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ON FORWARD INDUCTION

BY SRIHARI GOVINDAN AND ROBERT WILSON1

A player’s pure strategy is called relevant for an outcome of a game in extensive form
with perfect recall if there exists a weakly sequential equilibrium with that outcome for
which the strategy is an optimal reply at every information set it does not exclude. The
outcome satisfies forward induction if it results from a weakly sequential equilibrium
in which players’ beliefs assign positive probability only to relevant strategies at each
information set reached by a profile of relevant strategies. We prove that if there are
two players and payoffs are generic, then an outcome satisfies forward induction if every
game with the same reduced normal form after eliminating redundant pure strategies
has a sequential equilibrium with an equivalent outcome. Thus in this case forward
induction is implied by decision-theoretic criteria.

KEYWORDS: Game theory, equilibrium refinement, forward induction, backward in-
duction.

THIS PAPER HAS TWO PURPOSES. One is to provide a general definition of for-
ward induction for games in extensive form with perfect recall. As a refinement
of weakly sequential equilibrium, forward induction restricts the support of a
player’s belief at an information set to others’ strategies that are optimal replies
to some weakly sequential equilibrium with the same outcome, if there are any
that reach that information set.

The second purpose is to resolve a conjecture by Hillas and Kohlberg (2002,
Sec. 13.6), of which the gist is that an invariant backward induction outcome
satisfies forward induction. A backward induction outcome is invariant if every
game representing the same strategic situation (i.e., they have the same re-
duced normal form) has a sequential equilibrium with an equivalent outcome.
For a game with two players and generic payoffs, we prove that an invariant
backward induction outcome satisfies forward induction.

The definitions and theorem are entirely decision-theoretic. None of the
technical devices invoked in game theory, such as perturbations of players’
strategies or payoffs, is needed.2

Sections 1 and 2 review the motivations for backward induction and forward
induction. Sections 3 and 4 provide general definitions of forward induction
and invariance. The formulation and proof of the theorem are in Sections 5
and 6. Section 7 examines an alternative version of forward induction, and

1This work was funded in part by a grant from the National Science Foundation of the United
States. We are grateful for superb insights and suggestions from a referee.

2We retain Kreps and Wilson’s (1982) definition of sequential equilibrium that consistent be-
liefs are limits of beliefs induced by sequences of completely mixed strategies converging to
equilibrium strategies. However, Kohlberg and Reny (1997, Theorem 3.2) established that this
property is implied by elementary assumptions that represent the “fundamental property of non-
cooperative games, namely that no player’s strategy choice affects any other player’s choice.”
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Section 8 concludes. Appendix A proves a technical lemma and Appendix B
describes a definition of forward induction for a game in normal form.

1. INTRODUCTION

We consider a finite game in extensive form specified by a game tree and an
assignment of players’ payoffs to its terminal nodes. Throughout, we assume
perfect recall, so the game tree induces a decision tree for each player. A pure
strategy for a player specifies an action at each of his information sets, and a
mixed strategy is a distribution over pure strategies. A mixed strategy induces
a behavioral strategy that mixes anew according to the conditional distribution
among actions at each information set. Kuhn (1953, Theorem 4) established
for a game with perfect recall that each behavioral strategy is induced by a
mixed strategy, and vice versa, inducing the same distribution on histories of
play.

1.1. Backward Induction

Economic models formulated as games typically have multiple Nash equi-
libria. Decision-theoretic criteria are invoked to select among Nash equilib-
ria. For a game in extensive form with perfect recall, the primary criterion is
backward induction. Backward induction is invoked to eliminate Nash equi-
libria that depend on implausible behaviors at information sets excluded by
other players’ equilibrium strategies. Thus backward induction requires that a
player’s strategy remains optimal after every contingency, even those that do
not occur if all players use equilibrium strategies.

We assume here that backward induction is implemented by sequential equi-
librium as defined by Kreps and Wilson (1982, pp. 872, 882). A sequential equi-
librium is a pair of profiles of players’ behavioral strategies and beliefs. Here
we define a player’s belief to be a conditional probability system (i.e., satisfying
Bayes’ rule where well defined) that at each of his information sets specifies a
distribution over pure strategies that do not exclude the information set from
being reached. A player’s belief is required to be consistent in that it is a limit of
the conditional distributions induced by profiles of completely mixed or equiv-
alent behavioral strategies converging to the profile of equilibrium strategies.

Kreps and Wilson’s exposition differs in that for a player’s belief at an infor-
mation set they used only the induced distribution over nodes in that informa-
tion set. This restriction cannot be invoked here since the purpose of forward
induction is to ensure that the support of a player’s belief at an information set
is confined to others’ optimal strategies wherever possible, both before this in-
formation set as in their formulation in terms of nodes, and also subsequently
in the continuation of the game. Thus we use throughout the more general
specification that a player’s belief is over strategies.
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The defining feature of a sequential equilibrium is the requirement that in
the event an information set is reached, the player acting there behaves ac-
cording to a strategy that in the continuation is optimal given his belief about
Nature’s and other players’ strategies. A weakly sequential equilibrium as de-
fined by Reny (1992, p. 631) is the same as a sequential equilibrium except that
if a player’s strategy excludes an information set from being reached, then his
continuation strategy there need not be optimal. Section 3 provides a formal
definition of weakly sequential equilibrium, which is then used in our definition
of forward induction.

1.2. Forward Induction

Kohlberg and Mertens (1986, Sec. 2.3) emphasized that refining Nash equi-
librium to sequential equilibrium is not sufficient to ensure that behaviors are
justified by plausible beliefs. One of their chief illustrations is their Proposition
6 that a stable set of Nash equilibria contains a stable set of the game obtained
by deleting a strategy that is not an optimal reply to any equilibrium in the
set. Kohlberg and Mertens labeled this result forward induction, but they and
other authors do not define the criterion explicitly. The main idea is the one
expressed by Hillas and Kohlberg (2002, Sec. 42.13.6) in their survey article:
“Forward induction involves an assumption that players assume, even if they
see something unexpected, that the other players chose rationally in the past,”
to which one can add “and other players will choose rationally in the future.”
This addendum is implicit because rationality presumes that prior actions are
part of an optimal strategy. See also Kohlberg (1990) and van Damme (2002).

Studies of particular classes of two-player games with generic payoffs reveal
aspects of what this idea entails. Outside-option games (as in Example 2.1 be-
low) were addressed by van Damme (1989, p. 485). He proposed as a minimal
requirement that forward induction should select a sequential equilibrium in
which a player rejects the outside option if in the ensuing subgame there is
only one equilibrium whose outcome he prefers to the outside option. Signal-
ing games (as in Example 2.2 below) were addressed by Cho and Kreps (1987,
p. 202). They proposed an intuitive criterion that was refined further by Banks
and Sobel (1987, Sec. 3) to obtain criteria called divinity and universal divinity.
These are obtained from iterative application of criteria called D1 and D2 by
Cho and Kreps (1987, p. 205).

Briefly, a sequential equilibrium satisfies the intuitive criterion if no type of
sender could obtain a payoff higher than his equilibrium payoff were he to
choose a nonequilibrium message and the receiver responds with an action
that is an optimal reply to a belief that imputes zero probability to Nature’s
choice of those types that cannot gain from such a deviation regardless of the
receiver’s reply. The D1 criterion requires that after an unexpected message,
the receiver’s belief imputes zero probability to a type of sender for which there
is another type who prefers this deviation for a larger set of those responses of
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the receiver that are justified by beliefs concentrated on types who could gain
from the deviation and response. See also Cho and Sobel (1990) and surveys by
van Damme (2002), Fudenberg and Tirole (1993, Sec. 11), Hillas and Kohlberg
(2002), and Kreps and Sobel (1994).

Battigalli and Siniscalchi (2002, Sec. 5) derived the intuitive criterion from
an epistemic model. They said that a player strongly believes that an event is
true if he remains certain of this event after any history that does not contradict
this event. They consider a signaling game and a belief-complete space of play-
ers’ types; for example, one containing all possible hierarchies of conditional
probability systems (beliefs about beliefs) that satisfy a coherency condition.
Say that a player expects an outcome if his first-order beliefs are consistent
with this outcome, interpreted as a probability distribution on terminal nodes
of the game tree. They showed in Proposition 11 that an outcome of a sequen-
tial equilibrium satisfies the intuitive criterion under the following assumption
about the epistemic model:

The sender (1) is rational and (2) expects the outcome and believes that (2a) the receiver
is rational and (2b) the receiver expects the outcome and strongly believes that (2b.i) the
sender is rational and (2b.ii) the sender expects the outcome and believes the receiver is
rational.

The key aspect of this condition is the receiver’s strong belief in the sender’s
rationality. This implies that the receiver sustains his belief in the sender’s ra-
tionality after any message for which there exists some rational explanation for
sending that message.

These contributions agree that forward induction should ensure that a
player’s belief assigns positive probability only to a restricted set of strategies
of other players. In each case, the restricted set comprises strategies that satisfy
minimal criteria for rational play.

Two prominent contributions apply such criteria iteratively. McLennan
(1985, p. 901) and Reny (1992, p. 639) proposed different algorithms for it-
erative elimination of beliefs that are implausible according to some criterion.
McLennan defined the set of justifiable equilibria iteratively by excluding a se-
quential equilibrium that includes a belief for one player that assigns positive
probability at an information set to an action of another player that is not opti-
mal in any sequential equilibrium in the restricted set obtained in the previous
iteration. Reny defined the set of explicable equilibria iteratively by excluding
a belief that assigns positive probability to a pure strategy that is not a best
response to some belief in the restricted set obtained in the previous iteration.
Essentially, these procedures apply variants of Pearce’s (1984) iterative proce-
dure for identifying rationalizable strategies to the more restrictive context of
sequential equilibria.

1.3. Synopsis

In Section 2 we illustrate further the motivation for forward induction via
two standard examples from the literature. Our analyses of these examples
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anticipate the theorem in Section 6 by showing that the result usually obtained
by “forward induction reasoning” is implied by the decision-theoretic criterion
called invariance. Invariance requires that the outcome should be unaffected
by whether a mixed strategy is treated as a pure strategy.

In Section 3 we propose a general definition of forward induction. Its key
component specifies relevant pure strategies, that is, those that satisfy minimal
criteria for rational play resulting in any given outcome—the induced probabil-
ity distribution on terminal nodes of the game tree and thus on possible paths
of equilibrium play. Our definition says that a pure strategy is relevant if there
is some weakly sequential equilibrium with that outcome for which the strategy
prescribes an optimal continuation at every information set the strategy does
not exclude.3 We then say that an outcome satisfies forward induction if it re-
sults from a weakly sequential equilibrium in which each player’s belief at an
information set reached by relevant strategies assigns positive probability only
to relevant strategies.

In Section 6 we prove for general two-player games with generic payoffs
that backward induction and invariance imply forward induction. Thus for such
games forward induction is implied by standard decision-theoretic criteria.

2. EXAMPLES

In this section we illustrate the main ideas with two standard examples.
These examples illustrate how forward induction can reject some sequential
equilibria in favor of others. Each example is first addressed informally using
the ‘forward induction reasoning’ invoked by prior authors. The literature pro-
vides no formal definition of forward induction and we defer the statement of
our definition to Section 3, but the main idea is evident from the context. Each
example is then analyzed using the decision-theoretic criterion called invari-
ance to obtain the same result. Invariance is defined formally in Section 4 and
invoked in Theorem 6.1, but in these examples and the theorem it is sufficient
to interpret invariance as requiring only that the outcome resulting from a se-
quential equilibrium is not affected by adding a redundant pure strategy, that
is, a pure strategy whose payoffs for all players are replicated by a mixture of
other pure strategies.

2.1. An Outside-Option Game

The top panel of Figure 1 displays the extensive and normal forms of a two-
player game consisting of a subgame with simultaneous moves that is preceded
by an outside option initially available to player I. The component of Nash

3See Govindan and Wilson (2007) for a version that obtains results for the weaker concept of
relevant actions, rather than strategies. We are indebted to a referee who provided an example
of an irrelevant strategy that uses only relevant actions.
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FIGURE 1.—Two versions of a game with an outside option.

equilibria in which player I chooses his outside option includes an equilibrium
in which player II’s strategy has probability 2/3 of his left column and therefore
player I is indifferent about deviating to his top row in the subgame, whereas
there is no such equilibrium justifying deviating to the bottom row. Alterna-
tively, player I might anticipate that II will recognize rejection of the outside
option as a signal that I intends to choose the top row and therefore II should
respond with the left column.

To apply forward induction, one excludes from the support of II’s belief the
dominated strategy in which I rejects the outside option and chooses the bot-
tom row in the subgame. If this restriction is imposed, then after I rejects the
outside option, II is sure that I will play the top row and, therefore, II’s opti-
mal strategy is the left column, and anticipating this, player I rejects the outside
option.

As in Hillas (1994, Figure 2), one can invoke invariance to obtain this con-
clusion. The bottom panel of Figure 1 shows the expanded extensive form after
adjoining the redundant strategy in which, after tentatively rejecting the out-
side option, player I randomizes between the outside option and the top row of
the subgame with probabilities 3/4 and 1/4. Player II does not observe which
strategy of player I led to rejection of the outside option. In the unique sequen-
tial equilibrium of this expanded game, player I rejects both the outside option
and the redundant strategy, and then chooses the top row of the final subgame.

A lesson from this example is that an expanded game has imperfect infor-
mation in the sense that II has imperfect observability about whether I chose
the redundant strategy. This is significant for II because I retains the option to
choose the bottom row in the subgame iff he rejected the redundant strategy.
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Even though subgame perfection could suffice in the original and expanded
game for this simple example, in general one needs sequential equilibrium to
analyze the expanded game—as will be seen later in Figure 4 of Section 7. Ad-
dition of redundant strategies can alter equilibrium strategies, but if invariance
is satisfied, then the induced probabilities of actions along equilibrium paths of
the original game are preserved and thus so too is the predicted outcome. One
could explicitly map equilibria of an expanded game into induced behavioral
probabilities of actions in the original game, but we omit this complication.

2.2. A Signaling Game

The top panel of Figure 2 displays the two-player two-stage signaling game
Beer–Quiche studied by Cho and Kreps (1987, Sec. II) and discussed further
by Kohlberg and Mertens (1986, Sec. 3.6.B) and Fudenberg and Tirole (1993,
Sec. 11.2).

Consider sequential equilibria with the outcome QQ-R; that is, both types W
and S of player I (the sender) choose Q and player II (the receiver) responds

FIGURE 2.—Two versions of the Beer–Quiche game.
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to Q with R and to B with a probability of F that is ≥1/2. The equilibria in this
component are sustained by player II’s belief after observing B that imputes to
I’s type W a greater likelihood of having deviated than to type S. In all these
equilibria, B is not an optimal action for type W. But in the equilibrium for
which player II assigns equal probabilities to W and S after observing B and
mixes equally between F and R, type S is indifferent between Q and B. If II
recognizes this as the source of I’s deviation, then he infers after observing B
that I’s type is S and therefore chooses R. Alternatively, if player I’s type is
S, then he might deviate to B in hopes that this action will credibly signal his
type, since his equilibrium payoff is 2 from Q but he obtains 3 from player II’s
optimal reply R if the signal is recognized, but type W has no comparable in-
centive to deviate—this is the “speech” suggested by Cho and Kreps (1987,
pp. 180–181) to justify their intuitive criterion.

One applies forward induction by excluding from the support of II’s belief
after observing B those strategies that take action B when I’s type is W. In fact,
the sequential equilibria in which both types of I choose Q do not survive this
restriction on II’s belief because II’s optimal response to B is then R, which
makes it advantageous for player I’s type S to deviate by choosing B. Thus
sequential equilibria with the outcome QQ-R do not satisfy forward induction.
This leaves only sequential equilibria with the outcome BB-R in which both
types of player I choose B and II chooses R after observing B.

As in Example 2.1, one can obtain this same conclusion by invoking invari-
ance. The bottom panel of Figure 2 shows the extensive form after adjoining a
mixed action X for type S of player I that produces a randomization between
B and Q with probabilities 1/9 and 8/9. Denote by BQ player I’s pure strategy
that chooses B if his type is W and chooses Q if his type is S, and similarly for
his other pure strategies. The normal form of this expanded game is shown in
Table I with all payoffs multiplied by 10 (we intentionally omit the pure strat-
egy BX to keep the analysis simple). Now consider the following extensive form
that has the same reduced normal form. Player I initially chooses whether or
not to use his pure strategy QQ, and if not then subsequently he chooses among
his other pure strategies BB, BQ, QB, and QX. After each of these five pure

TABLE I

STRATEGIC FORM OF THE BEER–QUICHE GAME WITH THE REDUNDANT STRATEGY QX

B: F F R R
W S Q: F R F R

B B 9, 1 9, 1 29, 9 29, 9
B Q 0, 1 18, 10 2, 0 20, 9
Q B 10, 1 12, 0 28, 10 30, 9
Q Q 1, 1 21, 9 1, 1 21, 9
Q X 2, 1 20, 8 4, 2 22, 9
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strategies, the extensive form in the bottom panel ensues, but with I’s action
dictated by his prior choice of a pure strategy. That is, nature chooses I’s type
to be W or S, the selected pure strategy dictates the subsequent choice of B
or Q, and then player II (still having observed only which one of B or Q was
chosen) chooses F or R. At player I’s information set where, after rejecting
QQ, he chooses among his other pure strategies, a sequential equilibrium re-
quires that he assigns zero probability to BQ because it is strictly dominated
by QX in the continuation. At player II’s information set, after observing B, a
sequential equilibrium requires that his behavioral strategy is an optimal reply
to some consistent belief about those strategies of player I that reach this in-
formation set. But every mixture of I’s pure strategies BB, QB, and QX implies
that, given his choice of B, the induced conditional probability that his type is
S exceeds 9/10. Therefore, player II’s reply to B must be R in every sequential
equilibrium of this game. Hence the sequential equilibria with outcome QQ-R
are inconsistent with invariance, in agreement with failure to satisfy forward
induction.

A similar analysis applies to the game in Figure 3, which resembles games
considered in studies of signaling via costly educational credentials in labor
markets as in Spence (1974) and Kreps (1990, Sec. 17.2). In this game, forward
induction rejects the outcome of the pooling equilibrium in which both types
of player I move right and II responds to right with up (and to left with prob-
ability of up ≥1/2), and accepts the outcome of the separating equilibrium in
which only I’s top type moves right. The most common use of forward induc-
tion in economic models is to reject pooling equilibria in favor of a separating
equilibrium, although often what is actually assumed is a weaker implication
of forward induction.

The way in which invariance is invoked in Example 2.2 is indicative of the
proof of Theorem 6.1 in Section 6.

FIGURE 3.—A signaling game with pooling and separating equilibria.
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3. DEFINITION OF FORWARD INDUCTION

In this section we propose a general definition of forward induction for a
game in extensive form with perfect recall.

Our definition of forward induction relies on the solution concept called
weakly sequential equilibrium by Reny (1992, p. 631). Recall from Section 1.1
that a weakly sequential equilibrium is the same as a sequential equilibrium ex-
cept that a player’s strategy need not be optimal at information sets it excludes.
See Reny (1992, Sec. 3.4) for an expanded justification of weakly sequential
equilibrium as the right concept for analysis of forward induction.

Our definition differs from Reny’s in that we interpret players’ beliefs as
specifying distributions over others’ strategies. Beliefs over strategies typically
encode more information than necessary to implement sequential rationality,
that is, as in Kreps and Wilson (1982), the conditional distribution over nodes
in an information set suffices to verify optimality. However, it is only from a
belief specified as a conditional distribution over strategies that one can ver-
ify whether a player’s belief recognizes the rationality of others’ strategies. As
Examples 2.1 and 2.2 illustrate, the purpose of forward induction as a refine-
ment is to reject outcomes that deter player I’s deviation by the threat of II’s
response that is optimal for II only because his belief does not recognize I’s
deviation as part of an optimal strategy for some equilibrium with the same
outcome. To reject such outcomes, it is sufficient that the support of II’s belief
is confined to I’s pure strategies that are optimal replies at information sets
they do not exclude.

The following definition is the analog of the definitions in Kreps and Wilson
(1982) and Reny (1992).

DEFINITION 3.1—Weakly Sequential Equilibrium: A weakly sequential equi-
librium is a pair (b�μ) of profiles of players’ behavioral strategies and beliefs.
At each information set hn of player n, his behavioral strategy specifies a dis-
tribution bn(·|hn) over his feasible actions, and his belief specifies a distribu-
tion μn(·|hn) over profiles of Nature’s and other players’ pure strategies that
enable hn to be reached. These profiles are required to satisfy the following
conditions:

(i) Consistency: There exists a sequence {bk} of profiles of completely mixed
behavioral strategies converging to b and a sequence {σk} of completely mixed
equivalent normal-form strategies such that for each information set of each
player the conditional distribution specified by μ is the limit of the conditional
distributions obtained from {σk}.4

(ii) Weak Sequential Rationality: For each player n and each information set
hn that bn does not exclude, each action in the support of bn(·|hn) is part of a
pure strategy that is an optimal reply to μn(·|hn) in the continuation from hn.

4In this definition, Nature’s strategy is not perturbed. Also, the belief μn(·|hn) might entail
correlation, as observed by Kreps and Ramey (1987).
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A sequential equilibrium is defined exactly the same except that each player’s
actions must be optimal at all his information sets, including those excluded by
his equilibrium strategy.

We interpret forward induction as a property of an outcome of the game,
defined as follows.

DEFINITION 3.2—Outcome of an Equilibrium: The outcome of an equilib-
rium of a game in extensive form is the induced probability distribution over
the terminal nodes of the game tree.

A key feature in the definition of forward induction is the concept of a rele-
vant strategy.

DEFINITION 3.3—Relevant Strategy: A pure strategy of a player is relevant
for a given outcome if there is a weakly sequential equilibrium with that out-
come for which the strategy at every information set it does not exclude pre-
scribes an optimal continuation given the player’s equilibrium belief there.

Thus a relevant strategy is optimal for some expectation about others’ equi-
librium play with that outcome and his beliefs at events after their devia-
tions. For instance, in Example 2.2 of a signaling game, the strategy QB of the
sender I in which type W chooses Q and type S chooses B is relevant for the
outcome QQ-R because it is an optimal reply to the weakly sequential equilib-
rium with that outcome in which the receiver II responds to B by using F and R
with equal probabilities. But the strategies BB and BQ are irrelevant because
B is not an optimal reply for I’s type W to any weakly sequential equilibrium
with outcome QQ-R.

For the standard examples in Section 2 it is sufficient to interpret forward
induction as requiring merely that player II’s belief at the information set ex-
cluded by I’s equilibrium strategy imputes positive probability only to the node
reached by I’s nonequilibrium relevant strategy. For general games, however,
a stronger requirement is desirable.

We propose a general definition of forward induction that identifies those
outcomes resulting from the conjunction of rational play and belief that others’
play is rational, and thus minimally consistent with Battigalli and Siniscalchi’s
(2002) epistemic model of strong belief in rationality. Because a relevant strat-
egy is optimal, hence rational, in some weakly sequential equilibrium with the
same outcome, the relevant strategies are the minimal set for which one can
require the support of one player’s belief to recognize the rationality of other
players’ strategies—indeed that is the lesson from the standard examples in
Section 2. Our proposed definition of a forward induction outcome there-
fore requires that the outcome results from a weakly sequential equilibrium
in which every player maintains the hypothesis that other players are using
relevant strategies throughout the game, as long as that hypothesis is tenable.



12 S. GOVINDAN AND R. WILSON

Thus forward induction is applied only to information sets reached by profiles
of relevant strategies:

DEFINITION 3.4—Relevant Information Set: An information set is relevant
for an outcome if it is not excluded by every profile of strategies that are rele-
vant for that outcome.5

Then we define a forward induction outcome as follows.6

DEFINITION 3.5—Forward Induction: An outcome satisfies forward induc-
tion if it results from a weakly sequential equilibrium in which at every infor-
mation set that is relevant for that outcome the support of the belief of the
player acting there is confined to profiles of Nature’s strategies and other play-
ers’ strategies that are relevant for that outcome.

Section 7 compares this definition with Reny’s alternative interpretation.
Applied to the standard examples in Section 2, our definition yields the con-
clusions obtained from “forward induction reasoning” in the literature. For
instance, in Example 2.2 of a signaling game, the outcome QQ-R does not sat-
isfy forward induction because the definition requires that after observing B,
player II assigns zero probability to I’s irrelevant strategies BB and BQ, and
thus assigns positive probability only to I’s relevant strategy QB that enables
II’s information set B to be reached.

For signaling games in general, forward induction implies the intuitive crite-
rion, D1, D2 (whose iterative version defines universal divinity), and Cho and
Kreps’ (1987, Sec. IV.5) strongest criterion, called never weak best response
(NWBR) for signaling games. These implications are verified by showing that
a strategy s of the sender is irrelevant if s prescribes that his type t sends a
message m that is not sent by any type in some weakly sequential equilibrium
with the given outcome, and the pair (t�m) satisfies any of these criteria. For
instance, the criterion NWBR excludes the strategy s from the receiver’s belief
if the continuation strategy m at information set t yields exactly the sender’s
type-contingent payoff from the given outcome for some beliefs and optimal
responses of the receiver only when some other type t ′ that could send m would
get a type-contingent payoff that is higher than from the designated outcome
for the same or a larger set of the receiver’s optimal responses. But this condi-
tion implies that there is no weakly sequential equilibrium with the same out-
come for which m is an optimal action for type t. Were there such an equilib-
rium, the receiver could use any such response at the off-the-equilibrium-path

5This differs from Kuhn’s (1953, Definition 6) and Reny’s (1992, p. 631) definition of an infor-
mation set that is relevant for a pure strategy because the information set is not excluded by that
strategy.

6For readers who prefer normal-form analysis, Definition B.1 in Appendix B proposes a slightly
stronger definition applied to the normal form of the game that is equivalent to the definition
proposed here when payoffs are generic and that enables an analog of Theorem 6.1.
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information set m, but then type t ′ could obtain a superior payoff by sending m.
Thus, m cannot be an optimal continuation by type t in any weakly sequential
equilibrium with the given outcome, and therefore s is an irrelevant strategy.

For general games in extensive form, forward induction implies a version
of NWBR that Fudenberg and Tirole (1993, p. 454) attributed to Kohlberg
and Mertens (1986, Proposition 6). A pure strategy that is an inferior reply
to every equilibrium with a given outcome chooses an inferior action at some
information set that intersects a path of equilibrium play. Such a strategy is
irrelevant for that outcome according to Definition 3.3 and, therefore, if the
outcome satisfies forward induction according to Definition 3.5, then it results
from a weakly sequential equilibrium in which, at every information set that is
relevant for that outcome, the support of the belief of the player acting there
assigns zero probability to this irrelevant strategy.

4. DEFINITION OF INVARIANCE

In this section we define invariance as a property of a solution concept. First
we define relations of equivalence between games and between outcomes of
equivalent games.

Recall that a player’s pure strategy is redundant if its payoffs for all play-
ers are replicated by a mixture of his other pure strategies. From the normal
form of a game one obtains its reduced normal form by deleting redundant
strategies. Thus the reduced normal form is the minimal representation of the
essential features of the strategic situation.

DEFINITION 4.1—Equivalent Games: Two games are equivalent if their re-
duced normal forms are the same up to relabeling of strategies.

As specified in Definition 3.2, the outcome of an equilibrium of a game in
extensive form is the induced probability distribution on terminal nodes and
thus on the paths through the tree. Associated with each outcome is a set of
profiles of Nature’s and players’ mixed strategies that result in the outcome,
and in turn each such profile can be replicated by a profile of mixed strategies
in the reduced normal form. Hence we define equivalent outcomes as follows.

DEFINITION 4.2 —Equivalent Outcomes of Equivalent Games: Outcomes
of two equivalent games are equivalent if they result from the same profile of
mixed strategies of their reduced normal form.

Trivially, the outcome of any Nash equilibrium is equivalent to the outcome
of a Nash equilibrium of any equivalent game. For any solution concept that is
a refinement of Nash equilibrium, we define invariance as follows.

DEFINITION 4.3—Invariant Outcome: An outcome is invariant for a solution
concept if every equivalent game has an equivalent outcome of an equilibrium
selected by the solution concept.
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This definition is used in Section 6 where the solution concept is sequen-
tial equilibrium. Existence of invariant outcomes of sequential equilibria for
generic games in extensive form with perfect recall is implied by the existence
of stable sets as defined by Mertens (1989).7

5. FORMULATION

In this section we introduce notation used in the proof of Theorem 6.1 in
Section 6.

Let Γ be a game in extensive form with perfect recall. For each player n let
Hn be the collection of his information sets, and let Sn�Bn, and Σn be his sets
of pure, behavioral, and mixed strategies. A pure strategy chooses an action at
each information set in Hn, a behavioral strategy chooses a distribution over
actions at each information set, and a mixed strategy chooses a distribution
over pure strategies. We say that a pure strategy enables an information set
if the strategy’s prior actions do not exclude the information set from being
reached, and similarly for behavioral and mixed strategies.

Let P be the outcome of a sequential equilibrium of the game Γ . Say that
a pure strategy or an information set is P-relevant if it is relevant for the out-
come P . Let Σ(P) and B(P) be the sets of Nash equilibria of Γ represented
as profiles of mixed and behavioral strategies, respectively, that result in the
outcome P . Also, let BM(P) be the set of weakly sequential equilibria whose
outcome is P , where each (b�μ) ∈ BM(P) consists of a profile b ∈ B(P) of
players’ behaviorial strategies and a profile μ of players’ consistent beliefs. As
in Definition 3.1, in each weakly sequential equilibrium (b�μ) the belief of a
player n at his information set hn ∈ Hn is a probability distribution μn(·|hn)
over Nature’s and other players’ pure strategies that reach hn. A pure strategy
sn ∈ Sn for player n is optimal in reply to (b�μ) if at each information set of n
enabled by sn, the action specified there by sn is optimal given (b�μ).

Given an outcome P , say that a P-path through the game tree is one that
terminates at a node in the support of P . Actions on P-paths are called equi-
librium actions. Let Hn(P) be the collection of player n’s information sets that
intersect P-paths. Obviously, every equilibrium in B(P) prescribes the same
mixture at each information set in Hn(P). Let Sn(P) ⊂ Sn comprise those pure
strategies sn of player n such that sn chooses an equilibrium action at every in-
formation set in Hn(P) that sn enables. Note that if σ ∈ Σ(P), then the support
of σn is contained in Sn(P). Moreover, every strategy in Sn(P) is optimal against
every equilibrium in Σ(P). Partition the complement Tn(P) ≡ Sn\Sn(P) into
subsets Rn and Qn of n’s pure strategies that are P-relevant and P-irrelevant,
respectively. Note that Sn(P) may also contain P-irrelevant strategies.

7In Govindan and Wilson (2006) we proved that if a solution concept satisfies invariance and a
condition called strong backward induction, then it selects sets of equilibria that are stable in the
weaker sense defined by Kohlberg and Mertens (1986, Sec. 3.5).
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Define an equivalence relation among player n’s pure strategies as follows.
Two strategies are equivalent if they prescribe the same action at each infor-
mation set in Hn(P). Let En(P) be the set of equivalence classes. Denote a
typical element of En(P) by En and let En(sn) be the equivalence class that
contains sn. Let E ◦

n(P) be the subcollection of equivalence classes that contain
strategies in Sn(P). Thus, any strategy that is used in some equilibrium in Σ(P)
belongs to some equivalence class in E ◦

n(P), while any strategy that is in Tn(P)
does not. (In Example 2.2, for P = QQ − R and player n = I, Sn(P) = {QQ},
Rn(P) = {QB}, En(P) = {QQ�QB�BQ�BB}, and E ◦

n(P) = {QQ}.)
If Rn is not empty, then for each probability δ ∈ (0�1) let tδn be a mixed

strategy of n of the form [1 − δ]s∗
n + δρn, where s∗

n is a strategy in Sn(P) and ρn

is a mixed strategy whose support is Rn. Since s∗
n is a best reply against every

equilibrium in Σ(P), tδn is an approximate best reply against equilibria in Σ(P)
when δ is small, a fact we need in the next section. Define a game Gδ in normal
form by adding to the normal form G of Γ the redundant pure strategy tδn for
each player n for whom Rn is not empty. In particular, tδn is added iff there is
some information set in Hn(P) where some nonequilibrium action is part of
a P-relevant strategy. (In Example 2.1, the redundant strategy tδn for player I
is the one shown in Figure 1 with parameter δ = 1/4; in Example 2.2, it is the
strategy QX with parameter δ= 1/9.)

Next we define a game Γ δ in extensive form with perfect recall whose normal
form is equivalent to Gδ, and thus also Γ δ is equivalent to Γ . A path of play
in Γ δ consists of choices by players in an initial stage, followed by a path of
play in a copy of Γ . In the subsequent play of Γ , no player is informed about
choices made by other players in the initial stage of Γ δ. The rules of Γ δ are the
following. If Rn is empty, then in Γ δ player n chooses among all his equivalence
classes in En(P) in the initial stage. If Rn is not empty, then in the initial stage he
first chooses whether to play an equivalence class in E ◦

n(P) or not. If he decides
to play something in E ◦

n(P), then he chooses one of these equivalence classes;
if he chooses not to, then he proceeds to a second information set where he
chooses to play either the redundant pure strategy tδn or an equivalence class
among those not in E ◦

n(P). After these initial stages for all players, Γ δ evolves
the same as Γ does, that is, a copy of Γ follows each sequence of choices in
the initial stage. In Γ δ the information sets in Γ are expanded to encompass
appropriate copies of Γ to represent that no player ever observes what others
chose in the initial stage; thus, the information revealed in Γ δ is exactly the
same as in Γ . The information set hn ∈ Hn in Γ has in Γ δ for each En ∈ En(P)
an expanded copy hδ

n(En) and a copy hδ
n(t

δ
n). Nature makes the choice at the

expansions of those information sets in Hn(P) (but not at expansions of those
in Hn\Hn(P)) according to the equivalence class chosen in the initial stage or
at all expansions of information sets in Hn if tδn was chosen. That is, if n chooses
tδn at the second information set, then Nature automatically implements the
entire strategy; but if he chooses some equivalence class En in En(P), then
Nature implements actions prescribed by En at each hδ

n(En) when hn ∈ Hn(P)
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and leaves it to him to choose at those that are not, if and when they occur. (If
Γ is the Beer–Quiche game and δ = 1/9, then tδn = QX and Γ δ is the game in
which player I chooses whether to play QQ, and if not then he chooses among
BB, BQ, QB, and QX, as described in the text of Example 2.2.)

One can interpret player n’s choice of an equivalence class from, say, E ◦
n(P)

as equivalent to making an initial commitment to take a specified equilibrium
action at every information set in Hn(P), leaving the actions at n’s other infor-
mation sets unspecified until those information sets are reached.

A pure strategy sn ∈ Sn can be implemented in Γ δ by first choosing En(sn)
in the initial stage and then making the choices prescribed by sn at all hn ∈
Hn\Hn(P), and any strategy in Γ δ that begins by choosing some equivalence
class En in the first stage ends up implementing some sn ∈En. Observe too that
the redundant pure strategy tδn , when available, ends up implementing the mix-
ture given by tδn . Thus, it is obvious that Gδ is obtained from the normal form of
Γ δ by deleting some redundant pure strategies in the latter that are duplicates
of other pure strategies. Hence, by a slight abuse of notation, we view Gδ as
the normal form of Γ δ. The game Γ δ is now easily seen to be equivalent to Γ .

Suppose hn ∈ Hn\Hn(P). If an equivalence class En contains a pure strat-
egy sn that enables hn in Γ , then in Γ δ the corresponding strategy sn—that is,
choosing En in the initial stage and then making sn’s choices at all h′

n /∈Hn(P)—
enables hδ

n(En). Conversely, if En does not contain such an sn, then there is an
information set vn ∈ Hn(P) that precedes hn, is enabled by En, and where En

makes a choice different from the one that leads to hn. Thus, in Γ δ, Nature’s
choice at vδn(En) prevents hδ

n(En) from being reached. Therefore, to analyze
the game Γ δ, we need to consider only information sets hδ

n(En) where En con-
tains a strategy that enables hn in Γ . For simplicity in this section and the next,
by an information set hδ

n(En) in Γ δ of player n, we mean an hn ∈ Hn\Hn(P)
and an En that contains a strategy that enables hn in Γ .

Now assume the game has two players. We use m to denote the opponent
of player n. Suppose that En and E′

n are two equivalence classes that contain
strategies that enable some hn /∈ Hn(P). The information that n has at hδ

n(En)
and hδ

n(E
′
n) about m’s choices are the same at both information sets. Therefore,

a pure strategy of m in Gδ enables one if and only if it enables the other. In
particular, in a sequential equilibrium (b̃δ� μ̃δ) of Γ δ, player n’s belief at hδ

n(En)
is independent of En and can thus be denoted μ̃δ

n(·|hn).
Likewise, suppose σ̃δ

m is a mixed strategy of m in Gδ that enables some infor-
mation set hδ

n(En) of n. Then σ̃δ
m induces a conditional distribution τ̃δ

m over the
pure strategies of m in Gδ that enable hδ

n(En). Let σm and τm be the equivalent
strategies in G. It is easily checked that τm is the conditional distribution in-
duced by σm over the pure strategies that enable hn, and an action an at hδ

n(En)
in Γ δ is optimal against τ̃δ

m iff it is optimal against τm in Γ .
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6. STATEMENT AND PROOF THE THEOREM

In this section we show for two-player games with generic payoffs that an
invariant backward induction outcome satisfies forward induction.

The notion of genericity we invoke is the following. Let G be the space of
all games generated by assigning payoffs to the terminal nodes of a fixed two-
player game tree. In Govindan and Wilson (2001) we showed that there exists
a closed lower-dimensional subset G0 such that for each game not in G0 there
are finitely many outcomes of Nash equilibria. For technical reasons, in Ap-
pendix A we construct another closed lower-dimensional subset denoted G1.
Now a game is generic if it is in the complement of both G0 and G1. With this,
the formal statement of our theorem is the following:

THEOREM 6.1: An outcome of a two-player game with perfect recall and
generic payoffs satisfies forward induction if it is invariant for the solution con-
cept sequential equilibrium.

PROOF: Assume that Γ is a two-player game in extensive form with per-
fect recall and generic payoffs. Assume also that P is an invariant sequential
equilibrium outcome of Γ , that is, each game equivalent to Γ has a sequential
equilibrium whose outcome is equivalent to P . Because Γ is equivalent to the
game Γ δ defined in Section 5, Γ δ has a sequential equilibrium (b̃δ� μ̃δ) whose
outcome is equivalent to P . Because μ̃δ is consistent, there exists a sequence
{b̃δ

ε} of profiles of completely mixed behavioral strategies that converges as
ε ↓ 0 to b̃δ and a corresponding equivalent sequence {σ̃δ

ε } of profiles of com-
pletely mixed strategies in the normal form Gδ that converges to some profile
σ̃δ and such that the belief profile μ̃δ is the limit of the beliefs derived from the
sequence {σ̃δ

ε }.
Since b̃δ induces an outcome that is equivalent to P , the strategy σ̃δ, which

is equivalent to b̃δ, has its support in Sn(P) for each n: indeed, a strategy in
Tn(P), or the strategy tδn when available, chooses a nonequilibrium action at
some hn ∈ Hn(P) in Γ that it enables. Therefore, under b̃δ each player n in the
initial stage assigns positive probability only to choices of equivalence classes
in E ◦

n(P).
Corresponding to the sequence {σ̃δ

ε }, there is an equivalent sequence {σδ
ε }

of profiles of mixed strategies in the normal form of Γ for which there is an
equivalent sequence {bδ

ε} of profiles of behavioral strategies in the extensive
form of Γ . Let μδ

ε be the profile of beliefs induced by σδ
ε . Denote selected

limit points of these sequences by σδ, bδ, and μδ. By construction, σδ ∈ Σ(P),
bδ ∈ B(P), and μδ is consistent. It follows from our remarks at the end of
the previous section that for each n and hn /∈ Hn(P), μδ

n(·|hn) is equivalent
to μ̃δ

n(·|hn), and an action at hn is optimal in Γ against μδ
n(·|hn) iff it is optimal

in Γ δ at hδ
n(En) against μ̃δ

n(·|hn) for the corresponding copies in Γ δ.
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Next we argue that (bδ�μδ) is a weakly sequential equilibrium of Γ . Let hn

be an information set of player n that bδ
n enables. We need to show that the

choice made by bδ
n at hn is optimal against μδ

n(·|hn). If hn belongs to Hn(P),
then μn(·|hn) is derived from σδ

m and obviously bδ
n chooses optimally at hn.

Suppose that hn /∈ Hn(P). Let an be an arbitrary action at hn that is chosen
with positive probability by bδ

n. Since hn is enabled by bδ
n there exists a pure

strategy sn in the support of σδ that enables hn and chooses an there. Since σδ

is equivalent to σ̃δ, in b̃δ player n with positive probability chooses En(sn) and
then makes the choices prescribed by sn. Sequential rationality of an at hδ

n(En)
implies its optimality against μ̃δ

n(·|hn). Hence, from the previous paragraph an

is optimal against μδ
n(·|hn) in Γ . Since an was arbitrary, this shows that (bδ�μδ)

is a weakly sequential equilibrium of Γ .
For some sequence δ ↓ 0, (σδ�bδ�μδ) converges to some limit point

(σ�b�μ). Clearly, σ ∈ Σ(P), b ∈ B(P), μ is consistent, and (b�μ) ∈ BM(P)
is a weakly sequential equilibrium of Γ because BM(P) is a closed set.

It remains to prove the forward induction property for the belief profile μ.
For each n for whom Rn is not empty, and each δ, let {τ̃δ

n�ε} be the sequence
of conditional distributions over Tδ

n ≡ Tn(P) ∪ {tδn} induced by the sequence
{σ̃δ

ε } and let τ̃δ
n be a limit point. The sequence {τ̃δ

n�ε} and therefore its limit are
determined by choices made after n chooses in the initial stage to avoid equiv-
alence classes in E ◦

n(P). Therefore, the probability of tδn is nonzero under τ̃δ
n iff

tδn is chosen with positive probability at n’s second information set in the initial
stage, and the probability of sn ∈ Tn(P) is nonzero under τ̃δ

n iff n chooses E(sn)
with positive probability at this stage and then implements the choices of sn
with positive probability after this choice. Express τ̃δ

n as a convex combination
α̃δ
nt

δ
n + [1 − α̃δ

n]τ̂δ
n where the support of τ̂δ

n is contained in Tn(P). Then sequen-
tial rationality at the initial stage after rejecting equivalence classes in E ◦

n(P)
and at subsequent information sets have the following two implications. First,
α̃δ
n is nonzero only if tδn is at least as good a reply as each sn ∈ Tn(P) against bδ

m.
Second, if α̃δ

n < 1, then a strategy sn ∈ Tn(P) belongs to the support of τ̂δ
n only

if it is at least as good a reply against bδ
m as the other strategies in Tδ

n , and for
each hn /∈Hn(P) enabled by sn in Γ , the choice prescribed by sn at hn is optimal
at hδ

n(En(sn)) given the belief μ̃δ
n(·|hn). If an information set hδ

m(Em) of player
m is enabled by τ̃δ

n but not by σ̃δ
n , then the beliefs μ̃δ

m(·|hm) are derived from τ̃δ
n .

The sequence {τ̃δ
n�ε} induces a corresponding sequence of equivalent strate-

gies in G that induces a sequence of conditional distributions over Tn(P).
Because tδn = [1 − δ]s∗

n + δρn, the limit of the sequence of strategies in G
that is equivalent to the sequence {τ̃δ

n�ε} is [1 − δ]α̃δ
ns

∗
n + δα̃δ

nρ + [1 − α̃δ
n]τ̂δ

n .
Therefore, the limit of the sequence of conditional distributions over Tn(P) is
τδ
n = αδ

nρ + [1 − αδ
n]τ̂δ

n , where αδ
n = α̃δ

nδ/[α̃δ
nδ + (1 − α̃δ

n)]. Obviously if an in-
formation set hm of player m is enabled by τδ

n but not by σδ
n , then the beliefs

μδ
m(·|hm) are those derived from τδ

n .
Passing to a subsequence if necessary, the limit τn of the sequence τδ

n can
be expressed as a convex combination τn = αnρ + [1 − αn]τ̂n where αn and τ̂n
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are the limits of αδ
n and τ̂δ

n , respectively. As in the previous paragraph, if an
information set hm of player m is enabled by τn but not by σn, then the beliefs
μm(·|hm) are those derived from τn.

CLAIM 6.2: (i) αn > 0. (ii) If αn < 1, then the support of τ̂n consists of strategies
in Rn. In particular, for each sn in its support and each information set hn that sn
enables, the choice of sn at hn is optimal given (b�μ).

PROOF OF CLAIM: We prove (ii) first. Suppose αn < 1. Let sn be a strategy
in Tn(P) that is not optimal in reply to (b�μ). We show that sn is not in the
support of τ̂δ

n for all sufficiently small δ, which proves the second statement.
Let hn be an information set that sn enables where its action is not optimal. If
hn ∈Hn(P), then every strategy in En(sn) is suboptimal against bm. Because s∗

n,
the strategy that belongs to Sn(P) and to the support of tδn for all δ, is optimal
against bδ

m for all δ and because b is the limit of bδ, for sufficiently small δ
the strategy tδn does better against bδ than every strategy in the equivalence
class En(sn). At the second information set in the initial stage of Γ δ where n
decides among the redundant strategy tδn and equivalence classes not in E ◦

n(P),
sequential rationality implies that he chooses the equivalence class En(sn) with
zero probability for all small δ. As we remarked above, this implies that for
such δ, the probability of sn is zero in τ̂δ

n .
If hn /∈ Hn(P), then there exists another strategy s′

n in the equivalence class
En(sn) that agrees with sn elsewhere but prescribes an optimal continuation at
hn. Obviously, for all small δ, s′

n is a better reply than sn in reply to (bδ�μδ). But
then sequential rationality at the copy hδ

n(En(sn)) of hn in Γ δ for such small
δ implies that he would choose according to s′

n there and not sn. Again, the
probability of sn under τ̂δ

n is zero for small δ. Thus every strategy in the support
of τ̂n is optimal in reply to (b�μ) and therefore is a P-relevant strategy.

It remains to show that αn �= 0. Suppose to the contrary that αn = 0. Let
Ŝn be the set of strategies in the support of either σn or τ̂n. Let Ĥm be the
collection of information sets in Hm enabled by strategies in Ŝn. Because (b�μ)
is a weakly sequential equilibrium, we obtain the following properties for each
information set hm in Ĥm of player m: if hm is enabled by σn, then the action
prescribed by bm at hm is optimal against σn; if hm is enabled by τ̂n and not by
σn, then the action prescribed by bm is optimal against τ̂n. Therefore, for each
small η > 0 there exists a perturbation Γ (η) of Γ , where only m’s payoffs are
perturbed, such that σm is optimal against σn(η) ≡ [1−η]σn+ητ̂n in Γ (η) and
that Γ (η) converges to Γ as η goes to zero. As we argued above, τ̂n is optimal
against σm in Γ . Therefore, for all small η, (σm�σn(η)) is an equilibrium of
Γ (η). Since Γ is generic, it belongs to some component C of the open set
G\G1, where G1 is the set constructed in Appendix A. Since G\G1 has finitely
many connected components, C is open in G\G1 and, hence, in G . Therefore,
the sequence Γ (η) is in C for all small η. By Lemma A.1 in Appendix A, there
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exists a strategy τ′
n such that (i) the support of τ′

n equals Ŝn and (ii) σm is a
best reply against τ′

n in Γ . Therefore, for all 0 ≤ ε≤ 1, (σm� (1 − ε)σn + ετ′
n) is

an equilibrium of Γ . But because the strategies in the support of τ̂n choose a
nonequilibrium action at some hn ∈ Hn(P) that they enable, all these equilibria
result in different outcomes. This is impossible because the payoffs in Γ are
generic and therefore Γ has only finitely many equilibrium outcomes, as shown
in Govindan and Wilson (2001). Thus αn �= 0. Q.E.D.

Now we prove that P satisfies forward induction by showing that (b�μ) in-
duces beliefs that assign positive probability only to P-relevant strategies. Let
hn be an information set of n that is enabled by bn. If hn ∈ Hn(P), then obvi-
ously n’s belief over the continuation strategies of m is the one derived from
σm, and strategies in the support of σm are obviously P-relevant. If hn /∈Hn(P),
then the only strategies of m that enable hn are those in Tm(P). If there is no
strategy in Rm that enables hn, then there is nothing to prove. Otherwise, the
subset of strategies in Rm that enable hn is not empty and then the strategy τm,
which by the above claim has Rm as its support, enables hn. Therefore, μn(·|hn)
is derived from τm, and in this case, too, the restriction on beliefs imposed by
forward induction holds. Thus P satisfies forward induction. Q.E.D.

Theorem 6.1 resolves a conjecture by Hillas and Kohlberg (2002, Sec. 13.6).
Its remarkable aspect is that backward induction and invariance suffice for for-
ward induction—if there are two players and payoffs are generic. No further
assumption about rationality of behavior or plausibility of beliefs is invoked;
neither are perturbations of strategies invoked as in studies of perfect equilib-
ria and stable sets of equilibria, and for signaling games there is no reliance on
Cho and Kreps’ (1987, p. 181) auxiliary scenario in which the sender makes a
“speech” that the other’s intransigent belief ignores the fact that a deviation
would be rational provided merely that the receiver recognizes and acts on its
implications by excluding irrelevant strategies from the support of his belief.

Invariance excludes one particular presentation effect by requiring that the
outcome should not depend on whether a mixed strategy is treated as an addi-
tional pure strategy. One interpretation of forward induction is that it excludes
another presentation effect by requiring that the outcome does not depend on
irrelevant strategies. Indeed, van Damme (2002, p. 1555) interpreted forward
induction as akin to the axiom called independence of irrelevant alternatives
in social choice theory. In the case of a game, the analog of social choice is the
outcome (the probability distribution on terminal nodes) and the irrelevant
alternatives are players’ irrelevant strategies.

Our proof of Theorem 6.1 relies on the assumption that Γ has two players
and generic payoffs. Indeed, the conclusion of Claim 6.2 relies on genericity.8

8That extensions to nongeneric payoffs are problematic can be seen in studies of signaling
games where signals are costless to the sender, as in Chen, Kartik, and Sobel (2008).
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Moreover, the proof does not suffice for the Beer–Quiche game in Section 2.2
if the two types of player I are treated as two different players; in particular,
the game Γ δ has a sequential equilibrium in which both types choose Q. The
intuitive reason why the proof does not apply to an N-player game is that at a
player’s information set that does not intersect paths of equilibrium play, his
beliefs might need to evaluate the relative likelihood of one opponent choos-
ing a relevant strategy compared to another opponent choosing an irrelevant
strategy. Asking for a sequential equilibrium in the game Γ δ does not impose
any discipline on such considerations. We surmise that additional decision-
theoretic criteria must be imposed to obtain a version of Theorem 6.1 for a
game with more than two players.

7. RENY’S INTERPRETATION OF FORWARD INDUCTION

An implication of Theorem 6.1 is that there is no conflict between backward
and forward induction if one adopts the decision-theoretic principle of invari-
ance. This conclusion depends on our definitions of relevant strategies and
forward induction outcomes; for example, we interpret forward induction as
a refinement of weakly sequential equilibrium that ensures the outcome does
not depend on one player believing the other is using an irrelevant strategy at
a relevant information set.

In this section we compare our definitions with the principle alternative, rep-
resented by the discussion in Reny (1992, Sec. 4). He invoked “best response
motivated inferences” as an instance of “forward induction logic” and con-
cluded from an example that it can conflict with backward induction.

Although he does not propose an explicit definition, the main ingredients
differ from our formulation as follows. Our definitions are narrow—we inter-
pret forward induction as a property of an outcome of a weakly sequential
equilibrium and ask only that the outcome results from one in which the sup-
port of a player’s belief at a relevant information set is confined to relevant
strategies, which we limit to those strategies that are optimal replies to some
weakly sequential equilibrium. Reny’s view applies forward induction reason-
ing directly to players’ strategies rather than to outcomes, and applies it to
more information sets and more strategies. At every information set not ex-
cluded by a player’s own strategy, he asks only that the support of the player’s
belief is confined to those strategies that reach that information set for which
there are some beliefs of the other player that would justify using them.

The implications of Reny’s expanded view of forward induction reasoning
are illustrated by the motivating example in his Figure 3. The top panel of Fig-
ure 4 shows a game in which players I and II alternately choose whether to end
the game. Reny argued that this example shows a tension between forward and
backward induction. He observed that I’s choice of the pure strategy D strictly
dominates Ad. He inferred from this that forward induction should require
that if I rejects D, then II must believe that I’s strategy is surely Aa and hence
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FIGURE 4.—Top panel: Reny’s example of a game between players I and II. Bottom panel: The
game modified so that player I can choose the redundant strategy x(δ) after rejecting D.

II’s only optimal reply is Ad. But backward induction requires each player to
choose d, and before that D, which contradicts the seeming implication of for-
ward induction that II’s strategy should be Ad. From this Reny concluded that
II’s backward induction strategy is “rendered ‘irrational”’ and thus “the inap-
propriateness, indeed the inapplicability of the usual backward programming
argument in the presence of best response motivated inferences” (Reny (1992,
p. 637), italics as in original).

Our analysis of this example differs in two respects. First, I’s only relevant
strategy is to choose D initially, so forward induction according to our defini-
tion has no implications for II’s beliefs. This is so because our definitions iden-
tify outcomes that result from the conjunction of rational play and beliefs that
other players are playing rationally; hence we apply them only to information
sets reached by rational play as represented by relevant strategies. In contrast,
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Reny applied forward induction to the belief of a player when the other player’s
strategy is an optimal reply to an arbitrary belief. In the top panel of Figure 4,
for player II to choose A requires that either II believes I is irrational or II
believes that I believes II is irrational. Specifically, for II at her first decision
node to believe that I’s strategy is Ad amounts to believing that I is irrational
(because D dominates Ad as noted above); for II to believe that I’s strategy is
Aa and that I is rational requires II to ascribe to I a belief that II’s strategy is
Aa with high probability, which is an irrational strategy for II (because at II’s
second decision node the continuation d dominates the continuation a).

Our view is that a coherent theory of rational play and beliefs that others
are playing rationally (i.e., a theory consistent with strong belief in rationality)
is possible only with the more circumscribed definition of relevant strategies
that we propose. Note, however, that we admit fewer strategies as relevant but
restrict beliefs only at relevant information sets, so our definition of forward
induction is neither stronger nor weaker than Reny’s interpretation.

The other respect in which our analysis differs is that we invoke invariance.
The bottom panel of Figure 4 shows an expanded extensive form in which
player I can reject D and then choose between action A or the new pure strat-
egy x(δ) for some probability δ ∈ (1/2�1). (See Govindan and Wilson (2006,
Sec. 2.3) for a similar example.) The two information sets indicate that player II
cannot know whether I chose A or x(δ) after rejecting D. The branch points
indicated by black boxes refer to moves by Nature, that is, Nature takes over
and implements the strategy x(δ) using the indicated probabilities (1 − δ�δ)
and (0�1) at I’s first and second information sets after I chooses x(δ). Note that
x(δ) is redundant because it is replicated by the mixed strategy that chooses
between D and Aa with probabilities 1 − δ and δ.

In the expanded game it is somewhat arbitrary whether one supposes that
I can choose x(δ) before or after D. We use the latter because then it is easy
to construct the unique Nash equilibrium of the subgame that begins after I
rejects D. This is a sequential equilibrium in which I chooses x(δ) with proba-
bility 1/[1 + δ] and otherwise chooses A and then d; and, if A occurs, then II
chooses D with probability 2δ−1, and otherwise A and then d. Consistent with
Bayes’ rule, II’s strategy is supported by beliefs at her first and second infor-
mation sets that the conditional probabilities are, respectively, 1/2 and 1 that
I chose x(δ). As δ approaches 1/2, II’s strategy in this equilibrium converges
to Ad and, as δ approaches 1, to D, which correspond to the two strategies by
II that Reny considered. (When δ = 1/2, the Nash equilibria of the subgame
require only that I’s probability of x(1/2) is at least 2/3, and II’s belief changes
accordingly; when δ = 1, the game is essentially the same as the original game
since x(1) is a duplicate of Aa.)

Thus we find that II might be indifferent between her backward induction
strategy D and her strategy Ad that Reny concluded is implied by best re-
sponse motivated inferences. Therefore, Reny’s conclusion that II’s backward
induction strategy is rendered irrational depends on rejecting either sequential
equilibrium or invariance as decision-theoretic principles.
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8. CONCLUSION

Theorem 6.1 offers an explanation of why forward induction is a desirable re-
finement of sequential equilibrium in two-player games with generic payoffs. If
an outcome does not satisfy forward induction—that is, depends on one player
believing the other is using an irrelevant strategy—then there is an equivalent
game in which this outcome results only from Nash equilibria and not from any
sequential equilibrium.

Failure of an economic model to predict an outcome that satisfies forward
induction could motivate reconsideration of whether the essential features of
the strategic situation are well represented by the specific extensive form used
in the model, or if one has confidence in the model, then this prediction might
be rejected because for the same model there necessarily exists another pre-
diction that does satisfy forward induction.

Because the theorem is restricted to games with two players and generic pay-
offs, it does not establish that our definitions of relevant strategies and forward
induction outcomes are surely the right ones for general games. But it suggests
that similar definitions might enable “forward induction reasoning” to be jus-
tified by decision-theoretic criteria.

APPENDIX A: TECHNICAL LEMMA

Given an extensive form with two players, for each player n let Sn and Σn be
n’s sets of pure and mixed strategies, and let S = S1 × S2 and Σ = Σ1 × Σ2 be
the product sets of profiles. Let G be the Euclidean space of games generated
by assigning payoffs to the players at the terminal nodes of the given extensive
form.

LEMMA A.1: There exists a closed, lower-dimensional, semi-algebraic set G1 of
G such that G\G1 has finitely many connected components. For each connected
component C, the following holds: if for some game Γ ∈ C and profile σ ∈ Σ
the set of profiles of pure strategies that are the players’ optimal replies to σ is
T = T1 × T2 ⊂ S, then for every game Γ ′ ∈ C there exists a profile σ ′ ∈ Σ with the
same support as σ and such that in Γ ′ the set of pure optimal replies to σ ′ is T .

PROOF: Let X = G × Σ and let p :X → G be the natural projection. For
each pair R = R1 ×R2 and T = T1 × T2 of subsets of S, let X(R�T) be the set
of (Γ�σ) in X such that, for each n, Rn is the support of σn and Tn is the set of
n’s pure optimal replies in Γ to the mixed strategy σm of the other player. By
the generic local triviality theorem in Bochnak, Coste, and Roy (1998) there
exists a closed, lower-dimensional, semi-algebraic subset G1 of G such G\G1

has finitely many connected components. Moreover, for each connected com-
ponent C of G\G1 there exist (i) a semi-algebraic fiber F , (ii) for each pair
(R�T), a subset F(R�T) of F , and (iii) a homeomorphism h :C ×F → p−1(C)
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with the properties that (a) p◦h(Γ� f )= Γ for all Γ ∈ C, f ∈ F and (b) h maps
C × F(R�T) homeomorphically onto p−1(C)∩X(R�T) for each (R�T).

Suppose T is the set of profiles of pure optimal replies to σ in a game Γ ∈C.
Let R be the support of σ . Then (Γ�σ) belongs to X(R�T). Therefore, there
exists f ∈ F(R�T) such that h(Γ� f )= (Γ�σ). For each Γ ′ ∈ C, let σ ′(f ) be the
unique mixed strategy in Σ for which h(Γ ′� f )= (Γ ′�σ ′(f )). Then the support
of σ ′(f ) is R and the set of profiles of pure optimal replies in Γ ′ to σ ′(f )
is T . Q.E.D.

APPENDIX B: FORWARD INDUCTION IN THE NORMAL FORM

The classical view in game theory is that the normal form of a game is suffi-
cient to capture all strategically significant aspects. Hence the question arises
as to whether we can state a comparable version of forward induction for a
game in normal form. Here we provide one such definition.

The following three components of Definition 3.5 for a game in extensive
form need to be rephrased in terms of the normal form: (i) weakly sequen-
tial equilibria, (ii) relevant strategies, and (iii) restriction of beliefs to those
induced by relevant strategies whenever possible. As will be seen below, if the
sequential rationality requirement in the definition of weakly sequential equi-
libria is strengthened slightly (and only for nongeneric games), then the corre-
sponding definition of forward induction has a normal-form counterpart.

Given a game G in normal form, let σ be a profile of players’ mixed strate-
gies and let b be an equivalent profile in behavioral strategies for an extensive-
form game Γ with that normal form. Reny (1992, Proposition 1) showed that σ
is a normal-form perfect equilibrium of G iff in Γ there exists a sequence bε of
completely mixed profiles converging to b such that for each player n and each
information set hn that bn does not exclude, the action prescribed by bn at hn

is optimal against bε
−n for all small ε. Thus the difference between weakly se-

quential equilibrium and normal-form perfect equilibrium is analogous to that
between sequential equilibrium and extensive-form perfect equilibrium: one
requires optimality only in reply to the limit, while the other requires optimal-
ity in reply to the sequence as well. Reny also showed that weakly sequential
equilibria coincide with normal-form perfect equilibria for generic extensive-
form games. Therefore, a perfect equilibrium seems to be the right normal-
form analog of a weakly sequential equilibrium.

Suppose Σ∗ is a set of Nash equilibria of G. (To fix ideas, Σ∗ could be the
set Σ(P) of equilibria inducing an outcome P in an extensive-form version of
the game, but to allow applications to nongeneric games, we allow multiple
outcomes.) In the extensive-form case, we said that a strategy was relevant
if it was optimal against a pair of profiles of strategies and beliefs inducing
the given outcome. But as noted above, if we insist on optimality along the
sequence, then the appropriate normal-form definition of a relevant strategy
becomes: a strategy is relevant if it is optimal against a sequence of ε-perfect
equilibria converging to an equilibrium in Σ∗.
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Finally, we turn to belief restrictions. The idea in the extensive-form case
is that if an information set hn of player n is reached by a profile of relevant
strategies of his opponents, then he assigns zero probability to continuations
that are enabled only by profiles that contain an irrelevant strategy for one of
the other players. Let R−n(hn) be the set of profiles of relevant strategies of
n’s opponents that reach such an hn. If we use a sequence σε of normal-form
profiles to generate players’ beliefs and their continuation strategies, then the
belief restriction says that n’s belief at hn and the continuation strategies of his
opponents should be obtained from the limit of the sequence of conditional
distributions over R−n(hn) induced by the sequence σε. That is, the beliefs at
all information sets of all players that are reached by relevant strategies can be
generated from the sequence of conditional distributions confined to relevant
strategies.

Because we insist on optimality along the sequence, what we obtain is a per-
fect equilibrium with a restriction on the form of its representation as a lexi-
cographic probability system, as in Blume, Brandenburger, and Dekel (1991,
Propopositions 4, 7). The restriction is that any profile that includes an irrele-
vant strategy for some player should occur later in the lexicographic sequence
than those profiles that include only relevant strategies. This implements the
basic requirement that each player believes the other is using a relevant strat-
egy as long as that hypothesis is tenable. Thus, we are led to the following
definition:

DEFINITION B.1—Normal-Form Forward Induction: A set of Nash equilib-
ria satisfies normal-form forward induction if it contains a perfect equilibrium
whose lexicographic representation has all profiles of relevant strategies occur-
ring before all profiles that include irrelevant strategies.

In general, this is a stronger requirement than the one in the text, but for a
generic two-player game in extensive form with perfect recall it can be shown
that the set of weakly sequential equilibria inducing an outcome P satisfies
the above definition iff P satisfies forward induction as defined in the text.
The reason for this equivalence is similar to the reason that weakly sequential
equilibria and normal-form perfect equilibria coincide for generic extensive-
form games as established by Reny (1992, Proposition 1). An implication is that
the analog of Theorem 6.1 is true with this definition of forward induction, that
is, the set of Nash equilibria resulting in an invariant sequential equilibrium
outcome of a two-player game in extensive form with perfect recall and generic
payoffs satisfies normal-form forward induction.
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