommends an action u1(θ), which the decision-maker believes could

only have come from types θ, g(θ). If the decision-maker follows the recommendation, then he

expects the expert to switch his recommendation to u2(θ) at time 2αa, and then recommend the

true state θ for the final T − 2 periods. If the decision-maker assigns probabilities pθ, 1 − pθ to

types θ, g(θ), then this yields an expected disutility of

pθ

(
2αa (u1(θ)− θ)2 + 2(1− αa) (u2(θ)− θ)2

)
+(1−pθ)

(
2αa (u1(θ)− g(θ))2 + 2(1− αa) (u2(θ)− g(θ))2

)
(noting that disutility in the final T − 2 periods is zero). The problem is that the initial rec-

ommendations u1(θ), u2(θ) do not coincide with the decision-maker’s myopically optimal action,

y∗(θ) ≡ pθθ+(1−pθ)g(θ).We therefore employ trigger strategies: the expert only reveals the truth

in the final stage if the decision-maker follows his recommendations at the beginning of the game.

If the decision-maker ever rejects his advice, then the expert babbles for the rest of the game, and
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so the decision-maker’s disutility is at best

T ·

pθ ·
pθθ + (1− pθ)g(θ)︸ ︷︷ ︸

y∗(θ)

− θ


2

+ (1− pθ) ·

pθθ + (1− pθ)g(θ)︸ ︷︷ ︸
y∗(θ)

− g(θ)


2

So, for the equilibrium to work for the decision-maker, we need to make sure that the benefit

to learning the exact state, rather than just the separable group containing it, is large enough to

compensate him for the cost of following the expert’s initial recommendations, rather than deviating

to the myopically optimal actions. This is what limits the priors for which our construction works,

and imposes the upper bound b ∼= 1
61 on the bias (see Appendix D.3.2, end of first paragraph). The

construction works for the expert ∀b < 1
16 (see appendix, end of proof of Proposition D2 in Section

D.1.2).

Beliefs

We assume that the decision-maker is Bayesian: if he believes that the expert’s first-period

messages are given by a function M : [0, 1]→ R, with the property that

M(x) = M(p(x))

for all x in some interval [x, x] and p : [x, x] → [0, 1]\[x, x] some continuous differentiable function

(i.e., types x and p(x) are “partners”who follow the same messaging strategy), then, after receiving

the message m = M(x) = M(p(x)), the decision-maker’s beliefs satisfy

Pr(x|m)

Pr(p(x)|m)
= lim

∆→0

F (x+ ∆)− F (x−∆)

F (p(x+ ∆))− F (p(x−∆))
=

f(x)

f(p(x))

∣∣∣∣ 1

p′(x)

∣∣∣∣ (5)

This says that the likelihood of type x relative to p(x) is equal to the unconditional likelihood

ratio (determined by the prior F ), times a term which depends on the shape of the p-function,

in particular due to its influence on the size of the interval of p-types compared to their partner

interval, [x, x] .11

We now state our main result:

Theorem 1 Suppose that δE = δDM = 1 and that the preferences of the expert and of the decision-

maker are given by (1) . For any bias b ≤ 1
61 , there is an open set of priors F ,

12 and a horizon T ∗,

for which a fully revealing equilibrium exists whenever T ≥ T ∗.
11To understand this formula, consider an example in which F is uniform and p (·) is linear, say p(x) = α+βx. In

this case, the interval [p(x), p(x)] is β times as large as the interval [x, x] , so intuitively, it is as if the message sent
by type x is sent by β “copies”of type p(x) : therefore, the decision-maker’s beliefs assign β times as much weight to
type p(x) as to type x, which is precisely what our formula says. Beliefs are assigned analogously after period 1.

12This is slightly strengthened from previous versions of the paper, which claimed only an infinite (rather than
open) set of priors.
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The details of the construction can be found in the Appendix.

Substantively, this Theorem establishes an unexpected finding: even with a forward-looking

expert and an infinite state space, there are equilibria in which the truth is revealed in finite time.

We initially expected to prove the opposite result. Technically, the construction involves several

innovative ideas that we expect to be useful in analyzing many dynamic games with persistent

asymmetric information.

Discussion

The true state is revealed at either time 2 or time T − τ , where T − τ can be chosen to be at
most 5 (specified at start of Appendix D.2.1). Thus, the decision-maker chooses his best possible

action, equal to the true state, in all but the first few periods. It is tempting to conclude that a

long horizon means an equilibrium approaching the first-best, but unfortunately this is not true

when the decision-maker and expert are equally patient. As explained after equation (4) , a long

horizon also makes it diffi cult to incentivize the expert, requiring a proportionally larger distortion

in the initial recommendation functions, and thereby imposing a proportionally larger cost to the

decision-maker (from having to follow such bad early advice in order to learn the truth). We do,

however, show in the next subsection that if the decision-maker is more patient than the expert,

our fully revealing equilibrium has more attractive welfare properties, and works for a much larger

set of decision-maker preferences and beliefs: If the expert does not care much about the future,

it becomes easy to incentivize him to join the right separable group, which, in turn, implies little

need to distort the initial recommendations, and therefore little cost to the decision-maker from

following bad advice in the first couple of periods. The benefit to following this advice —knowing

the exact optimal action in all but the first few periods —will then outweigh this cost for a patient

decision-maker. (Section 1 illustrated this in the extreme case δE = 0, where the decision-maker

learned the exact truth with no distortion in the expert’s initial advice).

Remark 1 If we look at situations where the decision-maker cares only about the ultimate decision,

it is easy to see that our construction works for any prior (for all b < 1
16 , the bound from the proof of

Proposition D2 required for the expert), and yields the best possible outcome for the decision-maker.

Remark 2 If the decision-maker is not Bayesian, and his posterior beliefs (following any history)

simply assign equal probability to each type in his information set, then our construction yields fully

revealing equilibrium for any prior on [0, 1] if b ≤ 1
61 .

13

13Our proof shows (not explicitly stated in this verison of the paper) that the DM’s incentive compatibility
constraints are satisfied if his posterior beliefs, after each expert recommendation, assign suffi ciently high probability
to each type in his information set. (We then show that for a Bayesian DM, there is an open set of priors generating
such posteriors).
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4.1 Information Revelation in Continuous Time

The equilibrium we constructed to prove Theorem 1 can be easily modified to yield a fully revealing

equilibrium in a continuous-time setting with arbitrary discount rates, so long as the decision-maker

is at least as patient as the expert.14 In particular, suppose that actions and recommendations may

be made at any time up until the end of the game, and that the decision-maker and the expert

discount the future at rates rDM , rE , respectively. We then obtain the following result:

Proposition 4 Suppose that preferences are given by (1) . For any bias b ≤ 1
61 and prior F for

which Theorem 1 holds, any horizon T̂ , any expert discount rate rE > 0, and any decision-maker

discount rate rDM ≤ rE , a fully revealing equilibrium exists.

Proof:

Leave all action functions and specifications from the proof of Theorem 1 unchanged, except

for the timeline shown in Figure 1: now, let Group I pairs recommend v1 up to time t1(α0), then

v2 up to time t4, and then reveal the truth, and let Group II, III pairs now recommend u1 up to

time t2(αa), u2 up to time t3, then reveal the truth, where

t1(α0) =
ln
(
1− 2φα0r

E
)

−rE , t2(αa) =
ln
(
1− 2φαar

E
)

−rE , t3 =
ln
(
1− 2φrE

)
−rE , t4 =

ln
(
1− (T − τ)φrE

)
−rE

(6)

with φ = 1−e−rET̂
TrE

(T̂ is the (freely specified) horizon in the statement of the Proposition, and the

T is the horizon used in our original construction, see appendix Section D.2.1).

By construction, this simply multiplies the expert’s payoffs from our original construction by a

constant, φ. The disutility to expert type θ from following the strategy of a Group II or III pair

—say, recommending u1(θ′) up to time t2(αa), u2(θ′) up to time t3, and θ′ up to time T̂ —is∫ t2(αa)

0
e−r

Et
(
u1(θ′)− θ − b

)2
dt+

∫ t3

t2(αa)
e−r

Et
(
u2(θ′)− θ − b

)2
dt+

∫ T̂

t3

e−r
Et
(
θ′ − θ − b

)2
dt

= φ
[
2αa

(
u1(θ′)− θ − b

)2
+ 2(1− αa)

(
u2(θ′)− θ − b

)2
+ (T − 2)

(
θ′ − θ − b

)2]
(the second line simply evaluates the integrals using (6) : for example,

∫ t1(α0)
0 e−r

Etdt = 1−e−rEt1(α0)

rE
=

2φα0). This is precisely φ times the payoff, from our original construction, to an expert of type

θ ∈ [0, θ1] from following the strategy prescribed for type θ′ ∈ [0, θ1] (see (25) and (29) in appendix,

14We switch here to continuous time for convenience. The proof of Theorem 1 is also essentially written for
continuous time —in our initial equilibrium construction, the times at which the DM is instruced to change his action
are not necessarily integers —but we show at the end of the proof how to modify the construction for a discrete-time
setting, via public randomization and/or scaling up the horizon. Something similar could of course be done here,
but as our construction requires fairly exact ratios on the (discounted values of the) durations of each action, this is
much more convenient in continuous time.

21



Section D.1.4). Similarly, the disutility to expert type θ from following the strategy of a Group

I pair — say, recommending v1(θ′) up to time t1(α0), v2(θ′) up to time t4, and θ′ up to time T̂

—is exactly φ times the payoff, from our original construction, to a perfectly patient expert who

recommends v1(θ′) up to time 2α0, v2(θ′) up to time T − τ − 2α0, and the truth up to time T.

So, since the expert’s payoffs are exactly the same as before, for each possible true type θ and

each possible type θ′ he could choose to mimic, it follows that if the expert finds it optimal to tell

the truth in our original construction (with discrete time and discount factor δE = 1), then an

expert with continuous-time discount rate rE will likewise find it optimal to tell the truth, given

our modified timeline.

For the DM: if rDM = rE , then we likewise obtain that in continuous time, with discount rate

rDM and our modified timeline, all payoffs are identical to those in our construction used to prove

(1) . If rDM < rE , so that the DM is more patient than the expert, then things only become easier.

As discussed in the appendix (Observation D4 of Section D.2), we need only show that the DM

cannot gain by deviating at time t = 2α0 (which is now time t = t1(α0) with our modified timeline)

if he receives a recommendation v2(θI) from a Group I pair {θI , h(θI)}, or at time t = 0 (when he

may get either a recommendation u1(θII) = v1(θI) which could have been sent by any of the 4 types

in {θI , h(θI), θII , g(θII)}, or a recommendation u1(θIII), which could only come from a Group III

pair {θIII , g(θIII)}. Let us first consider deviations at time t = t1(α0) : in our modified timeline, if

he assigns probabilities p, 1−p to the types θI , h(θI) in his information set, then he expects to earn

flow disutility
(
p
(
v2(θI)− θI

)2
+ (1− p)

(
v2(θI)− h(θI)

)2)
from time t1(α0) to time t4, at which

point the expert should reveal the truth (so disutility drops to zero for the rest of the game). If

he instead deviates to the best myopically optimal action, x∗ ≡ pθI + (1− p)h(θI), then from time

t1(α0) to T̂ he will earn expected flow disutility

p
(
x∗ − θI

)2
+ (1− p)

(
x∗ − h(θI)

)2
= p(1− p)

(
h(θI)− θI

)2
We need the equilibrium disutility to be smaller than the disutility from deviating, which rearranges

to the following condition:∫ t4t1(α0) e
−rDM tdt∫ T̂

t1(α0) e
−rDM tdt

(p (v2(θI)− θI
)2

+ (1− p)
(
v2(θI)− h(θI)

)2
p(1− p)

(
h(θI)− θI

)2
)
≤ 1 (7)

Similarly, at a time t = 0 information set of the form {θIII , g(θIII)}, the gain from deviating is

smaller than the cost whenever the following expression is ≤ 1 :

∫ t2(αa)
0 e−r

DMtdt∫ T̂
0 e−rDMtdt

(
E[flow disutility from u1 | θ∈{θ,g(θ)}
E[flow disutility from best deviation]

)
+

∫ t3
t2(αa)

e−r
DMtdt∫ T̂

0 e−rDMtdt

(
E[flow disutility from action u2 | θ∈{θ,g(θ)}

E[flow disutility from best deviation

)
(8)
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And at a time t = 0 information set containing both a Group I pair and a Group II pair,

{θI , h(θI), θII , g(θII)}, letting p1, p2, p3, p4 denote the respective probabilities on the four types,

an upper bound on the ratio of equilibrium disutility, to disutility from the best possible deviation,

is15

(p1 + p2)


∫ t1(α0)
0 e−r

DMtdt∫ T̂
0 e−rDMtdt

(
E[flow disutility from v1(θI)|{θI ,h(θI)}]

E[flow disutility from p1θ
I+p2h(θI )
p1+p2

|{θI ,h(θI)}

)

+

∫ t4
t1(α0)

e−r
DMtdt∫ T̂

0 e−rDMtdt

(
E[flow disutility from v2(θI)|{θI ,h(θI)}]

E[flow disutility from p1θ
I+p2h(θI )
p1+p2

|{θI ,h(θI)}

)
 (9)

(p3 + p4)


∫ t2(αa)
0 e−r

DMtdt∫ T̂
0 e−rDMtdt

(
E[flow disutility from u1(θII) | {θII ,g(θII)}

E[flow disutility from p3θ
II+p4g(θ

II )
p3+p4

|{θII ,g(θII)}

)

+

∫ t3
t2(αa)

e−r
DMtdt∫ T̂

0 e−rDMtdt

(
E[flow disutility from u2(θII) | {θII ,g(θII)}

E[flow disutility from p3θ
II+p4g(θ

II )
p3+p4

|{θII ,g(θII)}

)


We have an equilibrium if (7) holds for every Group I pair {θI , h(θI)}, the expression in (8) is weakly

below 1 for every Group III pair {θIII , g(θIII)}, and the expression in (9) is weakly below 1 for

every information set of the form {θI , h(θI), θII , g(θII)}. At rDM = rE , these reduce to precisely

the inequalities proven to hold in Section D4. (For example, consider (7) : at rDM = rE , using

(6) , the first “time ratio”term reduces to T−τ−2α0
T−2α0

. And since we have not made any modifications

to the action functions or information sets, the constraint then simply says that the length of the

v2-recommendation phase in our original construction (T − τ − 2α0), times the flow disutility from

choosing v2, must be smaller than the length of the remaining game (T − 2α0), times the flow

disutility from choosing the myopically optimal action).

We complete the proof in the Appendix (Section E), showing that the constraints in (9) , (8) ,

and (7) become more relaxed as rDM decreases.

As rDM approaches zero and the horizon increases, we can push the result further, obtaining

an equilibrium with attractive welfare properties for a large range of biases and priors:

Theorem 2 If rE is bounded above zero and preferences are given by (1) with b < 1
16 , then, for any

prior F with a density that is everywhere bounded away from zero and infinity, there is a horizon T ∗

and discount rate r∗ such that a fully revealing equilibrium exists whenever rDM < r∗ and T̂ > T ∗.

In this equilibrium, the decision-maker’s average disutility goes to zero as T̂ →∞ and rDM → 0.

15 In the “disutility ratio” terms, the denominator supposes that whenever θ ∈ {θI , h(θI)}, the DM chooses
the myopically optimal action conditional on his information set; and that when θ ∈ {θII , g(θII)}, he chooses the
corresponding myopically optimal action. In fact, at time 0, he knows only that θ ∈ {θI , h(θI), θII , g(θII)}, so he
will typically do worse than if he knew the true pair: therefore, our expression gives an upper bound on the ratio
of equilibrium to deviation disutilty. Section D.2 (see outline, specifically the paragraph referring to Proposition
D6) proves that this upper bound is less than 1 (for a perfectly patient DM and our original timeline, at all such
information sets), which is suffi cient to establish that the DM cannot gain by deviating.
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Proof: Again use the timeline (6) , together with all action and strategy specifications of our

original construction; as above in Proposition 4, this leaves all utility expressions and analysis for

the expert unchanged from our original construction; and as noted in the appendix, Proposition D2,

our equilibrium works for the expert for all b < 1
16 . For the decision-maker, we just need to check

the incentive constraints in (9) , (8) , and (7). We can conclude, from the fact that they held in our

original construction, that the equilibrium flow disutilities (numerators in the second term of each

expression) must be bounded. Our original construction also specifies “partner” functions which

have positive and finite derivatives, which implies (see (5)) that for any prior which has a positive

bounded density, the decision-maker’s posteriors over all information sets assign a strictly positive

probability to each type; this implies that the myopically optimal action at each information set

is bounded away from the true state, and therefore the flow disutility to the decision-maker if he

deviates to the myopically optimal action is bounded away from zero. We conclude that the second

“flow disutility”ratios in (9) , (8) , and (7) are all finite. However, the first “time ratio”terms in

these expressions go to zero as rDM → 0 and T̂ →∞, noting that (6) and rE bounded above zero

imply that t1(α0), t2(αa), t3, t4 are all finite. Therefore, the ratio of the DM’s equilibrium disutility,

compared to his disutility from the best deviation, goes to zero as rDM → 0 and T̂ →∞, implying
that we have an equilibrium. Moreover, since the DM’s equilibrium flow disutility is bounded up to

time t4 and zero thereafter, with t4 finite, it follows that as rDM → 0, the DM’s average expected

payoff goes to zero, thus completing the proof.

Remark 3 Compared to Theorem 1, this result guarantees a fully revealing equilibrium for nearly

all priors over the state space, and for a much larger set of biases (b < 1
16 , rather than b <

1
61).

Note also that the argument does not rely on quadratic preferences for the decision-maker.

5 Concluding Remarks

This paper shows that dynamic strategic communication differs from its static counterpart. Our

most striking result is that fully revealing equilibria exist. The equilibria are admittedly complex,

and we do not suggest that they resemble any communication schemes currently in practice. This

was not our goal; rather, we wished to determine whether it is possible for a decision-maker to

design a questions-and-incentives scheme to elicit the precise truth out of a biased expert, such

that the expert would be willing to commit to and follow the proposed scheme. Our construction

proves that it is indeed possible, explains exactly how to do so when the expert has quadratic-loss

24



preferences16 and the true state is constant,17 and highlights the conditions under which he would

indeed desire to do so. In particular, we have shown that the proposed communication scheme

can be of great benefit to the decision-maker if he is either more patient than the expert, or if he

can hire the expert on a short-term basis. (This may provide one additional rationale for hiring

consultants rather than permanent advisors).

The main novel ingredient of our model is that there are multiple rounds of communication,

with a new action chosen after each round. The dynamic incentive considerations for the expert

allow us to group together types that are far apart, forming “separable groups”, which is the key to

obtaining greater information revelation. Our dynamic setup also allows for future communication

to be conditioned on past actions (trigger strategies), and we show how information revelation can

be facilitated through this channel.

The forces that we identify may be present in many dynamic environments with asymmetric

information. Think, for example, of a dynamic contracting environment with limited commitment,

or more generally, of a dynamic mechanism problem. In these models as well, past behavior sets the

stage for future behavior. And, in contrast to the vast majority of the recent literature on dynamic

mechanism design,18 one needs to worry about both global and local incentive constraints, even

with simple stage payoffs that satisfy the single-crossing property.

Lastly, given the important insights from cheap talk literature which have been widely applied

in both economics and political science, we hope and expect that the novel aspects of strategic

communication emphasized in our analysis will help shed light on many interesting dynamic prob-

lems.

16 It would be interesting to understand more generally the types of expert preferences for which this is possible,
but this is beyond the scope of the current paper. The general question is diffi cult to analyze, given the large class of
possible equilibrium structures: in principle, one might need large finite separable groups in the first stage (instead of
our groups of two), gradually subdividing via long action sequences (instead of our sequences of two initial actions).

17One could presumably apply our construction in a model where the state evolves slowly over time, for example
by restricting how frequently the expert can observe state changes, and playing our equilibrium within each “block”
between state observations. If the probability of a state change between observations is small, this would lead to an
equilibrium where the decision-maker knows the true state most of the time.

18 In recent years, motivated by the large number of important applications, there has been substantial work on
dynamic mechanism design. See, for example, the survey of Bergemann and Said (2011) and the references therein,
or Pavan, Segal, and Toikka (2011).
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Appendix

A Proof of Proposition 2

When we restrict attention to monotonic partition equilibria, there will be some point in the game
at which the last subdivision of an interval occurs, say period T̂ ≤ T. Assume (without loss of
generality) that one interval is partitioned into two, inducing actions y1 and y2, and let θ̂ be the
expert type who is indifferent between y1, y2. Since no subdivision occurs after period T̂ , it follows
that type θ̂’s indifference condition in period T̂ is(

1 + δ + ..+ δT−T̂−1
)
uE
(
y1, θ̂, b

)
≥
(

1 + δ + ..+ δT−T̂−1
)
uE
(
y2, θ̂, b

)
,

which reduces to the static indifference condition. But then, if this subdivision is possible, it cannot
be the case that all static equilibria are equivalent babbling. This follows by Corollary 1 of Crawford
and Sobel (1982).

Observe that all the arguments in this proof go through even if we allow for trigger strategies.
This is because at the point where the last subdivision occurs, it is impossible to incentivize the
decision-maker to choose anything other than his myopic best response: he knows that no further
information will be revealed, and so he knows that he cannot be rewarded in the future for choosing
a suboptimal action now. So, the above argument applies.

B Monotonic partition equilibria with more partitions

Suppose that δE = δDM = 1, types are uniformly distributed on [0, 1] and preferences satisfy
(1), with bias b = 1

12 . Using the standard arguments, one can establish that game has only two
equilibria:19 a babbling equilibrium, and an equilibrium with two partitions,

[
0, 1

3

]
∪
[

1
3 , 1
]
, inducing

actions 1
6 and

4
6 . Now we show that when T = 2, there exists a monotonic partition equilibrium

where the state space is ultimately divided into three sub-intervals.
We look for an equilibrium with the following signaling rule:

types in [0, θ1] send message sequence A = (m1(1),m2(1)),

types in [θ1, θ2] send message sequence B = (m1(2),m2(2)),

types in [θ2, 1] send message sequence C = (m1(2),m2(3)).

With this signaling rule, in the first period the interval [0, 1] is partitioned into [0, θ1] and [θ1, 1].
The indifference condition for type θ2 in period 2 yields(

θ1 + θ2

2
− θ2 − b

)2

=

(
1 + θ2

2
− θ2 − b

)2

⇒ θ2 =
1

3
+

1

2
θ1 (12)

The second-period actions induced are y2(1) = θ1
2 , y2(2) = 3

4θ1 + 1
6 and y2(3) = 1

4θ1 + 2
3 , and the

first-period actions are y1(1) = θ1
2 and y1(2) = 1+θ1

2 .

19The largest number of subintervals that the type space can be divided into is the largest integer that satisfies

−2bp2 + 2bp+ 1 > 0, (10)

whose solution is 〈
−1
2
+
1

2

√
1 +

2

b

〉
, (11)

and where 〈x〉 denotes the smallest integer greater than or equal to x.
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After any out-of-equilibrium message the decision-maker assigns probability one to the state
belonging in [0, θ1] inducing yout = θ1

2 . With these out-of equilibrium beliefs it is immediate to see
that no type has an incentive to send an out-of-equilibrium message.

At equilibrium, θ1 must satisfy the following indifference condition:1 + θ1

2︸ ︷︷ ︸
y1(2)

− θ1 −
1

12


2

+

3

4
θ1 +

1

6︸ ︷︷ ︸
y2(2)

− θ1 −
1

12


2

= 2

 θ1

2︸︷︷︸
y1(1)=y2(1)

− θ1 −
1

12


2

which is solved by θ1 = 0.2482; together with (12) , we then obtain three final partitions, with cutoffs
θ1 = 0.2482, θ2 = 0.457 43; with this, the actions become y1(1) = y2(1) = 0.124 1, y1(2) = 0.624 1,
y2(2) = 0.352 8, and y2(3) = 0.728 7.

In constructing this strategy profile, we imposed only local incentive compatibility constraints,
requiring that type θ1 is indifferent in period 1 between inducing action sequence

(
y1(1), y2(1)

)
and(

y1(2), y2(2)

)
, and that type θ2 is indifferent in period 2 between inducing actions y2(2) and y2(3).

Now we want to verify that these conditions are suffi cient for global incentive compatibility. At
t = 2 the game is isomorphic to the static one, where the fact that θ2 is indifferent between y2(2)
and y2(3) implies that all types above θ2 prefer y2(3) and all types below θ2 prefer y2(2). To verify
that types below θ1 prefer message sequence A and types above θ1 prefer message sequence B, we
plot the difference U(A, θ) − U(B, θ) and show that it is positive for all θ < θ1 and negative for
θ > θ1 :

0.1 0.2 0.3 0.4 0.5

­0.2

­0.1

0.0

0.1

theta

U(A)­U(B)

In our dynamic equilibrium, the expert’s (ex ante) payoff is −0.0659 and the decision-maker’s
(ex ante) payoff is −0.052. If the most informative static equilibrium is played in both periods,
payoffs are −0.069 to the expert, −0.055 to the decision-maker, both strictly worse than in our
dynamic monotonic partition equilibrium.

C Pareto comparisons of dynamic cheap talk equilibria

The following example demonstrate that equilibria with more partitions can be Pareto inferior to
the equilibria with fewer partitions

Take δE = δDM = 1 and b = 0.08, and consider the most informative static partition equilibrium
where the number of partitions is p = 3. At this equilibrium the state space is divided into [0, 0.013],
[0.013, 0.347] and [0.347, 1]. The corresponding optimal actions of the decision-maker are given by

y1 = 0.0067 y2 = 0.18 y3 = 0.673,

from which we can calculate the ex-ante expected utility levels for the expert −0.032 and for the
decision-maker −0.0263. Then, at the equilibrium of the dynamic game where the most informative
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static equilibrium is played at t = 1 and babbling thereafter, the total expected utility is −0.065
for the expert, and −0.053 for the decision-maker.

We now construct a dynamic equilibrium where the type space is subdivided into more subin-
tervals, but both players’ex-ante expected payoffs are lower. We look for an equilibrium with the
following signaling rule:

types in [0, θ1] send message sequence (m1(1),m2(1))

types in [θ1, θ2] send message sequence (m1(2),m2(2))

types in [θ2, θ3] send message sequence (m1(2),m2(3))

types in [θ3, 1] send message sequence (m1(3),m2(4)).

So types are partitioned into four intervals in stage 2, but in stage 1, the types in [θ1, θ2] and
[θ2, θ3] pool together to send the same message m1(2). Since the signaling rule does not depend
on the decision-maker’s action at stage 1, the decision-maker will choose the following myopically
optimal actions:

y1(1) = y2(1) =
θ1

2
,

y1(2) =
θ1 + θ3

2
, y2(2) =

θ1 + θ2

2
, y2(3) =

θ2 + θ3

2
,

y1(3) = y2(4) =
1 + θ3

2
.

After any out-of-equilibrium message the decision-maker assigns probability one to the state
belonging in [0, θ1] inducing yout = θ1

2 . With these out-of-equilibrium beliefs it is immediate to see
that no type has an incentive to deviate.

In equilibrium, type θ1 is indifferent between action sequences {y1(1), y2(1)} and {y1(2), y2(2)},
type θ2 is indifferent between 2nd-period actions y2(2) and y2(3), and type θ3 is indifferent between
action sequences {y1(2), y2(3)} and {y1(3), y2(4)}. Therefore, equilibrium cutoffs are the solution to
the following system of equations:20

2

(
θ1

2
− θ1 − b

)2

−
(
θ1 + θ3

2
− b− θ1

)2

−
(
θ1 + θ2

2
− b− θ1

)2

= 0,(
θ1 + θ2

2
− b− θ2

)2

−
(
θ2 + θ3

2
− b− θ2

)2

= 0,

2

(
1 + θ3

2
− b− θ3

)2

−
(
θ1 + θ3

2
− b− θ3

)2

−
(
θ2 + θ3

2
− b− θ3

)2

= 0.

At b = 0.08, the only solution that gives numbers in [0, 1] is θ1 = 0.0056, θ2 = 0.015, θ3 = 0.345 ,
and the actions induced for t = 1 and for t = 2 are respectively given by y1(1) = y2(1) = 0.00278,
y1(2) = 0.175, y2(2) = 0.0105, y2(3) = 0.18 and y1(3) = y2(4) = 0.673. This implies the following
total ex-ante expected utility for the expert −0.066, which is lower than 2(−0.033) = −0.0656. The
utility for the decision-maker is −0.053 which is lower than 2(−0.026) = 0.052.

This example illustrates that although the interval is divided into more subintervals here, both
players strictly worse off compared to the one where the most informative static equilibrium is
played in the first period and babbling thereafter. The feature that less partitions lead to higher
ex-ante welfare for both players also appears in example 1 of Blume, Board, and Kawamura (2007).

20 It is trivial to check exactly as we did in previous examples that these indifference conditions suffi ce for global
incentive compatibility.
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D Proof of Theorem 1

We will prove by construction that a fully revealing equilibrium exists. We first choose the endpoints
θ1, θ2, θ3 described in the proof outline: for any bias b < 1

61 , define aγ < 0 by

(aγ − 2 + 2e−aγ )e2 − aγ =
1

b
(13)

and then set
θ3 =

1

b
+ aγ , θ2 = θ3 − 2, θ1 = θ2 − θ3e

−2 (14)

It will be convenient to describe types parametrically, via functions x : [−2, 0] → [0, θ1], g :
[−2, 0]→ [θ2, θ3], z : [aγ , 0]→ [θ1, θ2], and h : [aγ , 0]→ [θ3,

1
b ]. Then, let u1(a, αa), u2(a, αa) denote

the first, second recommendations of types x(a), g(a) (for all a ∈ [−2, 0]), and let v1(a, α0), v2(a, α0)
denote the first, second recommendations of types (z(a), h(a)) (for all a ∈ [aγ , 0]). With this nota-
tion, Groups I,II, III described in the text are as follows:

Group I = {z(a), h(a) | a ∈ [aγ , 0]}
Group II = {x(a), g(a) | a ∈ [−2, 0], and ∃ a′ ∈ [aγ , 0] with v1(a′, α0) = u1(a, αa)}
Group III = {x(a), g(a)| a ∈ [−2, 0], and x(a), g(a) /∈ Group II}

In our proposed equilibrium construction, each Group I pair {z(a), h(a)} recommends v1(a, α0) for
2α0 periods, then v2(a, α0) for T −τ−2α0 periods, then reveals the truth at time T −τ ; each Group
II pair {x(a), g(a)} recommends u1(a, αa) for 2αa periods, then u2(a, αa) for 2(1 − αa) periods,
then separates and reveals the truth for the final T −2 periods; and moreover, the recommendation
u1(a, αa) coincides with the recommendation v1(a′, α0) of some Group I pair {z(a′), h(a′)}. Group
III is identical to Group II, except that their recommendations do not coincide with those of any
Group I pair.

We also specify the following off-path strategy for the expert: if the decision-maker ever devi-
ates, by rejecting a recommendation that the expert made, then (i) if the expert himself has not
previously deviated: send no further recommendations (equivalently, repeat the current recommen-
dation in all subsequent periods). And (ii) if the expert has observably deviated in the past, behave
as if the deviation did not occur. (For example, if he sends the initial recommendation u1(0, α0)
prescribed for types {x(0), g(0)}, but then follows this with anything other than recommendation
u2(0, α0) at time 2α0, subsequently behave as if the deviation never occurred and he indeed sent
u2(0, α0) at time 2α0).

D.1 Optimality for the Expert

We prove that the expert wishes to follow the prescribed recommendation strategy via three propo-
sitions. Proposition D1 specifies strategies and beliefs for the decision-maker such that the expert
has no incentive to send an out-of-equilibrium recommendation sequence, so we need only make
sure that he does not wish to mimic any other type. Proposition D2 shows that in the prescribed
revelation phase, the expert indeed finds it optimal to reveal the truth, provided that there have
been no previous deviations. It remains only to show that the expert has no incentive to deviate
prior to the prescribed revelation phase - by mimicking the initial recommendations of some other
type - which we show in Proposition D3.

We specify the following strategy and beliefs for the decision-maker:
If there are no detectable deviations by the expert (i.e., he sends the equilibrium recommenda-

tion sequence for some type θ ∈ [0, 1
b ]), then follow all recommendations, using Bayes’rule to assign

beliefs at each information set. Following deviations: (i) If the expert observably deviates at time 0
(sending an off-path initial recommendation), subsequently adopt the strategy/beliefs that would
follow if the expert had instead sent the recommendation u1(0, α0) prescribed for types {x(0), g(0)};
(ii) If the expert observably deviates on his 2nd recommendation (i.e., if an initial recommendation
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u1(a, αa) (or v1(a, α0)) is followed by something other than u2(a, αa) (or v2(a, α0)), ignore it as
an error, and subsequently adopt the strategy/beliefs that would follow had the deviation not oc-
curred; (iii) If the expert deviates observably in the revelation phase, ignore it as an error, assigning
probability 1 to the lowest type in the current information set, and accordingly choosing this as the
myopically optimal action; (iv) And finally, if the decision-maker himself deviates, rejecting some
recommendation by the expert, then he subsequently maintains the current (at time of deviation)
beliefs, anticipating that the expert will subsequently repeat the current (at time of deviation)
recommendation, and ignoring any other recommendations as errors.

D.1.1 Expert Optimality: Off-Path Behavior

Proposition D1: Under the above strategy and beliefs prescribed for the decision-maker, the
expert has no incentive to choose an off-path recommendation sequence.
Proof of Proposition D1: Follows trivially from the specified strategy and beliefs for the decision-
maker: (i) a deviation at time zero is equivalent to mimicking type x(0) (who recommends u1(0, α0)
at time t = 0); (ii) a deviation on the 2nd recommendation has no effect, since the decision-maker
ignores it; (iii) a deviation in the revelation phase, if there have been no previous deviations,
is equivalent to mimicking the strategy of the lowest type in the decision-maker’s current (pre-
revelation) information set; and (iv) if the decision-maker has previously deviated, then (by point
(iv) of the above strategy-belief specification) he will chose whichever action was myopically optimal
at the time of deviation, regardless of the expert’s message; therefore, babbling is optimal for the
expert, since his message has no effect on the decision-maker’s action.

D.1.2 Expert Optimality: Truth Revelation Phase

Proposition D2: In the prescribed revelation phase, (i) if there have been no previous deviations
by the decision-maker, then the expert finds it optimal to reveal the truth; (ii) if the decision-maker
has ever deviated, then the expert finds it optimal to babble (e.g. by remaining silent).
Proof of Proposition D2: Part (ii) follows immediately from Proposition D1 (iv). For part (i):
our specification of the expert strategy is such that at time 2α0, the decision-maker’s information
set contains at most two types: either a pair {x(a), g(a)} (in which case the truth should be revealed
at time 2, and the DM plans to choose g(a) if the expert recommends g(a), x(a) otherwise), or a
pair {z(a), h(a)} (in which case the truth should be revealed at time T − τ , and the DM plans to
choose h(a) if the expert recommends it, z(a) otherwise). So, it suffi ces to show that each type
would rather tell the truth than mimic his partner: in our rescaled type space, this requires simply
that all paired types be at least 2 units apart (so that (θ − θ − 1)2 ≤ (p(θ)− θ − 1)2 for any pair
{θ, p(θ)}). By (15) we have

min
a∈[−2,0]

|g(a)− x(a)| = θ2 − θ1

min
a∈[aγ ,0]

|h(a)− z(a)| = θ3 − θ2

And by (14), θ3 − θ2 = 2, and θ2 − θ1 = (aγ − 2 + 2e−aγ ), which is greater than 2 whenever
aγ < −.8951 ⇔ b < 1

15.67 (using (13)). This is in fact all that is needed for the construction
to work for the expert, but we specify b < 1

61 in (13) to make the construction work for the
decision-maker.

D.1.3 Expert Optimality: Initial Recommendations

Propositions D1,D2 imply that once the expert has sent the initial recommendation (u1 or v1)
prescribed for some type θ, it is optimal to follow also the continuation recommendations prescribed
for that type. So, the only time when it could possibly be profitable to deviate is at time t = 0 :
we need to make sure that each type θ prefers to send the proposed equilibrium sequence of

30



recommendations, rather than the sequence prescribed for any other type θ′.21 We now choose
parametrizations of functions x, g, z, h, along with action function u1, u2, v1, v2, which guarantee
that the expert indeed finds it optimal to send the prescribed initial recommendation:

Proposition D3: Let the action functions and type parametrizations be as follows:

x(a) = θ3 + a− θ3e
a, g(a) = θ3 + a, z(a) =

1

b
+ a− 2ea−aγ , h(a) =

1

b
+ a (15)

u1(a, αa) = θ3 +K − T − 2

2
a−

√
1− αa
αa

√
T − 2

√
Cu + a

(
K − T

4
a

)
(16)

u2(a, αa) = θ3 +K − T − 2

2
a+

√
αa

1− αa
√
T − 2

√
Cu + a

(
K − T

4
a

)
(17)

v1(a, α0) = θ3 +
2K−τ(a−aγ)

T−τ −

√
τ(T−τ−2α0)

α0

√
(T−τ)(T−2)

τ
Cu+(T−τ−2

τ )K2+2K(a−aγ)−T
2

(a−aγ)2

T−τ (18)

v2(a, α0) = θ3 +
2K−τ(a−aγ)

T−τ +

√
4τα0

T−τ−2α0

√
(T−τ)(T−2)

τ
Cu+(T−τ−2

τ )K2+2K(a−aγ)−T
2

(a−aγ)2

T−τ (19)

for constants Cu,K, and for now taking T, α0, αa as given (T is the horizon, and αa, α0 relate to
the duration of recommendations u1, v1 as described in the strategies above). Also set τ (length of
the revelation phase for types in Group I) according to

τ

T − 2
= β ≡ (θ2 − θ1)(θ2 − θ1 − 2)

(1
b − θ1)(1

b − θ1 − 2)
(20)

Then, for all types θ, θ′ ∈ [0, 1
b ], expert type θ prefers his equilibrium recommendation sequence to

that sent by type θ′, and in particular has no incentive to deviate at time t = 0.
Proof of Proposition D3:

Let Du(θ′|θ) denote the disutility to type θ from following the recommendation sequence pre-
scribed for a type θ′ ∈ [0, θ1]∪ [θ2, θ3], and let Dv(θ

′|θ) denote the disutility to type θ from following
the strategy prescribed for a type θ′ ∈ [θ1, θ2]∪ [θ3,

1
b ]. The proof proceeds through two main Lem-

mas. Lemma D3.1 proves that the expert strategy is locally incentive compatible: for each interval
[θi, θi+1], i ∈ {0, 1, 2, 3}, no expert type θ ∈ [θi, θi+1] wishes to mimic any other type θ′ ∈ [θi, θi+1]
from the same interval. Lemma D3.2 proves that the expert strategy is also globally incentive
compatible: no expert type wishes to mimic any type θ′ from any other interval. The proofs will
use calculations obtained below in Lemmas D3.3 and D3.4.
Lemma D3.1 (Local IC): For each interval [θi, θi+1], with i = 0, 1, 2, 3, and any pair of types
θ, θ′ ∈ [θi, θi+1], the disutility to type θ from mimicking type θ′ is (weakly) increasing in

∣∣θ′ − θ∣∣ ,
thus minimized when

∣∣θ′ − θ∣∣ = 0. Therefore, for each θ ∈ [θi, θi+1], truth-telling is (weakly) better
than mimicking any other type in the interval.
Proof of Lemma D3.1:

Differentiating disutility expressions (25), (26) , (27) , and (28) (obtained below in Lemma D3.3)

21This is what the text refers to as "providing incentives to join the right separable group”. We need to make
sure, for example, that type θ = 0 prefers to induce the action sequence (u1(0, α0), u2(0, α0), 0), rather than e.g. the
sequence that type θ′ 6= 0 is supposed to send; by Propositions D1,D2, the choice to follow a different recommendation
sequence can only be made at time t = 0.
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gives

dDu(x(a)|θ)
dx(a)

=
dDu(g(a)|θ)

dx(a)
+

2(T − 2) (x(a)− θ − 1)x′(a)− 2(T − 2) (g(a)− θ − 1) g′(a)

x′(a)

= 0 + 2(T − 2)

(
θ3 + a− θ3e

a − θ − 1− θ3 + a− θ − 1

1− θ3ea

)
(by (15) )

= 2(T − 2)

(
θ3e

a

θ3ea − 1

)
(x(a)− θ) (21)

dDv(z(a)|θ)
dz(a)

=
dDv(h(a)|θ)/da

z′(a)
+

2τ (z(a)− θ − 1) z′(a)− 2τ (h(a)− θ − 1)h′(a)

z′(a)

= 2τ

(
2ea−aγ

2ea−aγ − 1

)
(z(a)− θ) (22)

dDu(g(a)|θ)
dg(a)

= 0 (23)

dDv(h(a)|θ)
dh(a)

= 0 (24)

Consider first a type θ ∈ [0, θ1]. By (21) , noting that θ3ea

θ3ea−1 > 0 (since θ3e
a ≥ θ3e

−2 = θ2−θ1 ≥
8, by Proposition D2), we see that dDu(x(a)|θ)

dx(a) has the same sign as (x(a)− θ) . So if x(a)− θ > 0,

then Du(x(a)|θ) is increasing in x(a), thus increasing in (x(a)− θ) ; while if x(a) − θ < 0, then
Du(x(a)|θ) is increasing in (−x(a)), thus increasing in θ − x(a). Combined, these establish that
Du(x(a)|θ) is strictly increasing in |x(a)− θ| , as desired.

Next consider a type θ ∈ [θ1, θ2]. By (22) , noting that
(

2ea−aγ

2ea−aγ−1

)
> 0 (since a ∈ [aγ , 0] implies

2ea−aγ ≥ 2), we see that dDv(z(a)|θ)
dz(a) has the same sign as z(a) − θ, and is thus positive (disutility

increasing in z(a) − θ) if z(a) > θ, and negative (disutility increasing in θ − z(a)) if z(a) < θ.
Combined, these establish that Du(z(a)|θ) is strictly increasing in |z(a)− θ| , as desired.

By (23) and (24) , the disutility to type θ from mimicking a type g(a) ∈ [θ2, θ3] or h(a) ∈ [θ3,
1
b ]

is independent of the particular type g(a), h(a) chosen. Thus, Du(g(a)|θ) is weakly increasing (in
fact constant) in |g(a)− θ| , andDu(h(a)|θ) is weakly increasing (constant) in |h(a)− θ|, completing
the proof.
Lemma D3.2: For every interval [θi, θi+1] (i = 0, 1, 2, 3), and every θ ∈ [θi, θi+1], following the
prescribed (truthful) recommendation sequence is better than mimicking any type θ′ drawn from
any other interval [θj , θj+1] with j 6= i.
Proof of Lemma D3.2:

Consider first a type θ ∈ [0, θ1]. By Lemma D3.1, truth-telling is better than mimicking any
other type θ′ ∈ [0, θ1], in particular type θ1 = x(−2). By Lemma D3.4 (i) (below), type θ ∈ [0, θ1]
prefers type x(−2)’s sequence to type z(0)’s sequence; and by Lemma D3.1, it is better to mimic
type z(0) = θ1, than any other type z(a) ∈ (θ1, θ2] (since z(a) > θ implies that Dv(z(a)|θ) is
increasing in z(a)− θ); together, these establish that mimicking a type θ′ ∈ [θ1, θ2] is not optimal.
By Lemma D3.4 (ii), type θ ≤ θ2 prefers z(aγ)’s sequence (right endpoint of [θ1, θ2]) to g(−2)’s
sequence (left endpoint of [θ2, θ3]); and by Lemma D3.1, disutility to type θ from mimicking type
g(a) ∈ [θ2, θ3] is independent of a; together, this implies that type θ also does not want to mimic any
type g(a) ∈ [θ2, θ3]. And finally, by Lemma D3.4 (iii), type θ ≤ θ2 prefers the sequence prescribed
for type g(0) (right endpoint of [θ2, θ3]) to that prescribed for type h(aγ) (left endpoint of [θ3,

1
b ]),

which (by Lemma D3.1) yields the same utility as mimicking any other type h(a) ∈ [θ3,
1
b ], thus it

is not optimal to mimic any type h(a) ∈ [θ3,
1
b ]. This establishes that type θ ∈ [0, θ1] does not wish

to mimic any type θ′ from any other interval.
Next consider type θ ∈ [θ1, θ2]. By Lemma D3.1, truth-telling is better than mimicking any

other type z(a) ∈ [θ1, θ2], in particular type z(0) = θ1; by Lemma D3.4 (i), type θ ≥ θ1 prefers
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the sequence prescribed for type z(0), to that prescribed for type x(−2); and by Lemma D3.1, it is
better to mimic x(−2) (right endpoint of [0, θ1]) than any other type x(a) ∈ [0, θ1], since Du(x(a)|θ)
is increasing in |θ − x(a)| and we have here θ > x(a); together, this implies that type θ does not
wish to mimic any type θ′ ∈ [0, θ1]. The proof that he doesn’t wish to mimic any type g(a) ∈ [θ2, θ3]
or h(a) ∈ [θ3,

1
b ] is identical to the one given in the previous paragraph.

Now consider a type θ ∈ [θ2, θ3]. As explained in the previous two paragraphs, following the
truthful recommendation sequence yields the same utility as mimicking any other type g(a) ∈
[θ2, θ3] or h(a) ∈ [θ3,

1
b ], so we just need to make sure that it is not optimal to mimic types

θ′ ∈ [0, θ1]∪[θ1, θ2]. By Lemma D3.4 (ii), type θ ≥ θ2 prefers type g(−2)’s sequence (left endpoint of
[θ2, θ3]) to type z(aγ)’s sequence (right endpoint of [θ1, θ2]); by Lemma D3.1, such a type θ ≥ θ2 also
prefers type z(aγ)’s sequence to the one prescribed for any other (further-away) type z(a) ∈ [θ1, θ2];
combined, this establishes that mimicking a type z(a) ∈ [θ1, θ2] is not optimal. By Lemma D3.4
(i), it is better to mimic type z(0)’s sequence than x(−2)’s sequence, which in turn is better (by
Lemma D3.1) than any other type x(a)’s sequence. Thus, it is not optimal to mimic any type
x(a) ∈ [0, θ1], completing the proof for types θ ∈ [θ2, θ3].

The argument that types θ ∈ [θ3,
1
b ] don’t wish to mimic types from other intervals is identical

to the proof in the previous paragraph (for types θ ∈ [θ2, θ3]).
This completes the proof of Lemma D3.2.

D.1.4 Expert Optimality: Preliminary Calculations

Lemma D3.3: Given the type parametrizations and action functions given in Proposition D3,
disutility expressions Du

(
θ′|θ
)
, Dv(θ

′|θ) are given by

Du(x(a)|θ) = Du(g(a)|θ) + (T − 2) (x(a)− θ − 1)2 − (T − 2) (g(a)− θ − 1)2 (25)

Du(g(a)|θ) = T (θ3 − θ − 1)2 + 4K (θ3 − θ − 1) + 2K2 + 2(T − 2)Cu (26)

Dv(z(a)|θ) = Dv(h(a)|θ)− 2τ (h(a)− z(a))

(
h(a) + z(a)

2
− θ − 1

)
(27)

Dv(h(a)|θ) = 2K2 + 2(T − 2)Cu + 4 (θ3 − θ − 1)K + T (θ − θ3 + 1)2 (28)

Proof of Lemma D3.3:
The disutility Du(g(a)|θ) to expert type θ from following the strategy prescribed for type g(a) ∈

[θ2, θ3], using (16) , (17) , is

2αa (u1(a, αa)− θ − 1)2 + 2(1− αa) (u2(a, αa)− θ − 1)2 + (T − 2) (g(a)− θ − 1)2 (29)

= 2(1− αa)
(
θ3 +K − T − 2

2
a− θ − 1 +

√
αa

1− αa
√
T − 2

√
Cu + a

(
K − T

4
a

))

+2αa

(
θ3 +K − T − 2

2
a− θ − 1−

√
1− αa
αa

√
T − 2

√
Cu + a

(
K − T

4
a

))2

+(T − 2) (x(a)− θ − 1)2

Expanding gives 22

Du(g(a)|θ) = 2

(
θ3 − θ − 1 +K − T − 2

2
a

)2

+2(T−2)

(
Cu + a

(
K − T

4
a

))
+(T−2) (θ3 + a− θ − 1)2

If we now expand this expression, the coeffi cients on a2, a reduce to zero (this is due to our choice

22Note that the coeffi cients on the square roots were chosen to make this independent of αa, as mentioned in
Appendix D3.1 (following (89)).
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g(a) = θ3 + a), leaving

Du(g(a)|θ) = 2 (θ3 − θ − 1 +K)2 + 2(T − 2)Cu + (T − 2) (θ3 − θ − 1)2

which rearranges to expression (26) .
The disutility to type θ from following the strategy prescribed for type x(a) ∈ [0, θ1], Du(x(a)|θ),

is given by (29) , just replacing g(a) with x(a) : this gives the desired expression (25) .
The disutility to type θ from following the strategy prescribed for type h(a) ∈ [θ3,

1
b ] is

Dv(h(a)|θ) = 2α0 (v1(a, α0)− θ − 1)2 + (T − τ − 2α0) (v2(a, α0)− θ − 1)2 + τ (h(a)− θ − 1)2

Again, the coeffi cients on the square root terms in v1, v2 were chosen to make both disutility and
average action independent of α0 : substituting (18) , (19) into the above expression and expanding,
we get

Dv(h(a)|θ) = (T − τ)

(
θ3 +

2K + τaγ
T − τ − τ

T − τ a− θ − 1

)2

+ τ (h(a)− θ − 1)2

+2τ

(
(T − 2)

τ
Cu +

(
T−τ−2

τ

)
K2 + 2K (a− aγ)− T

2 (a− aγ)2

T − τ

)
.

Substituting in h(a) = 1
b + a, using θ3 = 1

b + aγ , and expanding, we find (this is due to our choice
h′(a) = 1) that the coeffi cients on both a2, a reduce to zero, so that our expression simplifies further
to (28) . Finally, using the fact that the strategies for types h(a), z(a) differ only in the revelation
phase, so

Dv(h(a)|θ)−Dv(z(a)|θ) = τ (h(a)− θ − 1)2 − τ (z(a)− θ − 1)2

we obtain (27) . This completes the proof.
Lemma D3.4: (utility at the endpoints)

Under the expressions given in Proposition D3, we have that (i) endpoint θ1 = x(−2) = z(0) :
type θ (weakly) prefers type x(−2)’s recommendation sequence to z(0)’s sequence iff θ ∈ [0, θ1]; (ii)
endpoint θ2 = z(aγ) = g(−2) : type θ prefers z(aγ)’s sequence to g(−2)’s sequence iff θ ∈ [0, θ2];
and (iii) endpoint θ3 = g(0) = h(aγ) : all types are indifferent between the sequences sent by types
g(0), h(aγ).23

Proof of Lemma D3.4:
At θ1 = x(−2) = z(0), we have (using the expressions in Lemma D3.3 and simplifying) that

Dv(z(0)|θ)−Du(x(−2)|θ) equals

(T − 2) (θ2 − θ1) (θ1 + θ2 − 2θ − 2)− τ
(

1

b
− θ1

)(
1

b
+ θ1 − 2θ − 2

)

Using τ(1
b − θ1) = (T − 2) (θ2−θ1)(θ2−θ1−2)

( 1
b
−θ1−2)

(by (20)), this simplifies to

Dv(z(0)|θ)−Du(x(−2)|θ) = 2(T − 2) (θ2 − θ1) (
1

b
− θ2)

(
θ1 − θ

1
b − θ1 − 2

)
(30)

This is negative, meaning that type θ prefers z(0)’s strategy to x(−2)’s strategy, iff θ > θ1, thus

23For example, consider part (i). In our construction, type θ1 is both the right endpoint x(−2) of the interval
[0, θ1], and the left endpoint z(0) of the interval [θ1, θ2] : part (i) says that type θ1 is indifferent between the two
sequences prescribed for his type, and that everyone below θ1 prefers the strategy of type x(−2), everyone above θ1

prefers the strategy of type z(0).
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establishing part (i).
At θ2 = g(−2) = z(aγ), we have (by (27) and (26)

Du(g(−2)|θ)−Dv(z(aγ)|θ) = τ(θ3 − θ2) (θ3 + θ2 − 2θ − 2)

= 4τ (θ2 − θ) (using θ3 − θ2 = 2) (31)

This is negative, meaning that type θ prefers g(−2)’s strategy to z(aγ)’s strategy, iff θ > θ2, proving
part (ii).

At θ3, we have (by (26) and (28)),

Du(g(0)|θ)−Dv(h(aγ)|θ) = 0 (32)

so that all types are indifferent between the strategies prescribed for type g(0) = θ3, h(aγ) = θ3,
as desired to complete the proof.

D.2 Optimality for the decision-maker

Let the expert strategy be as specified in the previous subsection, using the action functions and
parametrizations from Proposition D3, with τ = β(T − 2) as in (20) . Recall that we had the
following free parameters: constants K,Cu, the horizon T , a number α0 ∈ [0, 1], and numbers
αa ∈ [0, 1] ∀a ∈ [−2, 0]. We wish to show that the specified strategies constitute a fully revealing
PBE: since we established expert optimality in the previous section, and since the beliefs and
off-path strategies specified for the decision-maker (see Proposition D1) trivially satisfy all PBE
requirements, all that remains is to prove that the decision-maker’s on-path strategy is optimal.

Recall the timeline presented in Figure 1 (Section 4). It is immediately clear that during the
revelation phase, when the expert’s recommendation is equal (with probability 1) to the true state,
the decision-maker indeed finds it optimal to follow the recommendation. In between time 2α0

(when Group I separates from Group II by switching to v2) and the revelation phase, no new
information is revealed, but any failure by the decision-maker to follow the expert’s recommenda-
tions will result in the expert subsequently babbling, rather than revealing the truth. So, the best
possible deviation is to choose the myopically optimal action in all subsequent periods, and the
strongest incentive to do so occurs at the earliest time that new information is revealed (when the
“reward phase”, revelation of the truth, is furthest away). So to prove decision-maker optimality,
we need only show that he does not want to deviate to the myopically optimal action either at time
t = 0, or at time t = 2α0 if he learns that he is in fact facing a Group I pair. We summarize this
as:
Observation D4: If the decision-maker cannot gain by deviating at time t ∈ {0, 2α0}, then the
prescribed strategy is optimal.

D.2.1 Optimality for the decision-maker: Outline and Parameter Choices

Given T, α0 (and with τ = β(T − 2) as specified by (20) , we set the constants Cu,K according to

Cu =
1− α0

α0

K2

T − 2
(33)

K =

α0τaγ

(
1 +

√
(T−2α0)(T−τ)

2τα0

)
(T − τ − 2α0)

(34)
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And choose a horizon T ∈ [Tmin, Tmax], where24

Tmin =


7 if β ∈ [0.4173, 0.50102)

5−2β
1−β if β ∈ [0.50102, 0.79202)

5. 474 8β
2.7374β−1.7374 if β ∈ [0.79202, 0.95203)

6 if β ≥ 0.95203

, Tmax =


7 if β ∈ [0.4173, 0.50102)

8−2β
1−β if β ∈ [0.50102, 0.79202)
4−2β
1−β if β ∈ [0.79202, 0.90913)

12. 005β
6.0025β−5.0025 if β ≥ 0.90913

(35)
All proofs use α0 near 1 when βa2

γ < 8, and α0 near 0 when βa2
γ > 8. The parameter αa

(relating to the time 2αa at which Group II and III pairs {x(a), g(a)} switch from u1 to u2) may
depend on the specific pair {x(a), g(a)}, but is chosen in Lemma D7.1 to satisfy α0 ≤ αa ≤ 1 ∀a. In
particular, we prove in Lemma D7.1 that our parameter choices guarantee that all action functions
are real-valued, and that every recommendation v1(a, α0) sent by a Group I pair, is also sent by
some Group II pair {x(a), g(a)}, for at least as long. The need for this overlap of u1, v1 is as follows:
the decision-maker’s gain to following the expert’s advice is large at information sets containing
only a Group II or III pair, but would be negative at time t = 0, for all priors, if his information
set contained only a Group I pair {z(a), h(a)} close to the endpoint pair {z(aγ), h(aγ)} = {θ2, θ3}.25
So, for the equilibrium to work, we need to make sure that each Group I pair’s initial message
coincides with that of a Group II pair, and then ensure (via the prior and construction details)
that the weight the decision-maker places on the Group II pair is high enough to make him want
to follow the recommendation. .

Proposition D6 shows that for a range of priors, the decision-maker’s gain to deviating at time
t = 0 (or later) is strictly negative at any information set containing only a group II or III pair
{x(a), g(a)}, so long as his posterior assigns a probability to type x(a) which lies within ε of some
number p∗a ∈ (0, 1) (a suffi cient condition is that he assigns a probability between 0.3 and 0.7 to
each type). This then implies also that at time t = 0, if he gets a message v1(a, α0) which could
have been sent by either a Group II pair (in which case he wants to follow the advice) or a Group
I pair (in which case he might want to reject the advice), he will find it optimal to follow the
recommendation as long as his posterior beliefs assign a high enough weight to the Group II pair,
so we conclude that there exist beliefs for which the decision-maker has no incentive to deviate at
time t = 0. It is also Proposition D6 that places an upper bound on the biases b for which the
equilibrium works.

Proposition D5 shows that if the expert sends a message v2(a, α0) at time t = 2α0, thus revealing
to the decision-maker that he is facing a Group I pair {z(a), h(a)}, then there exists an interval
of posteriors on each type for which the decision-maker will find it optimal to choose the action
v2(a, α0).

Proposition D7 completes the proof, by proving that there exists an open set of probability
distributions over the state space which generate the posteriors needed in Propositions D5, D6.

Before proceeding with the proof, we briefly comment on the timeline. First, note that Theorem
1 places only a lower bound on the horizon T ∗, whereas the constraint (35) in fact also places an
upper bound on the horizon. However, the construction may trivially be extended for larger horizons
in two ways: (i) add a babbling phase at the beginning; or (ii) scale everything up. All that matters
is the ratios —the duration of each action phase relative to the horizon—so e.g. the analysis for a
T -period equilibrium (where Groups II, III reveal the truth at time 2, Group I at time T − τ) is
identical to the analysis for a Tλ-period equilibrium (with Groups II, III revealing the truth at
time 2λ, Group I at time (T − τ)λ, for λ any positive number).26 It should also be noted that,
while (35) can always be satisfied by an integer T, the times at which the DM is instructed to

24The previous version of the paper used the same bounds for β > 0.79202, but used the exact horizon T = 4−2β
1−β

on the range β ∈ [0.4173, 0.79202]. We have modified the horizon, to guarantee that (i) T may be chosen to be an
integer; and (ii) to expand the set of priors (from “infinite”to “open”) for which the construction works.

25 It may in fact be shown (see Section D.3.2) that this is necessarily true of any fully revealing construction:
the expert’s local + global IC constraints imply a suffi ciently large distortion in some interval of types’(and their
partners’) recommendations that, if the DM were certain that he was facing one of these pairs, he would rather forego
learning the exact truth than follow their advice.

26This follows immediately from the derivations in Appendix D3.
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change his action —namely, times 2α0, 2αa, T − τ —are not necessarily integers in our construction.
In a continuous-time setting, where action changes can be made frequently, this clearly poses no
problem. At the end of this proof (Section D.2.6), we explain how to handle integer constraints if
time is discrete.

D.2.2 Optimality for the decision-maker: Deviations at time t = 2α0

Proposition D5: Fix aγ ≤ −1.773, choose parameters Cu,K, T as specified by (33) , (34) , and
(35) , and define ∆ ≡ T−τ

2 ⇔via (20) T = 2(∆−β)
1−β . Suppose that the decision-maker receives recom-

mendation v2(a, α0) at time t = 2α0 for some a ∈ [aγ , 0], and assigns probabilities qa, 1− qa to the
two types z(a), h(a) in his information set. Then: (i) if βa2

γ > 8, there exist numbers α0 < 1 and
ε ≥ 0.25, and a continuous function q∗a : [aγ , 0] → (0.3, 0.6), such that the DM’s gain to deviating
is strictly negative whenever α0 ≥ α0 and qa ∈ (q∗a − ε, q∗a + ε) ; (ii) if βa2

γ ≤ 8, there exist numbers
α0 < 1 and ε ≥ 0.145, and a continuous function q∗a : [aγ , 0] → (0.2, 0.7) such that the DM’s gain
to deviating is strictly negative whenever α0 ≤ α0 and qa ∈ (q∗a − ε, q∗a + ε) .
Proof of Proposition D5:

If the decision-maker follows recommendation v2(a, α0) (expecting to choose this action until
time T − τ , then learn the truth), his expected disutility is

(T − τ − 2α0)
(
qa (v2(a, α0)− z(a))2 + (1− qa) (v2(a, α0)− h(a))2

)
+ τ(0)

The best possible deviation is to instead choose myopically optimal action qaz(a) + (1− qa)h(a) in
all remaining T − 2α0 periods, for disutility

(T − 2αa)
(
qa (qaz(a) + (1− qa)h(a)− z(a))2 + (1− qa) (qaz(a) + (1− qa)h(a)− h(a))2

)
= (T − 2α)qa(1− qa) (h(a)− z(a))2

So, the gain to deviating is negative at any belief qa satisfying the following inequality:

0 >
(
qa (v2(a, α0)− z(a))2 + (1− qa) (v2(a, α0)− h(a))2

)
− (T − 2α0)

(T − τ − 2α0)
qa(1− qa) (h(a)− z(a))2

= qa

(
2

(
v2(a, α0)− h(a)

h(a)− z(a)

)
+ 1

)
+

(
v2(a, α0)− h(a)

h(a)− z(a)

)2

− φ2qa(1− qa), (36)

where φ2 ≡ T − 2α0

T − τ − 2α0
(37)

Solving, we need qa ∈ (q∗a − εa, q∗a + εa) , where

q∗a =
φ2 − 1− 2

(
v2(a,α0)−h(a)
h(a)−z(a)

)
2φ2 (38)

εa =

√
φ2 − 1

2φ2

√(
φ− 1− 2

(
v2(a, α0)− h(a)

h(a)− z(a)

))(
φ+ 1 + 2

(
v2(a, α0)− h(a)

h(a)− z(a)

))
(39)

By (19), (15) , and (37) , we have that v2(a,α0)−h(a)
h(a)−z(a) is continuous in both a and α0, and φ is

continuous in α0; this establishes the desired continuity of q∗a in a, and also implies that q
∗
a, εa are

both continuous in α0. Then, to complete the proof, it is suffi cient to show that (i) if βa2
γ > 8,

then, in the limit as α0 → 0, the value q∗a in (38) lies in (0.3, 0.6) ∀a ∈ [aγ , 0], and the value εa in
(39) is greater than 0.25 ∀a ∈ [aγ , 0]; (ii) if βa2

γ ≤ 8, then, in the limit as α0 → 1, the value q∗a in
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(38) lies in (0.2, 0.7) ∀a ∈ [aγ , 0], and the value εa in (39) is greater than 0.145.

To this end, we first calculate bounds on 2
(
v2(a,α0)−h(a)
h(a)−z(a)

)
. Substituting Cu = 1−α0

α0

K2

T−2 (from

(33)) into (19) , we obtain that v2(a, α0)− h(a) equals

θ3 +
2K−τ(a−aγ)

T−τ +

√
4τα0

T−τ−2α0

√
(T−τ)(T−2)

τ
1−α0
α0

K2

T−2
+(T−τ−2

τ )K2+2K(a−aγ)−T
2

(a−aγ)2

T−τ − h(a)

=
2K − T (a− aγ)

T − τ +

√(
2K

T − τ

)2

+
2τα0

(T − τ) (T − τ − 2α0)

(
4K

T − τ (a− aγ)− T

T − τ (a− aγ)2

)
(40)

(second line uses θ3 − h(a) = aγ − a (from (15) and (14)) and simplifies the square root term).
Setting k ≡ 2K

T−τ , t ≡
T

T−τ , and y ≡ a− aγ , noting (using (37)) that 2τα0
(T−τ)(T−τ−2α0) = φ2 − t, and

multiplying by 2
h(a)−z(a) = 1

ey (by (15) with y = a− aγ), we can simplify further to:

2

(
v2(a, α0)− h(a)

h(a)− z(a)

)
=
k − ty +

√
k2 +

(
φ2 − t

)
(2ky − ty2)

ey
≡ ξ(y)

ey
(41)

So we wish to obtain upper and lower bounds on the expression ξ(y)
ey in (41) , for a ∈ [aγ , 0]⇔ y ∈

[0,−aγ ] . By construction, the value of K specified in (34) sets the square root portion of v1, v2

equal to zero at a = 0⇔ y = −aγ (see Lemma D7.1), so we have

k = aγ

(
φ2 − t+ φ

√
φ2 − t

)
(42)

Next, observe that

ξ′(y) = −t+

(
φ2 − t

)
(k − ty)√

k2 +
(
φ2 − t

)
(2ky − ty2)

ξ′′(y) =
−k2φ2(φ2 − t)(

k − ty +
√
k2 +

(
φ2 − t

)
(2ky − ty2)

) 3
2

both strictly negative, by φ2 > t, k < 0, and y ≥ 0. Therefore, ξ(y) reaches a maximum over the
interval y ∈ [0,−aγ ] at y = 0, and lies above the straight line connecting the points (0, ξ(0)) and
(−aγ , ξ(−aγ)) : since we have ξ(−aγ) = k + taγ and ξ(0) = k +

√
k2 = 0, this line ξ̃ is given by

ξ̃(y)− ξ̃(0) =
ξ̃(−aγ)− ξ̃(0)

−aγ
(y − 0)⇒ ξ̃(y) =

k + taγ
−aγ

y

Substituting in (42) , we conclude that

min
y∈[0,−aγ ]

ξ(y)

ey
≥ min

y∈[0,−aγ ]

ξ̃(y)

ey
=

(
−φ2 − φ

√
φ2 − t

)(
max

y∈[0,−aγ ]

y

ey

)
=
−φ2 − φ

√
φ2 − t

e

max
y∈[0,−aγ ]

ξ(y)

ey
≤

maxy∈[0,−aγ ] ξ(y)

miny∈[0,−aγ ] ey
=
ξ(0)

e0
= 0
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And finally, substituting 2
(
v2(a,α0)−h(a)
h(a)−z(a)

)
∈
[
−φ2−φ

√
φ2−t

e , 0

]
into (39) and (38) , we obtain

q∗a ∈

φ2 − 1

2φ2 ,
φ2 − 1 +

φ2+φ
√
φ2−t

e

2φ2

 (43)

min
a∈[aγ ,0]

εa ≥
√
φ2 − 1

2φ2

√√√√(φ− 1− 0)

(
φ+ 1− φ2 + φ

√
φ2 − t

e

)
(44)

We now complete the proof for βa2
γ > 8⇔ β > 0.79202. Consider the limit as α0 → 0, in which

case φ2 → T
T−τ = t; substituting t = φ2 into (44) , we obtain

min
a∈[aγ ,0]

εa ≥
√
φ2 − 1

2φ2

√
(φ− 1)

(
φ+ 1− φ2

e

)

This exceeds 1
4 whenever φ ∈ (1.6545, 2.45), in which case (43) yields q∗a ∈ (0.317 34, 0.600 64) ⊆

(0.3, 0.6), the desired bounds. So, to complete the proof, we just need to show that (35) indeed

yields limα0→0 φ ∈ (1.6545, 2.45) . For this, recall that limα0→0 φ
2 ≡ T

2∆ =
1− β

∆
1−β , so that

φ > 1.6545⇔
1− β

∆

1− β > (1.6545)2 ⇔ ∆ >
β

2. 737 4β − 1. 737 4
(45)

φ < 2.45⇔ (6. 002 5β − 5. 002 5) ∆ < β (46)

Substituting (45) into the equation T = 2(∆−β)
1−β , we obtain the horizon constraint T >

(
5. 474 8β

2.7374β−1.7374

)
,

which is implied by the bound T > Tmin in (35) (noting that 5. 474 8β
2.7374β−1.7374 < 6 whenever β >

0.95203). The inequality in (46) is trivially satisfied by any horizon if β ≤ 5.0025
6.0025

∼= 0.833 4; for
β > 0.8334, we need ∆ < β

6.0025β−5.0025 ⇔ T < 12. 005β
6.0025β−5.0025 , which is implied by the bound

T < Tmax in (35) (noting that 12. 005β
6.0025β−5.0025 >

4−2β
1−β whenever β < 0.90913). As desired, this estab-

lishes that q∗a ∈ (0.3, 0.6) and εa > 0.25, for any horizon T satisfying (35) and α0 suffi ciently close
to zero.

Finally, we complete the proof for βa2
γ < 8, in which case we consider the limit as α0 → 1. Then,

φ2 → T−2
T−τ−2 = 1

1−β (using (20) , in particular τ = β(T − 2)), and t = T
T−τ =

1− β
∆

1−β ; substituting
into (43) and (44) , we obtain

q∗a ∈


1

1−β − 1
2

1−β
,

1
1−β − 1 +

1
1−β+

√
1

1−β

√
1

1−β−
1− β

∆
1−β

e
2

1−β

 =

β
2
,
β +

1+
√

β
∆

e

2



min
a∈[aγ ,0]

εa ≥
√
β

2

√√√√√β −
(

1−
√

1− β√
1− β

)1 +
√

β
∆

e


For the range β ∈ [0.4173, 0.50102), (35) specifies T = 7 ⇔ ∆ = 7−5β

2 ; in this case, it may easily
be verified numerically that our lower bound on εa reaches a minimum (at β = 0.4172) of 0.163, our
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lower bound on q∗a is at least
β
2 ≥

0.4172
2 , and our upper bound on qa is at most max

β∈[0.4172,0.50102]

(
β
2 +

1+
√

2β
7−5β

2e

)
=

0.521 30. For the range β ∈ [0.50102, 0.79202), (35) specifies ∆ ∈ [2.5, 4]; over this range, it may
easily be verified numerically that our lower bound on εa is minimized at β = 0.79202, and is
increasing in ∆, with a minimum value (at β = 0.79202,∆ = 2.5) of 0.14505 (any ∆ ∈ [3.4] guar-
antees εa > 0.15); our lower bound on qa is at least 0.50102

2 > 0.25, and our upper bound on qa is at

most max
β∈[0.50102,0.79202]

(
β
2 +

1+
√

β
2.5

2e

)
= 0.7. As desired, this establishes that if we choose a horizon

T satisfying (35) and take α0 suffi ciently close to 1, then q∗a ∈ (0.2, 0.7) and εa > 0.145.

D.2.3 Optimality for the decision-maker: Deviations at time t = 0

Proposition D6: Fix aγ ≤ −1.773 ⇒ b < 1
61 , and choose parameters Cu, K, T satisfying (33) ,

(34) , and (35) . There exists a continuous function p∗a : [−2, 0] → (0, 1), a number ε > 0, and
numbers 0 < α′ < α′′ < 1 such that if the DM receives recommendation u1(a, αa) at time t ≥ 0 for
some a ∈ [−2, 0], believes he is facing either type x(a) or g(a), and assigns probability pa to type
x(a), then (i) if βa2

γ > 8, his gain to deviating is strictly negative whenever pa ∈ (p∗a − ε, p∗a + ε)

and α0 < α′; (ii) if βa2
γ ≤ 8, his gain to deviating is strictly negative whenever pa ∈ (p∗a− ε, p∗a + ε)

and α0 > α′′.
Proof of Proposition D6: As explained in Observation D4, it suffi ces to prove that the gain to
deviating is negative at time t = 0. Substituting x(a) = θ3 + a− θ3e

a and g(a) = θ3 + a into (94) ,
we obtain that the decision-maker’s gain to deviating at time 0 at information set {x(a), g(a)}, if
he assigns probability pa to type x(a), is

= 2K2 + 4K (paθ3e
a − a) + T (paθ3e

a − a)2 − (T − 2)pa(θ3e
a)2 + 2(T − 2)Cu

Substituting in (T − 2)Cu = 1−α0
α0

K2 from (33) and simplifying, this becomes

2K2

α0
+ 4K (paθ3e

a − a) + T (paθ3e
a − a)2 − (T − 2)pa(θ3e

a)2

Setting this expression to be negative and solving for pa, we find that deviations are unprofitable
so long as pa ∈ (p∗a − εa, p∗a + εa) , where

p∗a =
1

2
+

a

θ3ea
−

1 + 2K
θ3ea

T
(47)

εa =

√√√√√√(T − 2

T

)1

4
+

a

θ3ea
−

(
1 + 2K

θ3ea

)2

2T

− (1− α0

α0

)
2K2

T (θ3ea)
2 (48)

So, noting the continuity in a, α0, it suffi ces to take the limits of (47) , (48) as α0 →
{

1 if βa2
γ ≤ 8

0 if βa2
γ > 8

,

and to show that the expressions for p∗a, εa in (47) , (48) satisfy p∗a ∈ (0, 1) ∀ ∈ [−2, 0], and
mina∈[−2,0] εa > 0. In what follows, it will be useful to recall the relationships θ3e

−2 = aγ−2+2e−aγ

(from (14)), and ∆ = T−τ
2 ⇔ T = 2(∆−β)

1−β (using (20)).

If βa2
γ > 8⇔ aγ < −3.18, β > 0.79202, then consider the limit as α0 → 0, and let 6 ≤ T ≤ 4−2β

1−β
(implied by (35)). Note that in this range, mina∈[−2,0] θ3e

a = θ3e
−2 = aγ−2+2e−aγ > 40. By (34) ,
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we have limα0→0

(
1−α0
α0

)
K2 =

Tτa2
γ

2(T−τ) and limα0→0K = 0; substituting into (48) , we obtain

lim
α0→0

εa =

√(
T − 2

T

)(
1

4
+

a

θ3ea
− 1

2T

)
−

τa2
γ

T − τ

(
1

θ3ea

)2

This is increasing in a, and therefore reaches a minimum at a = −2⇒ θ3e
a = aγ − 2 + 2e−aγ : so,

we have

min
a∈[−2,0]

(
lim
α0→0

εa

)
=

√(
T − 2

2T

)2(
1−

(
8T

T − 2

)(
1

aγ − 2 + 2e−aγ

))
− τ

T − τ

(
aγ

aγ − 2 + 2e−aγ

)2

(49)
We first consider the final subtracted term in (49) : using the relationship ∆ = T−τ

2 ⇔ T = 2(∆−β)
1−β

and our horizon restriction T ≤ 4−2β
1−β ⇔ ∆ ≤ 2, we obtain τ

T−τ =
(

β
1−β

) (
∆−1

∆

)
≤ β

2(1−β) ; this is less

than (aγ−2+2e−aγ )
2

2(2−aγ)(aγ−4+4e−aγ )
by (20) , so that τ

T−τ

(
aγ

aγ−2+2e−aγ

)2
<

a2
γ

2(2−aγ)(aγ−4+4e−aγ )
. Substituting

this into (49) , noting that the resulting expression is strictly increasing in T, and using our horizon
restriction T ≥ 6, we then have:

min
a∈[−2,0]

(
lim
α0→0

εa

)
>

√
1

9
− 4

3

(
1

aγ − 2 + 2e−aγ

)
−

a2
γ

2 (2− aγ) (aγ − 4 + 4e−aγ )

It may easily be verified graphically that this expression is increasing in −aγ , with a lower bound,
at −aγ = 3.18, of approximately 0.263. On the other hand, (47) yields

lim
α0→0

p∗a =
T − 2

2T
+

a

θ3ea

Since maxa∈[−2,0] (limα0→0 p
∗
a) = T−2

2T < 1
2 ∀T, and mina∈[−2,0] (limα0→0 p

∗
a) = T−2

2T −
2

θ3e−2 >
4
12 −

2
40 = 17

60 (by horizon restriction T ≥ 6 and the fact that aγ < −3.18⇒ θ3e
−2 = aγ−2+2e−aγ > 40),

this establishes the desired result, with εa > 0.25 and p∗a ∈
[

17
60 ,

1
2

]
.

If aγ ∈ [−3.18,−2)⇔ β ∈ (.50102, .79202], then consider the limit as α0 → 1 : in this case, we
have

lim
α0→1

εa =

√√√√√√(T − 2

T

)1

4
+

a

θ3ea
−

(
1 + 2K

θ3ea

)2

2T

 (50)

with K =
βaγ

1− β

(
1 +

√
∆

β

)
, T =

2(∆− β)

1− β (using (34) , (20) at α0 = 1) (51)

Recall that in this range, (35) specifies ∆ ∈ [2.5, 4] ⇔ T ∈
[

5−2β
1−β ,

8−2β
1−β

]
and implies T > 6. To

prove that mina∈[−2,0] εa > 0, it suffi ces to show that for any ∆ ∈ [2.5, 4] and aγ ∈ [−3.18,−2], the
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following two results hold:

(i) :

(
1 +

2K

θ3ea

)2

≤ 1− ε′, for some ε′ > 0 (52)

(ii) :
1

2T
≤ 1

4
− 2

θ3e−2
(53)

To see this, substitute (52) and (53) into (50) , to obtain

lim
α0→1

εa >

√(
T − 2

T

)(
1

4
− 2

θ3e−2
− 1− ε′

2T

)
(by (52) and

d

da

a

θ3ea
> 0)

>

√(
T − 2

T

)(
ε′

2T

)
(by (53))

Strictly positive as desired, since ε′ > 0 and T > 6. For p∗a ∈ (0, 1), note that (52) implies(
1 + 2K

θ3ea

)
∈ (−1, 1); substituting this into (47) , we obtain

min
a∈[−2,0]

(
1

2
+

a

θ3ea
− 1

T

)
≤ lim

α0→1
p∗a ≤ max

a∈[−2,0]

(
1

2
+

a

θ3ea
− −1

T

)
⇔ p∗a ∈

(
2

(
1

4
− 1

θ3e−2
− 1

2T

)
,
1

2
+

1

T

)
By (53) (for the lower bound) and T ≥ 6 (for the upper bound), this implies p∗a ∈ (0, 1), as desired.

So, to complete the range for aγ ∈ [−3.18,−2), we just need to prove that ∆ ∈ [2.5, 4] implies

(52) and (53) . To prove (52) , it suffi ces to set ε′ =
(
−4K
θ3

)(
1 + K

θ3e−2

)
, and to prove that ∆ ∈

[2.5, 4] and aγ ∈ [−3.18,−2]⇒ 1 + K
θ3e−2 > 0 : then, since it is immediate from (51) that −4K

θ3
> 0,

we’ll have

0 < ε′ ≡
(
−4K

θ3

)(
1 +

K

θ3e−2

)
< min

a∈[−2,0]

((
−4K

θ3ea

)(
1 +

K

θ3ea

))
= min

a∈[−2,0]

(
1−

(
1 +

2K

θ3ea

)2
)

which rearranges to yield
(

1 + 2K
θ3ea

)2
< 1− ε′ ∀a ∈ [−2, 0], as desired. To this end, we first solve

for the values of ∆ that guarantee 1 + K
θ3e−2 > 0 : substituting (51) into this inequality, along with

the relationship θ3e
−2 = aγ − 2 + 2e−aγ , and then solving for ∆, we obtain

∆ <
1

β

(
2 (1− β) (e−aγ − 1) + aγ

−aγ

)2

(54)

To prove that this is satisfied by any ∆ ∈ [2.5, 4], it suffi ces to prove that the upper bound in (54)
exceeds 4. For this, it is suffi cient (by β < 1⇒ 1

β > 1) that

2 (1− β) (e−aγ − 1) + aγ
−aγ

> 2⇔ 2 (1− β)
(
e−aγ − 1

)
+ 3aγ > 0

Substituting 1 − β =
(2−aγ)(aγ−4+4e−aγ )

4e−aγ (e−aγ−1)
(from (20)) into this inequality and multiplying through
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by 2e−aγ , it becomes
(2− aγ)

(
aγ − 4 + 4e−aγ

)
+ 6aγe

−aγ > 0

The LHS of this expression is strictly concave (2nd derivative w.r.t. aγ is 2 (2 + aγ) e−aγ−2, which is
strictly negative by aγ ≤ −2), and therefore it reaches a minimum over the interval aγ ∈ [−3.18,−2]
at either aγ = −3.18, of 5.5562, or at aγ = −2, of 2.2443; we can therefore conclude that the RHS of
(54) is at least 4, and so (54) is indeed satisfied by any ∆ ∈ [2.5, 4], as needed to complete the proof
of (52) . For (53) , we need to show that ∆ ∈ [2.5, 4] implies that

1

2T
≤ 1

4
− 2

θ3e−2
⇔ T ≥ 2

(aγ − 2 + 2e−aγ )

(aγ − 2 + 2e−aγ )− 8

Substituting T = 2∆−2β
1−β (from ∆ ≡ T−τ

2 and (20) , in particular τ = β(T − 2)) into this inequality,
it becomes

∆− β
1− β ≥

(aγ − 2 + 2e−aγ )

(aγ − 2 + 2e−aγ )− 8
⇔ ∆ ≥

(
aγ − 2 + 2e−aγ − 8β

aγ − 2 + 2e−aγ − 8

)
To complete the proof, it then suffi ces to show that

aγ ∈ [−3.18,−2)⇒
(
aγ − 2 + 2e−aγ − 8β

aγ − 2 + 2e−aγ − 8

)
≤ 2.5

⇔ rearranging3
(
aγ − 2 + 2e−aγ

)
+ 16β ≥ 40

Using (20) , the LHS is strictly decreasing in aγ , with a minimum value, at aγ = −2, of 40.331,
thus satisfying the inequality. This completes the proof of (53) , and hence of Proposition D6 for
aγ ∈ [−3.18,−2).

Finally, we prove Proposition D6 for aγ ∈ [−2,−1.773]. Again consider the limit as α0 → 1, so
that (50) , (47) , (51) continue to hold. First, we note that (35) implies K + T ≥ 0 :

K + T ≥ 0⇔ βaγ
1− β

(
1 +

√
∆

β

)
+

2(∆− β)

1− β ≥ 0⇔ ∆ ≥ β
(

1− aγ
2

)2
(55)

Since aγ ≥ −2⇒ β
(
1− aγ

2

)2 ≤ 4β, this holds for any∆ ≥ 4β; by (35) , we have T = 7⇒ ∆ = 7−5β
2 ;

and since aγ ≥ −2⇒ β ≤ 0.50102 < 7
13 ⇒

7−5β
2 > 4β, we conclude that (55) indeed holds, and so

K + T ≥ 0. Next, we note that K + T ≥ 0 implies that limα0→1 εa is minimized (over our interval

a ∈ [−2, 0]) at either a = −2 or a = 0 : for this, we just need to show that
d2(limα0→1 εa)

da2 < 0, which
follows from differentiating (50) to obtain

d2εa
da2

=

(
−8K2 + Taθ3e

a − 2(K + T )θ3e
a
)

T (θ3ea)
2 < 0 (by a < 0 and K + T ≥ 0)

This is negative, by a < 0 and K + T ≥ 0. So, to prove that limα0→1 εa > 0 ∀a ∈ [−2, 0], we
just need to show that limα0→1 εa > 0 at a ∈ {−2, 0}. For limα0→1 ε0 > 0 : since aγ ≤ −1.773 ⇒
θ3 = (aγ − 2 + 2e−aγ ) e2 > 59, and 0 > K ≥ −T = −7, we have 1 > 1 + 2K

θ3
> 1 − 14

59 , so that(
1 + 2K

θ3

)2
< 1; substituting this into (50) evaluated at a = 0, we obtain

lim
α0→1

ε0 =
1

4
−

(
1 + 2K

θ3

)2

2T
>

1

4
− 1

2(7)
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Strictly positive, as desired. For limα0→1 ε−2 > 0, evaluate (50) at a = −2 and T = 7, recalling
from (14) that θ3e

−2 = aγ − 2 + 2e−aγ , to obtain

ε−2 =
1

4
− 2

aγ − 2 + 2e−aγ
−

(
1 + 2K

aγ−2+2e−aγ

)2

14

> 0 whenever
(

1 +
2K

aγ − 2 + 2e−aγ

)2

< 14

(
1

4
− 2

aγ − 2 + 2e−aγ

)
(56)

Substituting T = 7 ⇒ ∆ = 7−5β
2 and (20) into (51) to obtain K as a function of aγ , it may easily

be verified numerically that (56) holds iff aγ > −1.7743, implied for the range under consideration.
This completes the proof that ε−2 > 0, and hence that mina∈[−2,0] εa > 0. Finally, to prove that
p∗a ∈ (0, 1) : first, aγ ∈ [−2,−1.773] implies that the RHS expression in (56) is between 0 and 1,

and therefore (56) implies that
(

1 + 2K
θ3e−2

)2
< 1; using this, together with K < 0 and the fact that

2K
θ3ea

is increasing in a, we then have

1 > 1 +
2K

θ3
≥ 1 +

2K

θ3ea
≥ 1 +

2K

θ3e−2
> −1 (57)

Substituting
(

1 + 2K
θ3ea

)
∈ (−1, 1) into (47) , together with a

θ3ea
∈ [ −2

θ3e−2 , 0] and T = 7, we obtain

p∗a ∈
[

1
2 −

2
θ3e−2 − 1

7 ,
1
2 + 1

7

]
; the upper bound is clearly below 1, and the lower bound is at least

3
28 by aγ ≥ −1.773⇒ θ3e

−2 > 8, so p∗a ∈ (0, 1), as desired.

D.2.4 Optimality for the decision-maker: Completing the Proof

As explained at the beginning of this section, it remains only to prove that there is an open set of
priors generating posteriors which satisfy the conditions in Propositions D5, D6, which we prove
here.
Proposition D7: For any 0 < λ < λ < 1 and continuous functions p : [−2, 0] → [λ, 1],
q : [aγ , 0] → [λ, 1], and r : [aγ , 0] → [0, λ] , there exists a density f over the state space
such that, in our construction, a Bayesian decision-maker will hold the following posterior be-
liefs: (i) Pr (x(a)|{x(a), g(a)}) = p(a); (ii) Pr (z(a)|{z(a), h(a)}) = q(a); (iii) Pr({z(a), h(a)} |
{z(a), h(a), x(â), g(â)} = r(a). Then, since we proved that the equilibrium works for the DM when-
ever p(a) ∈ (p∗a−ε, p∗a+ε) (for some continuous p∗a : [−2, 0]→ (0, 1) and ε > 0, see Proposition D6),
q(a) ∈ (q∗ − ε, q∗ + ε) (for some continuous q∗a : [aγ , 0]→ (0, 1) and ε > 0, see Proposition D5), and
r(a) < ε′ (for some ε′ > 0, see section D.2.1), with p∗a, q

∗
a, 1−r∗a bounded away from zero, it follows

we can find some ε′′ > 0 such that our construction works also for any perturbation of the prior
which does not change the density at any point by more than ε′′. As desired, this constructs an
open set of prior distributions for which our construction constitutes a fully revealing equilibrium.
Proof of Proposition D7: Bayesian beliefs satisfy

Pr (x(a)|{x(a), g(a)})
Pr (g(a)|{x(a), g(a)}) =

f(x(a))

f(g(a))
(θ3e

a − 1) (58a)

Pr (z(a)|{z(a), h(a)})
Pr (h(a)|{z(a), h(a)}) =

f (z(a))

f(h(a))

(
2ea−aγ − 1

)
(58b)

Pr({z(a), h(a)})
Pr ({x(â), g(â)}) =

f(z(a))

f(x̂(a))

(
2ea−aγ − 1

θ3eâ(a) − 1

)(
1

|â′(a)|

)(
p(â)

q(a)

)
(58c)

where â(a) = u−1
1 (v1(a′)) (as explained in Section D.3). We want the expression in (58a) to equal
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p(a)
1−p(a) , the expression in (58b) to equal q(a)

1−q(a) , and the expression in (58c) to equal r(a)
1−r(a) . It is

straightforward to construct such a density f : for example, for each a ∈ [−2, 0], set f(x(a)) = 1
M ,

with M a constant to be determined (this assigns a density for types x(a) ∈ [0, θ1]). Then, assign
probabilities to types g(a) ∈ [θ2, θ3] by setting the RHS of (58a) equal to p(a)

1−p(a) , substituting in

f(x(a)) = 1
M , and solving for f(g(a)), to obtain

f(g(a)) = f(x(a))(θ3e
a − 1)

(
1− p(a)

p(a)

)
=

(θ3e
a − 1)

M

1− p(a)

p(a)

Next, for each a ∈ [aγ , 0], set the RHS of (58c) equal to r(a)
1−r(a) , replace the final RHS term of (5)

with p(â)
q(a) , sub in f(x(â)) = 1

M , and solve for f(z(a)), to obtain

f(z(a)) =

q(a)
p(â)

θ3eâ(a)−1
2ea−aγ−1

· |â′(a)|
M

r(a)

1− r(a)

(This assigns a prior for types z(a) ∈ [θ1, θ2]). And similarly, use this and (58b) to assign beliefs to
types h(a) ∈ [θ3,

1
b ], obtaining

f(h(a)) =

q(a)
p(â(a)))

(
θ3e

â(a) − 1
)
· |â′(a)|

M

(
r(a)

1− r(a)

)(
1− q(a)

q(a)

)
Finally, choose M so that the total measure of the type space integrates to 1 (This is possible since
(16) , (18) imply that u1, v1 and their derivatives w.r.t. a are finite and non-zero except perhaps at
a single point a, from which it follows that |â′(a)| is bounded; since we also have p(a) ≥ λ, q(a) ≥ λ,
and 1− r(a) ≥ 1− λ, it follows that all of the specified densities f(x(a)), f(g(a)), f(z(a)), f(h(a))
are finite numbers divided by a number M . So, integrating over the state space yields a finite
number divided by M ; choose M so that this equals 1).

D.2.5 Optimality for the decision-maker: Preliminary Calculations

Lemma D7.1: Let Cu, K, and T be given by (33) , (34) , and (35) , and define ∆ ≡ T−τ
2 (so

that, using τ = β(T − 2), we have T = 2(∆−β)
1−β ). Then: (i) if βa2

γ > 8, there exists α0 > 0 such
that whenever α0 < α0, the functions u1, u2, v1, v2 specified in (16)-(19) are real-valued; moreover,
there exists a continuous decreasing function αa : [−2, 0] → [α0, 1) such that ∀a ∈ [aγ , 0], there
exists ã ∈ [−2, 0] with v1(a, α0) = u1 (ã, α(ã)) ; (ii) if βa2

γ ≤ 8, there exists α0 < 1 such that
whenever α0 > α0, the functions u1, u2, v1, v2 specified in (16)-(19) are real-valued; moreover,
v1(a, α0) ∈ [u1(0, α0), u1(−2, α0)] ∀a ∈ [aγ , 0]; (iii) (modification to (i), needed only for the next
subsection “Integer Constraints”): if βa2

γ > 8 and Cu,K are as given by (33) , (34) , then part (i)
holds also at T = 6, α0 = 0.1.
Proof of Lemma D7.1:
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Substituting (33) into (16) , (17) , (18) , (19) , our action functions become:

u1(a, αa) = θ3 +K − T − 2

2
a−

√
1− αa
αa

√
1− α0

α0
K2 + (T − 2)a

(
K − T

4
a

)
(59)

u2(a, αa) = θ3 +K − T − 2

2
a+

√
1− αa
αa

√
1− α0

α0
K2 + (T − 2)a

(
K − T

4
a

)
(60)

v1(a, α0) = θ3 +
2K−τ(a−aγ)

T−τ −

√
τ(T−τ−2α0)

α0

√(
T−τ−2α0

τ

)
K2

α0
+2K(a−aγ)−T

2
(a−aγ)2

T−τ (61)

v2(a, α0) = θ3 +
2K−τ(a−aγ)

T−τ +

√
4τα0

T−τ−2α0

√(
T−τ−2α0

τ

)
K2

α0
+2K(a−aγ)−T

2
(a−aγ)2

T−τ (62)

We first prove that v1, v2 are real-valued ∀α0. For this, we need to show that the following
expression is non-negative, for all a ∈ [aγ , 0] :(

T − τ − 2α0

τ

)
K2

α0
+ 2K (a− aγ)− T

2
(a− aγ)2 (63)

For this, observe that the expression in (63) is decreasing in a (the derivative w.r.t. a is 2K−T (a−
aγ), which is strictly negative, since (34) implies K < 0); therefore, the expression in (63) reaches
a minimum over the interval a ∈ [aγ , 0] at a = 0, and so it is suffi cient to prove that this minimum
value is non-negative: that is, we need(

T − τ − 2α0

τ

)
K2

α0
− 2Kaγ −

T

2
a2
γ ≥ 0

The value for K specified in (34) is precisely the negative root of this equation, and so we conclude
that v1, v2 are real-valued for all values of a, α0.

Next, we prove that u1, u2 are real-valued for α0 near zero when βa2
γ > 8, and for α0 near 1

when βa2
γ ≤ 8. To this end: for u1, u2 to be real-valued, we need to choose α0 such that

min
a∈[−2,0]

(
1− α0

α0
K2 + (T − 2)a

(
K − T

4
a

))
≥ 0 (64)

The second derivative of the bracketed expression w.r.t. a is −T (T−2)
2 < 0, implying that the

minimum value over the interval a ∈ [−2, 0] is attained at one of the two endpoints. If at a = 0,
then (64) becomes 1−α0

α0
K2 ≥ 0, trivially satisfied ∀α0 ∈ [0, 1]; if at a = −2, then we need

1− α0

α0
K2 − (T − 2) (2K + T ) ≥ 0 (65)

Suppose first that βa2
γ > 8, and consider the limit as α0 → 0 : by (34) , we have limα0→0K = 0,

and limα0→0
1−α0
α0

K2 =
T (T−2)βa2

γ

2(T−τ) , so we have

lim
α0→0

(
1− α0

α0
K2 − (T − 2) (2K + T )

)
= T (T − 2)

(
βa2

γ

2(T − τ)
− 1

)

This is strictly positive, since βa2
γ > 8, and (35) specifies (T − τ) ≤ 4 in this range; therefore, (65)
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is satisfied with strict inequality in the limit as α0 → 0, and therefore, by continuity, holds also for
α0 suffi ciently close to zero. If βa2

γ ≤ 8, then consider the limit as α0 → 1. For (64) , it is suffi cient
to prove that

2K + T ≤ 0⇔ −K ≥ T

2

Substituting in (34) , taking limits as α0 → 1, and using T
2 = ∆−β

1−β , this becomes

β(−aγ)

1− β

(
1 +

√
∆

β

)
≥ ∆− β

1− β ⇔ (−aγ)

(
1 +

√
∆

β

)
≥ ∆

β
− 1

This is satisfied by any
√

∆
β ∈ [0, 1− aγ ] ⇔ 0 ≤ ∆ ≤ β(1 − aγ)2, which is implied by (35) : in

the range aγ ∈ [−3.18,−2) ⇔ β ∈ (.50102, .79202], we have β(1 − aγ)2 ≥ .50102(1 + 2)2 > 4,
while (35) specifies ∆ ∈ [2.5, 4]; and in the range aγ ∈ [−2,−1.773)⇔ β ∈ (.4172, .50102], we have
β(1 − aγ)2 ≥ .4172(1 + 1.773)2 > 3, while (35) specifies T = 7 ⇔ ∆ = 7−5β

2 < 3. As desired, this
establishes that u1, u2 are real-valued under the Lemma conditions.

Finally, we prove the desired overlap of functions u1, v1. We begin by computing the range of
v1 : differentiating (61) , we obtain

T − τ
τ

∂v1(a, α0)

∂a
= −1 +

T
2 (a− aγ)−K√

K2 + τα0
T−τ−2α0

(
2K (a− aγ)− T

2 (a− aγ)2
)

T − τ
τ

∂2v1(a, α0)

∂a2
=

√
T − τ − 2α0

α0

1
2
K2

α0
(T − τ) (T − 2α0)√

T−τ−2α0
α0

K2 + τ
(

2K (a− aγ)− T
2 (a− aγ)2

)3

Since ∂2v1(a,α0)
∂a2 is strictly positive, we conclude that T−τ

τ
∂v1(a,α0)

∂a is strictly increasing over the
interval a ∈ [aγ , 0], and therefore reaches a minimum value, at a = aγ , of

min
a

(
T − τ
τ

∂v1(a, α0)

∂a

)
= −1 +

−K√
K2

= 0 (since K < 0 by (34) )

So v1 is increasing on [aγ , 0], and so we have

min
a∈[aγ ,0]

v1(a, α0) = v1(aγ , α0) = θ3 + 2K
T−τ −

√
τ(T−τ−2α0)

α0

√(
T−τ−2α0

τα0

)
K2

T−τ = θ3 +
K

α0
(66)

max
a∈[aγ ,0]

v1(a, α0) = v1(0, α0) = θ3 +
2K+τaγ
T−τ (67)

(The final equality uses the fact that, by construction, (34) sets the square rooted portion of
v1(0, α0) equal to zero). So to complete the proof, by continuity in αa, α0, a, it suffi ces to prove that
(i) if βa2

γ > 8 and α0 is suffi ciently close to zero, then u1(0, α0) ≤ mina v1(a, α0), and u1(−2, 1) >

maxa v1(a, α0);27 and (ii) if βa2
γ ≤ 8 and α0 is suffi ciently close to 1, then u1(0, α0) ≤ mina v1(a, α0),

and u1(−2, α0) ≥ maxa v1(a, α0) (so the range of the function v1(a, α0) is completely contained in
the range of u1(a, α0), so the desired overlap follows).

27So, if we set αa(0) = α0, and αa(−2) close to 1, and then choose αa(·) to be any continuous function connecting
these two points, then we will have mina u1(a, αa(a)) ≤ min v1, and maxa u1(a, αa(a)) ≥ max v1, with u1(a, αa(a))
continuous in a; since the range of v1 is completely contained in the range of u1, the desired overlap then follows.
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To this end, evaluate (59) at (a = 0, αa = α0) and (a = −2, αa), to obtain

u1(0, α0) = θ3 +K −
√

1− α0

α0

√
1− α0

α0
K2 = θ3 +

K

α0
(68)

u1(−2, αa) = θ3 +K + T − 2−
√

1− αa
αa

√
1− α0

α0
K2 − (T − 2) (2K + T ) (69)

Comparing (68) and (66) , we immediately have u1(0, α0) ≤ mina v1(a, α0), as desired. So, it

remains to prove that (i) if βa2
γ ≤ 8, then limα0→1

(
u1(−2, α0)−

(
θ3 +

2K+τaγ
T−τ

))
> 0, and (ii) if

βa2
γ > 8, then limα0→0

(
u1(−2, 1)−

(
θ3 +

2K+τaγ
T−τ

))
> 0. For (i), suppose βa2

γ > 8, and consider

the limit as α0 → 0 : then, using limα0→0K = 0 and limα0→0
1−α0
α0

K2 =
T (T−2)βa2

γ

2(T−τ) , we have

lim
α0→0

u1(−2, αa) = θ3 + T − 2−
√

1− αa
αa

√
T (T − 2)

(
βa2

γ

2(T − τ)
− 1

)
At αa = 1, we then have

lim
α0→0

(
u1(−2, αa)− max

a∈[aγ ,0]
v1(a, α0)

)
= (θ3 + T − 2− 0)−

(
θ3 +

τaγ
T − τ

)
= (T − 2)

(
1− βaγ

T − τ

)
Strictly positive, as desired, by aγ < 0.

For (ii), let βa2
γ ≤ 8, and use (69) and (67) to obtain

u1(−2, α0)− max
a∈[aγ ,0]

v1(a, α0) = K + T − 2−
√

1− α0

α0

√
1− α0

α0
K2 − (T − 2) (2K + T )− 2K+τaγ

T−τ

Using τ = β(T − 2) and ∆ = T−τ
2 , and taking limits as α0 → 1, we then wish to show that the

following expression is positive:

lim
α0→1

(
∆− 1

∆
K + (T − 2)

(
1− βaγ

2∆

)
−
√

1− α0

α0

√
1− α0

α0
K2 − (T − 2) (2K + T )

)

=

(
∆− 1

1− β

)2−

√
βa2

γ

∆


Since βa2

γ ≤ 8, this is strictly positive, as desired, for any ∆ > 2, which is implied by (35) .

Finally, for (iii), let βa2
γ > 8 ⇔ aγ < −3.18, β > .79202, and set T = 6, α0 = .1. Here,

by (34) , we have K =
2βaγ

29−20β

(
1 +

√
293−2β

2β

)
< −2.3317 (this is the value at aγ = −3.18 and

β = .79202), which guarantees that (65) is satisfied (so u1, u2 are real-valued). For the overlap of
u1, v1, we can construct the function αa : [−2, 0] → [α0, 1] by setting αa(0) = α0 = 0.1 (so that
u1(0, αa(0)) = mina∈[aγ ,0] v1(a, α0), as shown after (68)), and then setting αa(−2) = max{α0, α

∗},
where α∗ satisfies u1(−2, α∗) = maxa∈[aγ ,0] v1(a, α0); by (69) , (67) , evaluated at T = 6, α0 = 0.1,
this requires √

α∗

1− α∗ =

√
9K2 − 4 (2K + 6)

4 + 2
3−2β ((1− β)K − βaγ)

(70)

Note that this can always be satisfied by some α∗ ∈ (0, 1) : the LHS can take on any positive value,
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the RHS numerator is guaranteed to be real-valued by our proof that u1, u2 are real-valued, and
the RHS denominator rearranges, at T = 6, α0 = 0.1, to 2βaγ

3− 2β︸ ︷︷ ︸
<0 by aγ<0



(

1− β
29− 20β

)(
1 +

√
29

3− 2β

2β

)
− 1︸ ︷︷ ︸

decreasing in β, max value −0.90373 at β=.79202

+
6− 4β

βaγ︸ ︷︷ ︸
<0 by aγ<0, β<1

 > 0

Then: if max{α0, α
∗} = α0, implying that u1(−2, α0) > maxa∈[aγ ,0] v1(a, α0), set αa(a) = α0

∀a ∈ [−2, 0]; if max{αa, α∗} = α∗, then let αa : [−2, 0]→ [α0, 1] be any continuous strictly decreas-
ing function with αa(0) = α0, αa(−2) = α∗ > α0; either way, u1(a, αa(a)) will then be continuous in
a, with [u1(0, α0), u1(−2, αa(−2)] ⊇ [ min

a∈[aγ ,0]
v1(a, α0), max

a∈[aγ ,0]
v1(a, α0)], implying the desired over-

lap: any recommendation v1(a, α0) sent by pair {z(a), h(a)} with a ∈ [aγ , 0], coincides with the
recommendation u1(ã, αa(ã)) of some pair {x(ã), g(ã)} with ã ∈ [−2, 0], with u1 recommended for
at least as long.

D.2.6 Integer Constraints

If time is discrete, so that there is an integer constraint on the times at which the expert change
his advice, then our construction is most easily modified via a combination of public randomization
and scaling up.

If βa2
γ ≤ 8, the modification is straightforward. We first can show that all results of Lemma

D7.1 and Propositions D5, D6 hold also at α0 = 0.9 (our original proof uses α0 near 1 in this
range).28 Next, choose an integer T satisfying (35), and then scale everything up by a factor of
5: that is, actions u1, v1 are now recommended for 5(2α0) = 9 periods, u2 for 5(2(1 − α0)) = 1
period (after which Group II, III types reveal the truth), and the game now lasts 5T periods. The
only diffi culty is the time at which Group I pairs reveal the truth, originally T − τ , with (by (20))
τ = β(T − 2), β ∈ (0, 1) a continuous function of the bias: for most biases, if 5T is an integer, then
5(T − τ) is not. The easiest solution is to choose the two integers t1 < 5(T − τ) < t2 closest to
5(T−τ), and then use a public randomization device to determine whether the expert should reveal
the truth at t1, t2, with probabilities chosen such that the expected revelation time is 5(T − τ). So
long as this randomization does not take place until time t1, all expected payoffs are unchanged for
both players, at all times when they must decide whether or not to follow the prescribed strategies.
So, we again have a fully revealing equilibrium.

If βa2
γ > 8, then we can show that all results of Propositions D5, D6 continue to hold at

T = 6 and α0 = 0.1, and that all actions are real-valued at these parameters. Now, again scale all
time parameters up by a factor of 5, and employ public randomization as above to deal with an
integer constraint on the time at which Group I pairs reveal the truth. The new complication for
this range is the time at which pairs {x(a), g(a)} (with a ∈ [−2, 0]) switch from recommendation
u1(a, αa) to u2(a, αa) : in expectation, we now want this to occur at time 5(2αa) = 10αa, where
αa : [−2, 0] → [α0, 1] is a (necessarily) continuous function chosen in Lemma D7.1 to guarantee
overlap of u1, v1 : for these parameters, αa (·) takes on a minimum value, at a = 0, of αa(0) =
α0 = 0.1, and a maximum value, at a = −2, of αa(−2) = α∗, with α∗ ∈ (0, 1) defined by (70) .
Since 10αa potentially takes on all values in the interval [10α0, 10] = [1, 10], we clearly cannot
just “scale up”to get integers. So, consider using public randomization: for each a ∈ [−2, 0] and
the corresponding value αa(a) ∈ [α0, 1], choose the integer n ∈ {1, 2, ..., 9} satisfying the condition

28For brevity of exposition, we do not include the proof of this claim here, but it is available on request. If the
reader does not wish to take our word for it: our original proof (Theorem 1 without integer constraints) shows, for
this range, that there exists α∗ > 0 such that we have an equilibrium whenever α0 < α∗. So, one could apply our
argument here by simply choosing any α0 ∈ (0, α∗) (rather than α0 = .1), and then scaling up by 1

2α0
(rather than

by 5). We describe the integer modification here using α0 = 0.1 simply because we have verified that it works, and
we wish to illustrate that one need not scale up the horizon by an astronomical amount to obtain an equilibrium in
discrete time.
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10αa(a) ∈ [n, n+1]; if 10αa(a) ∈ (n, n+1), then use public randomization (in period n) to determine
whether the expert should switch to u2 after n or n + 1 periods, such that the expected duration
of u1(a, αa(a)) is 10αa(a). In expectation, nothing changes for the expert when he makes his
first recommendation (recall that all subsequent expert deviations are deterred in our construction
simply via the DM’s off-path beliefs), and nothing changes for the DM except for the period n in
which the outcome of the public randomization is determined: here, the DM must now prefer both
(i) choosing u1 for one more period, then u2 for 9 − n more periods, then learning the truth; and
(ii) choosing u2 for 10− n periods, then learning the truth; to deviating to the myopically optimal
action in all remaining 5T−n periods. Letting D1(a, αa), D2(a, αa), D

∗(a) denote (respectively) the
DM’s expected per-period disutility from choosing u1(a, αa), u2(a, αa), and the myopically optimal
action, given posterior beliefs that assign probabilities p(a), 1− p(a) to the two types x(a), g(a) in
his information set, we can write these interim IC constraints as:

D1(a, αa) + (9− n)D2(a, αa) ≤ (5T − n)D∗(a) (71)
(10− n)D2(a, αa) ≤ (5T − n)D∗(a) (72)

Our original construction proved that there was an interval of values for p(a) (which by Proposition
D7 could be generated by an open set of priors) for which the following ex ante incentive constraint
was satisfied, ∀a ∈ [−2, 0] :

2αaD1(a, αa) + 2(1− αa)D2(a, αa) ≤ TD∗(a) (73)

Constraint (71) is implied by (73): to see this, we just need to show that

D1(a, αa) + (9− n)D2(a, αa) + nD∗(a)

5
≤ 2αaD1(a, αa) + 2(1− αa)D2(a, αa)

⇔ D∗(a) ≤
(

10αa − 1

n

)
D1(a, αa) +

(
n+ 1− 10αa

n

)
D2(a, αa)

This follows since the RHS is a weighted average of D1(a, αa) and D2(a, αa), which are both
strictly greater than D∗(a), by definition of D∗(a) as the DM’s lowest possible per-period disutility.
Constraint (72) , however, represents a new constraint, not guaranteed to hold in our original
construction.29 So, to prove that our modified construction constitutes an equilibrium, it remains
to prove that ∀a ∈ [−2, 0], and for an interval of values for p(a), constraint (72) is satisfied.

For this: by definition of D2(a, αa) and D∗(a), , we have

D2(a, αa)

D∗(a)
=

p(a) (u2(a, αa)− x(a))2 + (1− p(a)) (u2(a, αa)− g(a))2

p(a) · (p(a)x(a) + (1− p(a))g(a)− x(a))2 + (1− p(a)) (p(a)x(a) + (1− p(a))g(a)− g(a))2

Using (60) and (15) , this simplifies to

D2(a, αa)

D∗(a)
=

p(a) + 2p(a)X(a, αa) + (X(a, αa))
2

p(a) (1− p(a))

where X(a, αa) ≡
K − T

2 a+
√

αa
1−αa

√
1−α0
α0

K2 + (T − 2)a
(
K − T

4 a
)

θ3ea

29The DM dislikes u2 more than u1, so is not willing to choose it for too much longer than the expected duration.
This is one reason we have scaled everything up, rather than employing public randomization alone: to create a
finer “time grid”, so realized and expected times can be made close. The other reason is that the expert’s expected
payoff, at the time when he makes his initial recommendation, must be the same as in our original construction.
Without “scaling up”, this would require that he expect his first recommendation to last 2α0 when he makes it: this
is problematic when 2α0 < 1.
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Substituting this into (72) , which rearranges as D2(a,αa)
D∗(a) ≤ T−n

5
2−n

5
, setting p(a) ≡ p for notational

convenience, and evaluating at T = 6, α0 = 0.1, we can solve (72) as follows:

X(a, αa) ∈
[
−p−

√
20p(1− p)

10− n ,−p+

√
20p(1− p)

10− n

]
∀a ∈ [−2, 0] (74)

with X(a, αa) =
K − 3a+

√
αa

1−αa

√
9K2 + 4a

(
K − 3

2a
)

θ3ea
(75)

So to complete the proof, it suffi ces to prove existence of a value p ∈ (0, 1) such that the following
two inequalities hold:

max
a∈[−2,0], αa∈[α0,1)

X(a, αa) < −p+

√
20p(1− p)

10− n (76)

min
a∈[−2,0], αa∈[α0,1)

X(a, αa) > −p−
√

20p(1− p)
10− n (77)

By continuity, it will then follow that ∀a ∈ [−2, 0] and ∀αa ∈ [a0, 1), there is an interval of values
for p(a) such that (74) , hence (72) , is satisfied.

To this end, we first note that X(a, αa) is strictly decreasing in a, for any fixed αa : to show

this, it is suffi cient by (75) to prove that 0 > d
da

√
9K2+4a(K− 3

2
a)

ea , that is,

0 >
2K − 6a−

(
9K2 + 4a

(
K − 3

2a
))√

9K2 + 4a
(
K − 3

2a
)
ea

(78)

The numerator in (78) is strictly convex, and therefore it reaches a maximum value at either a = 0,
of 2K − 9K2 < 0 (by K < 0), or at a = −2, where it is again negative ∀K < −1.5202, which is
implied by (34) for the range under consideration (T = 6, α0 = 0.1, and βa2

γ > 8⇒ K < −2.3317).
We conclude that (78) holds, and so X(a, αa) is maximized (given αa) at a = −2, minimized at
a = 0; it is immediate that X(a, αa) is increasing in αa, and we have from Lemma D7.1 (iii) that
αa ≥ 0.1, and αa ≤ α∗ (α∗ as given by (70)). Substituting these values into (75) , and using (14) to
write θ3e

−2 = aγ − 2 + 2e−aγ , we then have:

min
a∈[−2,0],αa∈[α0.1)

X(a, αa) = X(0, α0) =
K +

√
.1

1−.1
√

9K2

θ3ea
= 0 (79)

max
a∈[−2,0], αa∈[α0,1)

X(a, αa) = X(−2, α∗) =
K + 6 + 9K2−8K−24

4+ 2
3−2β

((1−β)K−βaγ)

aγ − 2 + 2e−aγ
(80)

Then, we trivially have that (77) is satisfied for any p ∈ (0, 1), since the RHS is strictly negative,
while the LHS is at least zero by (79) . So, it remains to prove that there exists p ∈ (0, 1) for which
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(76) is satisfied, ∀aγ < −3.18; substituting (80) into (76) , it becomes

K + 6 + 9K2−8K−24
4+ 2

3−2β
((1−β)K−βaγ)

aγ − 2 + 2e−aγ
< max

p∈(0,1)

(
−p+

√
20p(1− p)

10− n

)
, ∀n ∈ {1, 2, .., 9} (81)

where K =

2βaγ

(
1 +

√
29
(

3
2β − 1

))
29− 20β

(82)

(2nd line obtained by evaluating (34) at T = 6, α0 = 0.1). The RHS of (81) reaches a maximum

value, at p = 1
2

(
1−

√
2−n

5
6−n

5

)
∈ (0, 1

2), of 1
2

(√
6−n

5
2−n

5
− 1

)
: this is strictly increasing in n, and

therefore at least 1
2

(√
6− 1

5

2− 1
5

− 1

)
∼= 0.397 53 for n ∈ {0, 1, ..., 9}. To show that the LHS of (81) is

below this for any aγ < −3.18, note that (34) implies that ((1− β)K − βaγ) > 0 (for all values
of β, aγ in the range under consideration), and that 9K2 − 8K − 24 > 0 (by aγ < −3.18 ⇒ K <
−2.3317); then, the LHS of (81) satisfies

K + 6 + 9K2−8K−24
4+ 2

3−2β
((1−β)K−βaγ)

aγ − 2 + 2e−aγ
<
K + 6 + 9K2−8K−24

4

aγ − 2 + 2e−aγ
=

(
3K
2

)2 −K
aγ − 2 + 2e−aγ

Using (82) and (20) , it may easily be shown that this expression
(

( 3K
2 )

2−K
aγ−2+2e−aγ

)
is strictly increasing

in aγ (going to zero as aγ → −∞), with a maximum value, at aγ = −3.18 ⇒ K = −2.3317, of
0.33919; therefore our suffi cient condition (81) is indeed satisfied ∀aγ < −3.18 and ∀n ∈ {1, ..., 9},
as desired to complete the proof.

D.3 Derivations

In this supplementary section, we explain how the functions and parameters in our fully revealing
construction were chosen.

D.3.1 For the Expert:

Suppose we wanted an equilibrium in which each type θ ∈ [0, θ1] pools with a type g(θ) ∈ [θ2, θ3],
to recommend an action u1(θ) in period 1, u2(θ) in period 2, and then reveal the truth for the
final T − 2 periods. The disutilities to types θ, g(θ) from following (respectively) the strategies
prescribed for types θ′, g(θ′) are then

Du(θ′|θ) =
(
u1(θ′)− θ − 1

)2
+
(
u2(θ′)− θ − 1

)2
+ (T − 2)

(
θ′ − θ − 1

)2 (83)

Du(g(θ′)|g(θ)) =
(
u1(θ′)− g(θ)− 1

)2
+
(
u2(θ′)− g(θ)− 1

)2
+ (T − 2)

(
g(θ′)− g(θ)− 1

)2
In order for this to be an equilibrium, it must be that Du(θ′|θ) reaches a minimum over [0, θ1] at
θ′ = θ (so that type θ earns a lower disutility by telling the truth than by mimicking any other type
θ′ in the interval [0, θ1]), and that Du(g(θ′)|g(θ)) reaches a minimum at g(θ′) = g(θ). We can do
this by simply choosing functions that satisfy the corresponding first- and second-order conditions:
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beginning with the F.O.C.’s, we need

0 =
1

2
dDu(θ′|θ)

dθ′

∣∣∣
θ′=θ

= u′1(θ) (u1(θ)− θ − 1)) + u′2(θ) (u2(θ)− θ − 1)− (T − 2) (84)

0 =
1

2
dDu(g(θ′)|g(θ))

dg(θ′)

∣∣∣
θ′=θ

=
u′1(θ)

g′(θ)
(u1(θ)− g(θ)− 1) +

u′2(θ)

g′(θ)
(u2(θ)− g(θ)− 1)− (T − 2)(85)

Subtracting the 2nd expression from the 1st, we get(
u′1(θ) + u′2(θ)

)
(g(θ)− θ) = (T − 2)(1− g′(θ))

If we define a(θ) ≡ ln g(θ)−θ
g(θ1)−θ1

, so that a′(θ) = g′(θ)−1
g(θ)−θ , this becomes

u′1(θ) + u′2(θ) = −(T − 2)a′(θ)⇒ u1(θ) + u2(θ) = ku − (T − 2)a(θ), ku a constant (86)

Now: the disutility from telling the truth is

Du(θ|θ) ≡ Du(θ) = (u1(θ)− θ − 1)2 + (u2(θ)− θ − 1)2 + (T − 2) (87)

⇒ D′u(θ)

2
= (u′1(θ)− 1) (u1(θ)− θ − 1) +

(
u′2(θ)− 1

)
(u2(θ)− θ − 1)

Substituting (84) into this expression, we get

D′u(θ)

2
= T − 2− (u1(θ) + u2(θ)) + 2(θ + 1)

= T + 2θ − ku + (T − 2)a(θ) (by (86) )

Integrating w.r.t. θ, we get

Du(θ) = Du(0) + 2θ (T + θ − ku)− 2(T − 2)

∫ θ

0
(a(θ′))dθ′

Setting u1(0) ≡ u0 and using expression (86) to obtain u2(0) = ku− (T − 2)a(0)− u1(0) = ku− u0,
this becomes

Du(θ) = (u0 − 1)2 + (ku − u0 − 1)2 + (T − 2)︸ ︷︷ ︸
Du(0)

+ 2θ(T + θ − ku) + 2(T − 2)

∫ θ

0
a(θ′)dθ′

= 2

(
ku
2
− u0

)2

+ 2

(
ku
2
− θ − 1

)2

+ 2θ (T − 2) + 2(T − 2)

∫ θ

0
a(θ′)dθ′ + (T − 2)

It will be convenient to change variables: rather than describing g as a function from [0, θ1] →
[θ2, θ3], and using a(θ) ≡ ln g(θ)−θ

g(0)−0 , we “flip”variables, describing each type θ ∈ [0, θ1] as a para-
metric function x(a) of the variable a, and each type in [θ2, θ3] as a parametric function g(a) of
the variable a, where a takes on all values between 0 and a1 = ln g(θ1)−θ1

g(0)−0 , and g(a), x(a) hold the

relationship (g(a)− x(a)) = (g(0)− x(0)) ea. With this, rewriting
∫ θ

0 a(θ′)dθ′ as
∫ a

0 sx
′(s)ds, and
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noting that θ =
∫ a

0 x
′(s)ds, our above disutility expression for type θ = x(a) becomes

Du(x(a)) = 2

(
ku
2
− x(a)− 1

)2

+ 2(T − 2)

∫ a

0
(s+ 1)x′(s)ds+ (T − 2) + 2(T − 2)Cu (88)

where Cu ≡
( ku2 −u0)

2

T−2 may be any non-negative constant. Setting this equal to type x(a)′s truth-
telling disutility (evaluate (87) at θ = x(a)), using u2(a) = k − (T − 2)a − u1(a) (from (86)), and
solving for u1(a), u2(a), we obtain

u1(a) =
ku
2
− T − 2

2
a−
√
T − 2

√
Cu +

ku
2
a− a(x(a) + 1)− T − 2

4
a2 +

∫ a

0
(s+ 1)x′(s)ds(89)

=
ku
2
− T − 2

2
a−
√
T − 2

√
Cu +

ku
2
a− a(g(a) + 1)− T − 2

4
a2 +

∫ a

0
(s+ 1)g′(s)ds

with u2(a) = ku − (T − 2)a− u1(a). Evaluating this at x(a) = θ3 + a− θ3e
a and ku

2 = K + θ3 gives
precisely our expression u1(a, αa) in (16) evaluated at αa = 1

2 ; the expressions in (16) , (17) were
“rescaled”(via the coeffi cients on the square roots) such that both disutility and average actions
are independent of αa.

Now, for our S.O.C.’s: differentiating (83) w.r.t. θ′ gives

1

2

dDu(θ′|θ)
dθ′

= u′1(θ′)
(
u1(θ′)− θ′ − 1

)
+ u′2(θ′)

(
u2(θ′)− θ′ − 1

)
− (T − 2)︸ ︷︷ ︸

=0 by (84)

+(θ′ − θ)
(
u′1(θ′) + u′2(θ′) + T − 2

)︸ ︷︷ ︸
= d
dθ′ (u1(θ′)+u2(θ′)+(T−2)θ′)

This implies that a suffi cient condition for truth-telling to indeed yield a minimum on disutility is
that the average action induced by each type θ, u1(θ)+u2(θ)+(T −2)θ, be increasing: in this case,
dDu(θ′|θ)

dθ′
is positive for any θ′ > θ (as type θ contemplates mimicking types θ′ further above him,

disutility increases, making him worse off), and negative for θ′ < θ (as he moves further below the
truth, disutility increases, also making him worse off), but zero at θ′ = θ : thus, telling the truth is
better than mimicking any other type in the interval.

To sum up, this has shown that given arbitrary interval endpoints θ1, θ2, θ3, functions x :

[a1, 0] → [0, θ1] and g : [a1, 0] → [θ2, θ3], and with a1 ≡ ln g(a1)−x(a1)
g(0)−x(0) = ln θ2−θ1

θ3−0 and g(a)− x(a) =

θ3e
a, if we want an equilibrium in which types x(a), g(a) recommend u1(a) for one period, then

u2(a) for one period, then separate and reveal the truth, then truth-telling satisfies the F.O.C. for
disutility minimization iff u1, u2 are as specified by (89) and u2(a) = ku − (T − 2)a − u1(a). If
we additionally impose the requirement that average action be increasing in type, then we satisfy
also the S.O.C.’s: this requires that each of x′(a), g′(a) is either negative or ≥ 1. Analogously, for
arbitrary functions z : [aγ , 0] → [θ1, θ2], h : [aγ , 0] → [θ3,

1
b ], with aγ = ln

h(aγ)−z(aγ)
h(0)−z(0) = θ3−θ2

1
b
−θ1

and

h(a) − z(a) = (1
b − θ1)ea, if we want an equilibrium in which types z(a), h(a) recommend v1(a)

for T−τ
2 periods, then v2(a) for T−τ

2 periods, then separate and reveal the truth, the F.O.C.’s for
truth-telling to minimize disutility yield the following equations:

v1(a) =
kv
2
− τ

T − τ a−
√

2τ

T − τ

√
Cv +

kv
2
a− a(h(a) + 1)− τ

2(T − τ)
a2 +

∫ a

0
(s+ 1)h′(s)ds (90)
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with v2(a) = kv − 2τ
T−τ a− v1(a), kv and Cv constants. And the S.O.C.’s, guaranteeing that truth-

telling indeed yields a disutility minimum over the interval, reduce to the requirement that each
of z′(a), h′(a) is either negative or ≥ 1. The proof that no expert type wishes to deviate after the
initial recommendation follows almost trivially from the prescribed strategies.

It remains to show that no expert type wishes to mimic the initial recommendation of any
type from any other interval. This reduces to the additional requirements that at each endpoint
θi ∈ {θ1, θ2, θ3}, the average action is non-decreasing at θi (if discontinuous), and type θi is in-
different between the two sequences that he can induce. Our construction chooses the specific
parametrizations g(a) = θ3 +a and h(a) = 1

b +a, with x(a) = g(a)−θ3e
a, z(a) = h(a)− (1

b −θ1)ea.

Then we have x′(a) = 1− θ3e
a ≤ 1− θ3e

−2, z′(a) = 1− 2ea−aγ ≤ −1, and g′(a) = h′(a) = 1, which
clearly satisfy the S.O.C.’s (provided that θ3e

−2 ≥ 2; we in fact will restrict to θ3e
−2 ≥ 8). With

this, the expressions in (89) , (90) become (with K ≡ ku
2 − θ3)

u1(a) = K + θ3 −
T − 2

2
a−
√
T − 2

√
Cu +Ka− T

4
a2 (91)

v1(a) =
kv
2
− τ

T − τ a−
√

2τ

T − τ

√
Cv +

(
kv
2
− 1

b

)
a− T

2(T − τ)
a2 (92)

We chose a1 = −2 and g′(a) = 1 because this is in fact the only way that the indifference constraint
at θ2 can hold simultaneously with both the indifference constraint at θ3, and the increasing-
average-action requirement at θ2. We chose h′(a) = 1 just for simplicity. With it, the remaining
increasing-average-action constraints do not bind, and the indifference conditions reduce to the
following requirements on the relationships between kv, Cv, τ (parameters from the vt-functions)
and ku, Cu, T (parameters from the ut-functions):

kv
2 − θ3 =

2K+τaγ
T−τ

Cv = (T−2)Cu
τ +

T−τ−2
τ

K2−2Kaγ−T2 a
2
γ

(T−τ)
τ

T−2 = β = (θ2−θ1)(θ2−θ1−2)

( 1
b
−θ1)( 1

b
−θ1−2)

(93)

With this, the expressions in (91) , (92) simplify exactly to the expressions for u1(a, αa) in (16) and
v1(a, α0) in (18) , at αa = 1

2 , α0 = T−τ
4 ; in Proposition D3, we then rescaled (16) , (18) for other

values of αa, α0 in such a way that incentives were not affected.

D.3.2 For the decision-maker:

Suppose the decision-maker receives the recommendation u1(a, αa) in period 1. If he assigns prob-
abilities (pa, 1 − pa) to types x(a), g(a), then his disutility from following all recommendations
is

pa

(
2αa (u1(a, αa)− x(a))2 + 2(1− αa) (u2(a, αa)− x(a))2

)
+(1− pa)

(
2αa (u1(a, αa)− g(a))2 + 2(1− αa) (u2(a, αa)− g(a))2

)
Substituting in the expression for u1(a, αa),u2(a, αa) from (16) , (17) , and expanding, this becomes

2pa

(
K + θ3 −

T − 2

2
a− x(a)

)2

+2(1−pa)
(
K + θ3 −

T − 2

2
a− g(a)

)2

+2(T−2)Cu+2(T−2)a

(
K − T

4
a

)

55



The best possible deviation is to choose the myopically optimal action pax(a) + (1− pa)g(a) in all
T periods, resulting in disutility

Tpa (pax(a) + (1− pa)g(a)− x(a))2 + T (1− pa) (pax(a) + 1− pa)g(a)− g(a))2

= Tpa(1− pa) (g(a)− x(a))2

Therefore, incentive compatibility of our strategies for the decision-maker refers that the following
expression (the gain to deviating at {x(a), g(a)}) be weakly negative for all a ∈ [−2, 0] :

2pa

(
K + θ3 −

T − 2

2
a− x(a)

)2

+ 2(1− pa)
(
K + θ3 −

T − 2

2
a− g(a)

)2

(94)

+2(T − 2)Cu + 2(T − 2)a

(
K − T

4
a

)
− Tpa(1− pa) (g(a)− x(a))2

Substituting in g(a) = θ3 + a, x(a) = θ3 + a− θ3e
a and solving for K, we obtain that the decision-

maker’s gain to deviating at information set {x(a), g(a)} is negative if and only if

K ∈
[
a− paθ3e

a −
√
T − 2∆(a), a− paθ3e

a +
√
T − 2∆(a)

]
(95)

where ∆(a) ≡
√

1

2
pa(1− pa) (θ3ea)

2 + pa (θ3aea)−
a2

2
− Cu

For there to exist a value of K which satisfies this expression, we need ∆(a) to be real-valued, i.e.
the term in square roots must be positive; at a = −2, this holds iff

pa ∈

θ3e
−2 − 4

2(θ3e−2)
− 1

2

√
θ3e−2 − 8

θ3e−2
,
θ3e
−2 − 4

2(θ3e−2)
+

1

2

√
θ3e−2 − 8

θ3e−2


which in turn is possible (for some belief system) to satisfy only if θ3 ≥ 8e2. For our construction,
with g′ = h′ = 1, this corresponds to

aγ = ln
θ3 − θ2
1
b − θ1

= ln
2

−aγ + 2 + θ3e−2
≤ −1.7726⇔ b ≤ 1

60.885

That is, it is possible to satisfy the decision-maker IC constraints in a straightforward manner only
if the bias satisfies b ≤ 1

60.885 , which is why our construction specifies b <
1
61 .

Similarly, if the decision-maker receives the recommendation v1(a) in period 1 and assigns
probabilities qa, 1− qa to types z(a), h(a), his maximum gain to deviating is

qa

(
2α0 (v1(a, α0)− z(a))2 + (T − τ − 2α0) (v2(a, α0)− z(a))2

)
+(1− qa)

(
2α0 (v1(a, α0)− h(a))2 + (T − τ − 2α0) (v2(a, α0)− h(a))2

)
− Tqa(1− qa) (h(a)− z(a))2

Recalling that the expressions in (18) , (19) were scaled to make the above expression independent
of α0, we can without loss of generality set α0 = 1, in which case v1 is given by (92) , and v2 =
kv − 2τ

T−τ a − v1; substituting into the above expression for the decision-maker’s gain to deviating,
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we obtain

(T − τ)

(
qa

(
kv
2
− τ

T − τ a− z
)2

+ (1− qa)
(
kv
2
− τ

T − τ a− h
)2
)

+ 2τCv

+2τa

(
kv
2
− 1

b
− T

2(T − τ)
a

)
− Tqa(1− qa)(h− z)2 (96)

Setting h(a) = 1
b + a, z(a) = 1

b + a− (1
b − θ1)ea = 1

b + a− 2ea−aγ and solving for kv2 , we obtain that
the decision-maker’s gain to deviating at {z(a), h(a)} is negative if and only if

kv
2
∈

[
1

b
+ a− qa

(
2ea−aγ

)
−
√

2τ

T − τ ∆̃(a),
1

b
+ a− qa

(
2ea−aγ

)
+

√
2τ

T − τ ∆̃(a)

]

where ∆̃(a) ≡
√

1

2
qa(1− qa)(2ea−aγ )2 + qa (2aea−aγ )− a2

2
− Cv

This constraint by itself is problematic. To understand the diffi culty, note that at a = aγ , there
exists a value of kv satisfying the above expression only if ∆̃(aγ) is real-valued, requiring

2qa(1− qa + aγ)−
a2
γ

2
− Cv ≥ 0

We showed in the previous paragraph that the IC constraints at information sets of the form
{x(a), g(a)} can only hold if aγ ≤ −1.7726, in this case, the first term in the above inequality
is negative (since we need qa ≥ 0 and 1 + aγ < 0), the second term is clearly negative, and the
third must be negative (i.e. we need Cv ≥ 0) in order for the functions v1, v2to be real-valued at
a = 0. Therefore, if the decision-maker finds it optimal to follow all recommendations sent by pairs
{x(a), g(a)}, then he necessarily will have an incentive to deviate if his information set contains
only types {z(aγ), h(aγ)} = {θ2, θ3}. To solve this problem, we will “bunch” pairs - scaling our
action functions such that whenever the decision-maker would have an incentive to deviate after a
recommendation v1 sent by a pair {z(a), h(a)}, he believes that the recommendation is also sent
(for the same length of time) by a pair {x(a′), g(a′)}, and such that the expected benefit to following
the recommendation (likelihood that it was sent by the pair (x(a′), g(a′)), times the gain in this
case) exceeds the cost (which is the likelihood that it was sent by pair (z(a), h(a)), times the cost
in this case).

D.3.3 Decision-maker Beliefs

Our incentive constraints for the DM were specified in terms of arbitrary probabilities pa, qa, which
in turn depend both on his prior F , and on the precise details of our construction. As explained in
Section 4, we assume that the DM is Bayesian. For our construction, (5) becomes:

• after a message (or message sequence) sent by types {x(a), g(a)}, a ∈ [−2, 0] :

pa
1− pa

≡ Pr(x(a))

Pr(g(a))
=
f (x(a))

f (g(a))
·
∣∣∣∣x′(a)

g′(a)

∣∣∣∣ =
f (x(a))

f (g(a))
(θ3e

a − 1)

• after a message (or message sequence) sent by types {z(a), h(a)}, a ∈ [aγ , 0] :

qa
1− qa

≡ Pr(z(a)

Pr(h(a)
=
f (z(a))

f (h(a))
·
∣∣∣∣ z′(a)

h′(a)

∣∣∣∣ =
f (z(a))

f (h(a))
(2ea−aγ − 1)
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• and, after a message sent by types {z(a), h(a), x (â(a)) , g (â(a))}, with u1 (â(a)αâ) = v1(a, α0) :

Pr(x(â(a)))

Pr(z(a))
=
f(x(â))

f (z(a))
·
∣∣∣∣x′ (â))

z′(a)

∣∣∣∣ · ∣∣â′(a)
∣∣

so, denoting Î(â) = {x(â), g(â)} and I(a) = {z(a), h(a)}, the decision-maker’s beliefs at the
pooled (4-type) information set Î(â) ∪ I(a) satisfy

P ∗

1− P ∗ ≡ Pr(Î(â))

Pr(I(a))
=

Pr(x(â)) ·
(

1 + Pr(g(â))
Pr(x(â))

)
Pr(z(a)) ·

(
1 + Pr(h(a)

Pr(z(a)

)
=

f(x(â))

f (z(a))
·
(
θ3e

â(a) − 1

2ea−aγ − 1

)∣∣â′(a)
∣∣ · ( qa

pâ

)

(with pa, qa as defined in the first two bullet points).

E Proof of Proposition 4

To prove that the decision-maker’s incentive constraints are relaxed as he becomes more patient,
thus completing the proof of Proposition 4, it suffi ces to prove that the “time ratio” terms in
(7) , (8) , and (9)are increasing in rDM (so that a decrease in rDM below rE causes a decrease in
the expressions, thus making deviations even less attractive). For future reference, recall that our
parameter outline in Section D.2.1 specified T − τ ≤ 4, 2α0 ≤ 2αa, and T ≥ 6 : by (6) , this implies

t1(α0) ≤ t2(αa) ≤ t3 =
1

rE
ln

(
1

1− 2φrE

)
, t4 ≤

1

rE
ln

(
1

1− 4φrE

)
, and T̂ ≥ 1

rE
ln

(
1

1− 6φrE

)
(97)

Now: to prove that
(∫ t1(α0)

0 e−r
DM

dt∫ T̂
0 e−rDM dt

)
and

(∫ t2(αa)
0 e−r

DM
dt∫ T̂

0 e−rDM dt

)
are increasing in r, we will show

that d
dr

( ∫ t
0 e
−rtdt∫ T

0 e−rtdt

)
> 0 for any t < T (so, by (97) , this in particular holds at t ∈ {t1(α0), t2(αa)}

and T = T̂ ). We have,

d

dr

(
1− e−rt
1− e−rT

)
=

(
1− e−rT

)
te−rt − Te−rT

(
1− e−rt

)
(1− e−rT )2 = (T − t)e−r(T+t)

1−
(
Tert−terT

T−t

)
(1− e−rT )2 .

This is positive whenever
(
Tert−terT

T−t

)
< 1; and since d

dr

(
Tert−terT

T−t

)
= Tt

(T−t)
(
ert − erT

)
< 0 for t <

T, it follows that the term
(
Tert−terT

T−t

)
is decreasing in r, hence maximized at r = 0, where it exactly

equals 1; for any r > 0, the term
(
Tert−terT

T−t

)
is strictly below 1, implying that d

dr

(
1−e−rt
1−e−rT

)
> 0,

as desired.

Next, we prove that

(∫ t4
t1(α0)

e−r
DM

dt∫ T̂
t1(α0) e

−rDM dt

)
is increasing in e−r

DM
. We have,

d

dr

(
e−rt1 − e−rt4

e−rt1 − e−rT̂

)
=

(T − t4)e−r(T+t4) + (t4 − t1)e−r(t4+t1) − (T − t1)e−r(T+t1)(
e−rt1 − e−rT̂

)2
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We want to show that this expression is positive ∀r > 0. Suppose, by contradiction, that it is
negative: then,

(T − t4)

(T − t1)
e−r(T+t4) +

(t4 − t1)

(T − t1)
e−r(t4+t1) − e−r(T+t1) < 0 (98)

The derivative of the LHS of this expression w.r.t. r, divided by (T + t1), is

−
(
T − t4
T − t1

)(
T + t4
T + t1

)
e−r(T+t4) −

(
t4 − t1
T − t1

)(
t4 + t1
T + t1

)
e−r(t4+t1) + e−r(T+t)

Substituting in e−r(T+t1) > (T−t4)
(T−t1)e

−r(T+t4) + (t4−t1)
(T−t1) e

−r(t4+t1) from (98) , and factoring, we obtain
that this is greater than (

T − t4
T − t1

)
(t4 − t1)

(T − t1)

(
e−r(t4+t1) − e−r(t4+T )

)
which is strictly positive ∀r > 0 by t1 < t4 < T . That is, the LHS of (98) is increasing in r
whenever it is negative; therefore, if it is negative at some r̂ > 0, it is also negative for all r < r̂.
So, in particular, (98) can only hold for some r̂ > 0 if it also holds strictly at r = 0; but since this
is in fact not the case —the LHS of (98) is exactly zero at r = 0 —we conclude that (98) cannot

hold for any r > 0. Therefore, as desired, we have that d
dr

(
e−rt1−e−rt4
e−rt1−e−rT̂

)
> 0 ∀r > 0.

And finally, to prove that
∫ t4
t1(α0)

e−r
DM

dt∫ T̂
0 e−rDM dt

and
∫ t3
t2(αa)

e−r
DM

dt∫ T̂
0 e−rDM dt

are increasing in rDM , we will show

that the condition d
dr

(∫ t+∆
t e−rτdτ∫ T̂

0 e−rτdτ

)
> 0 becomes more diffi cult to satisfy as r, t, t+∆ increase, and

easier to satisfy as T̂ increases: so, it is suffi cient to prove that the inequality holds if we replace

r, t, t+∆ with upper bounds, and T̂ with a lower bound. We specifically need d
dr

(∫ t+∆
t e−rτdτ∫ T̂

0 e−rτdτ

)
> 0

to hold for (t, t + ∆) ∈ {(t1(α0), t4), (t2(αa), t3)), T = T̂ , and r ≤ rE , which gives the upper

bounds (by (97)) r = rE , t = 1
rE

ln
(

1
1−2φrE

)
, and t + ∆ = 1

rE
ln
(

1
1−4φrE

)
, and the lower bound

T̂ = 1
rE

ln
(

1
1−TφrE

)
≥ 1

rE
ln
(

1
1−6φrE

)
.

To this end, we differentiate
∫ t+∆
t e−rτdτ∫ T̂

0 e−rτdτ
=
(
e−rt−e−r(t+∆)

1−e−rT̂

)
, obtaining

d

dr

(
e−rt−e−r(t+∆)

1−e−rT̂

)
= (1− e−rT̂ )

(
(t+ ∆)e−r(t+∆) − te−rt

)
− T̂ e−rT

(
e−rt − e−r(t+∆)

)
> 0 whenever

T̂

(erT̂ − 1)
<

(t+ ∆) ert − ter(t+∆)

er(t+∆) − ert
(99)

We first show that this becomes harder to satisfy as r increases. We have,

d

dr

(
t+ ∆− ter∆
er∆ − 1

− T̂

(erT − 1)

)
= −∆2 er∆

(er∆ − 1)2 + T̂ 2 eT̂ r(
eT̂ r − 1

)2

< 0 whenever erT̂ − T̂

∆
e(

T+∆
2 )r +

T̂

∆
e

(
T̂−∆

2

)
r − 1 > 0(100)
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The derivative of the LHS of (100) w.r.t. r, setting λ ≡ T̂
∆ , is

1

2
∆λer∆(λ−1

2 )
(

2er∆(λ+1
2 ) + (λ− 1)− (λ+ 1) er∆

)
.

This is positive for any r > 0, since the bracketed term equals zero at r = 0, and is increasing

in r (the derivative is ∆ (λ+ 1) er∆
(
er∆(λ−1

2 ) − 1
)
, which is positive by λ = T̂

∆ > 1). That is,

the LHS of the expression in (100) is increasing in r; and since it is exactly equal to zero at
r = 0, we conclude that (100) holds: that is, our desired inequality (99) becomes harder to satisfy

as r increases. Also, t+∆−ter∆
er∆−1

is decreasing in both t and ∆ (since d
dt

(
t+∆−ter∆
er∆−1

)
= −1, and

d
d∆

(
t+∆−ter∆
er∆−1

)
=

((1−r∆)er∆−1)
(er∆−1)2 , which is negative: the denominator is positive, and the numerator

is decreasing in r (derivative w.r.t. r is −r∆2er∆) with a maximum value, at r = 0, of zero).

So, it is suffi cient to prove that (99) holds at r = rE , t = 1
rE

ln
(

1
1−2φrE

)
, t+∆ = 1

rE
ln
(

1
1−4φrE

)
,

T̂ = 1
rE

ln
(

1
1−φTrE

)
(where T is the horizon from the original construction; recall that Section D.2.1

specifies T ≥ 6) : here, (99) becomes

1
rE

ln
(

1
1−TφrE

)
e

ln
(

1

1−TφrE

)
− 1

<

1
rE

ln
(

1
1−4φrE

)
e

ln
(

1

1−2φrE

)
− 1

rE
ln
(

1
1−2φrE

)
e

ln
(

1

1−4φrE

)

e
ln
(

1

1−4φrE

)
− eln

(
1

1−2φrE

) (101)

⇔ 2

T

(
1− TφrE

)
ln
(
1− TφrE

)
−
(
1− 4φrE

)
ln
(
1− 4φrE

)
+ (1− 2φrE) ln

(
1− 2φrE

)
> 0

Note that the LHS of (101) exactly equals zero at φrE = 0; so, to show that (101) holds ∀rE > 0,
we just need to show that the LHS expression is increasing in φrE . To this end, note that

d2

d(φrE)2

(
2

T

(
1− TφrE

)
ln
(
1− TφrE

)
−
(
1− 4φrE

)
ln
(
1− 4φrE

)
+ (1− 2φrE) ln

(
1− 2φrE

))
=

2
(
T − 6 + 8φrE

)
(1− TφrE) (4φrE − 1) (2φrE − 1)

This is positive (by T ≥ 6 and 2φrE < 4φrE < TφrE < 1), and therefore the first derivative w.r.t.
r of the LHS of (101) reaches a minimum at r = 0, where it equals zero. We conclude that the
LHS of (101) is increasing in φrE , therefore strictly positive for any φrE ∈ (0, 1

T ), as desired.
This completes the proof that all incentive constraints for the decision-maker are relaxed as

he becomes more patient; therefore, our modified timeline yields a fully revealing equilibrium (for
some priors) for any rDM ≤ rE .
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