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Econometrica, Vol. 50, No. 4 (July, 1982) 

SEQUENTIAL EQUILIBRIA1 

BY DAVID M. KREPS AND ROBERT WILSON 

We propose a new criterion for equilibria of extensive games, in the spirit of Selten's 
perfectness criteria. This criterion requires that players' strategies be sequentially rational: 
Every decision must be part of an optimal strategy for the remainder of the game. This 
entails specification of players' beliefs concerning how the game has evolved for each 
information set, including information sets off the equilibrium path. The properties of 
sequential equilibria are developed; in particular, we study the topological structure of the 
set of sequential equilibria. The connections with Selten's trembling-hand perfect equilibria 
are given. 

1. INTRODUCTION 

WE PROPOSE A NEW CRITERION for equilibrium in extensive games. The force of 
this criterion stems from the stringent requirement of sequential rationality 
imposed on the behavior of every player: Every decision must be part of an 
optimal strategy for the remainder of the game. In games with imperfect or 
incomplete information, this requirement entails conformity with Savage's [13] 
axioms of choice under uncertainty: At every juncture the player's subsequent 
strategy must be optimal with respect to some assessment of the probabilities of 
all uncertain events, including any preceding but unobserved choices made by 
other players. Mathematically, this is accomplished by broadening what is meant 
by an equilibrium. An equilibrium is not simply a strategy, but consists instead of 
two types of probability assessments by the players: the beliefs of a player 
concerning where in the game tree he is whenever it is his turn to choose an 
action, and his conjecture concerning what will happen in the future as given by 
the strategy. The novel aspect is the specification of beliefs on information sets 
that lie off the equilibrium path (that is, that have prior probability zero in the 
equilibrium). The specification of these beliefs allows us to verify that the 
player's own strategy is optimal starting from every point in the tree. 

In this exposition we consider only games in which each player has perfect 
recall; cf. Kuhn [7]. For such games, sequential equilibria admit the following 
construction: In each player's personal decision tree induced by the game tree 
(cf. Wilson [16]) there is an appropriate assessment of the probabilities assigned 
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to all conditional uncertain events for which his strategy is among the optimal 
responses obtained by backwards recursion via dynamic programming. (These 
assessments are also required to be consistent among the players, in a fashion to 
be explained.) This encompasses the formulation of games with incomplete 
information due to Harsanyi [3]: A sequential equilibrium provides at each 
juncture an equilibrium in the subgame (of incomplete information) induced by 
restarting the game at that point. 

Our definition of a sequential equilibrium recasts and slightly weakens Selten's 
[15] definition of a perfect equilibrium. Selten's definition accomplishes two things 
at once: It implicitly generates beliefs at information sets off the equilibrium 
path, and it requires that players' strategies be optimal with respect to those 
beliefs. In addition, it eliminates from consideration strategies that are otherwise 
weakly dominated. In a sequential equilibrium, the former is explicitly done, and 
the latter is dropped. Thus every perfect equilibrium is sequential, but not 
conversely. We prove, however, that if the former is done, then it is rarely the 
case that the latter is necessary; for "almost all" games the perfect and sequential 
equilibria "nearly" coincide. Thus, generically, the two concepts are identical 
mathematically. 

We have two motives for proposing this alteration of Selten's definition. The 
first is pragmatic: In many examples of interest (e.g., in Kreps and Wilson [6], 
Milgrom and Roberts [8], and Rubinstein [12]), it is vastly easier to verify that a 
given equilibrium is sequential than that it is perfect. Second, making explicit the 
construction of beliefs off the equilibrium path enables discussion of which 
beliefs are "plausible" and which are not. Such discussion is difficult in the 
context of Selten's mechanical and indirect procedure for generating beliefs. And 
such comparisons can often help one to choose among sequential/perfect 
equilibria. (An example is given in Kreps and Wilson [6], where there is unique 
along-the-equilibrium-path behavior among all sequential equilibria whose be- 
liefs meet an intuitively plausible monotonicity condition. Another example is 
given here in Section 8.) Indeed, we have found that by making the idea of 
beliefs explicit, the concept of a sequential equilibrium becomes consonant with 
the received tradition of single-person decision theory, and so it is easier to 
explain to nonspecialists. 

The paper is organized as follows. In Section 2 a formulation of extensive 
games with perfect recall is given. The definitions of Nash equilibrium and 
Selten's concept of subgame-perfect equilibrium (Selten [14]) are reviewed in 
Section 3. In Section 4, we present examples that motivate restrictions more 
severe than subgame-perfection. Then we give the key definitions of beliefs and 
an assessment, and we formally define a sequentially rational assessment. 

A sequential equilibrium is a sequentially rational assessment that meets 
certain further consistency criteria. For example, beliefs along the equilibrium 
path should be computed from the strategy via Bayes' rule. In Section 5 we 
present the consistency criterion that we subsequently use, and we motivate this 
criterion by a series of examples. 
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Properties of sequential equilibria are presented in Section 6. Basic properties 
are established: They are Nash, exist for all games, and have an upper hemi- 
continuous correspondence over the space of payoffs. Then we consider their 
relation to Selten's subgame-perfection concept and an extension of this concept. 
Lastly, we study the structure of the set of sequential equilibria for "generic" 
games. 

In Section 7 we compare Selten's criterion for (trembling-hand) perfect equilib- 
rium with our criterion for sequential equilibrium. The basic results are as stated 
above: Every perfect equilibrium is sequential. Conversely, for generic payoffs 
the sets of perfect and sequential equilibria "nearly" coincide. (The possible 
exceptions are limited to weak equilibria; and there is complete coincidence of 
the sets of "equilibrium paths.") This generic equality of sequential and perfect 
equilibria becomes an exact identity if one weakens the defining apparatus of 
perfect equilibria to allow perturbations of the payoffs. 

In Section 8 we develop the idea that explicit consideration of the beliefs off 
the equilibrium path can help one to choose among sequential equilibria. 
Concluding remarks are made in Section 9. 

The technical results of Sections 6 and 7 are proved in an Appendix. The 
Appendix also gives several additional characterizations that are not discussed in 
the text. 

2. EXTENSIVE GAMES 

We will use a formulation of an extensive game that is equivalent to Kuhn's 
[7]. In this formulation, the following are specified: (1) the physical order of play; 
(2) the choices available to a player whenever it is his turn to move; (3) rules for 
determining whose move it is at any point; (4) the information a player has 
whenever it is his turn to move; (5) the payoffs to the players as functions of the 
moves they select; (6) the initial conditions that begin the game (that is, the 
actions of nature). 

We illustrate our formulation with the following example of a game with two 
players. Player 1 moves first and chooses between three actions: L, R, A. If player 
1 chooses A, then the game ends, with payoffs zero to each player. If 1 chooses L 
or R, then it is 2's turn to choose between actions I and r, after which the game 
ends, and payoffs are made. When and if 2 does get to choose between I and r, 2 
does not know which of L and R 1 chose-2 knows only that 1 did not choose A. 
A diagrammatic representation of this is given in Figure 1. 

Mathematically, the formulation is constructed from the following objects: 
(1) The physical order of play is given by a finite set T of nodes together with a 

binary relation -< on T that represents precedence. In the example, the set T 
consists of eight points: the open circle, the two closed circles, and the four 
column vectors. Precedence is indicated by arrows-one node precedes another 
if there is a sequence of arrows pointing from the first to the second. The binary 
relation -< must be a partial order, and (T, -<) must form an arborescence: The 
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1 A 0 
0 

LR 

3 -2 -1 / -1 
-1 -2 0 2 

FIGURE 1. 

relation -< totally orders the predecessors of each member of T. (This prevents 
cycles from appearing in the order of play, and it means that each node in the 
tree can be reached by one and only one path from an initial node through the 
tree.) Useful auxiliary notation and definitions are compiled in Table I. 

TABLE I 

NOTATION AND DEFINITIONS FOR EXTENSIVE GAMES 

Name Notation Definition 

terminal nodes or outcomes Z { t E T t has no successors} 
decision nodes X T\Z 
initial nodes or states W { t E T t has no predecessors} 
predecessors of t P(t) {x E X x < t} 
immediate predecessor of t pI(t) max{x x < t} for t : W 
nth predecessor of t pn(t) P I(t)) for t such that pn_ (t) W; 

po(t) = t for all t 
number of predecessors of t 1(t) I(t) is such that pl(t,)(t) E W 
immediate successors of x S(x) pj l(x) for x E X 
terminal successors of x Z(x) {z E Z: x -< z} for x E X 

Note that we depict the terminal nodes (nodes in Z) by column vectors (the 
meaning of which will be discussed below), the decision nodes (nodes in X) by 
circles, and the initial nodes (nodes in W) by open circles. In the example there is 
a single initial node, but in general there may be more than one element of 
W-see the game depicted in Figure 8 for an example. 

The following interpretations are made: The game begins at one of the initial 
nodes (determined by nature-see below) and then proceeds along some path 
from node to immediate successor, terminating when a terminal node is reached. 
The various paths give the various possible orders of play. In many games of 
interest, especially games with simultaneous moves, more than one tree can be 
used to represent the game. 

(2) To represent the choices available to players at decision nodes, we have a 
finite set A of actions and a function a: T\ W -->A that labels each non-initial 
node with the last action taken to reach it. In the figures, the actions are labelled 
along the branches, so that the L on the uppermost left-hand branch is read as 
saying that action L leads from the initial node to the node below and to the left 
of it. In terms of the function a, L is the value of a at the node below and to the 
left of the initial node. Note that a(S(x)) is thus the set of feasible actions at the 
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decision node x. For example, the set of actions feasible at the initial node is 
{ L, R, A }. We require that a be one-to-one on the set S(x) of immediate 
successors of x. 

(3) To represent the rules for determining whose move it is at a decision node, 
we have a finite set I of players and a function t: X -- I that assigns to each 
decision node the player whose turn it is. In Figure 1, the 1 above the initial node 
records that it is player l's move at that point, and the 2 connected to the two 
other decision nodes by the dashed line records that it is 2's move at each of 
those two points. 

(4) Information possessed by players is represented by a partition H of X that 
divides the decision nodes into information sets. The cell H(x) of H that contains 
x identifies the decision nodes that player t(x) cannot distinguish from x based 
on the information he has available when it is his turn to choose an action at x. 
We depict information sets by connecting nodes in a single information set with 
a dashed line. Thus in Figure 1, the dashed line connecting the two non-initial 
decision nodes denotes that these two nodes lie in the same information set- 
player 2, when it is his turn to choose an action, doesn't know whether 1 chose L 
or R. We require that a player knows when it is his turn to choose and which 
actions are feasible: 

(2.1) If x E H(x'), then t(x) = t(x') and a (S(x)) = a (S(x')). 

Thus it makes sense to write t(h) and to partition H into sets H' = t '(i). (In our 
figures, we label information sets instead of nodes with players.) It also makes 
sense to write A (h) for a (S(h)), the set of actions feasible at information set h. 
(Note that 2's feasible actions at the two non-initial nodes are identical. What we 
really have is that 2 can choose between I and r at his information set.) For 
notational convenience, we assume that a is onto and that for each a E A, 
A - '(a) is a singleton set. That is, each action can be taken only in a single 
information set. Then we can partition A into sets A' = {a: A - '(a) 5 H') for 
i E I. 

We also assume that each player has perfect recall. Each player knows whether 
he chose previously: 

(2.2) If x E H(x'), then x Ak x'. 

And he knows whatever he knew previously, including his previous actions: 

(2.3) If x, x', x" E t- '(i), x -< x', and H(x') = H(x"), then H(x) 

includes some predecessor of x" at which the same action was chosen 

as was chosen at x; that is P(x") n H(x) = { x0}, and if x = pn(x') 

and xo = pm(x"), then a (pn- , (x')) = a (pm- , (x ")). 
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The collection { T, -<; A, a; I, t; H } defines an extensive form. To obtain an 
extensive game we add a specification of the players' utilities assigned to the 
terminal nodes and the probabilities assigned to the initial nodes. 

(5) For each player i, the payoff function u': Z -- R assigns a real-valued von 
Neumann-Morgenstern utility to each outcome. We denote a specification of the 
payoffs by u = (u'(z)) E RI' Z. In our pictorial representations, we simply write 
the vector of payoffs to the players (player 1 first, player 2 second, etc.) for the 
terminal node. For example, in Figure 1, if player 1 plays L and 2 plays 1, then 
the payoffs are 3 to player 1 and - 1 to player 2. 

(6) Player i's initial assessment p' is a probability measure on the set W of 
states or initial nodes. (For notational convenience, we have put all actions by 
nature at the "start" of the game.) To keep matters simple, we henceforth assume 
that the players' initial assessments are strictly positive and are all the same: 
p i _ p >> 0. When necessary, we depict initial assessments by recording the 
probability p(w) in braces next to the node w. 

A pure strategy for player i is an assignment a': H' - A such that a'(h) 
E A (h). This specifies what action player i will take each time it is his turn to 
choose, based on the information that he possesses. One defines a mixed strategy 
for player i as a probability distribution over the set of his pure strategies. 
However Kuhn [7] shows that for games with perfect recall it is sufficient to 
restrict attention to behavior strategies, hereafter simply called strategies. 

(7) A strategy q' : A '-i [0, 1 ] for player i assigns to each information set h E H' 
a probability measure on the set A (h). That is, Ea,A(h)'7T(a) = 1, for each 
h E H'. 

Let I' denote the set of strategies for player i, and let 171= X iETI71 be the set 
of strategies for the game. Each strategy 7T E 17 induces a probability measure P' 
on the set Z of outcomes according to the formula: 

1(z) 

P (Z) = P(PI(Z)(Z)) ]7J (Pl (PI(- I (Z))). 

The expectation operator using P" is denoted E [-]; in particular, E [ui(z)] is 
player i's expected utility from the strategy 7T. We shall frequently use the 
notation P`(x) and P`(h) for P"(Z(x)) and P`(Z(h)), respectively. 

A subform of an extensive form is a collection of nodes T C T, together with 
<, t, A, oa and H all defined on T by restriction, satisfying closure under 

succession and preservation of information sets: S(x) C T and H(x) C T if 
x E T. For every node x E X there is a minimal subform T(x) containing x. 
Note that x need not be an initial node in T(x) (cf. Figure 8). A proper subform 
(following Selten [14]) is a subform T consisting solely of some node x and its 
successors. In this case we call x the root of T. Given a proper subform T with 
root x, there is a well-defined proper subgame starting with x as the unique 
initial node. That is, the game is formed by T and all the structure that T inherits 
from the original form, the payoffs u restricted to T n Z, and the initial 
assessment A(x) = 1. For nonproper subforms a subgame is not always well- 
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defined, if the initial assessment p is lacking. (Example: in Figure 1, the two 
nodes that form player 2's information set together with the four terminal nodes 
that follow constitute a nonproper subform. Note that if we tried to define a 
subgame for this subform, we would be lacking an initial assessment on the two 
(now initial) nodes.) 

3. NASH EQUILIBRIA AND SUBGAME PERFECTION 

The weakest criterion for equilibrium that we shall discuss is the familiar one 
proposed originally by Nash [11]. A strategy is a Nash equilibrium if each player's 
strategy is an optimal response to the other players' strategies. That is, g E II is a 
Nash equilibrium if, for each player i E I, 

ET [u'(z)] > ET u'(z)] for every strategy 7T E rl 

such that FTi = 7Tr forj # i. 

This definition has been motivated in many ways, and we shall not attempt to 
repeat those motivations here. But a thread common to all of them is that if 
players are to arrive at some "agreed-upon" mode of behavior, then it is 
necessary that this behavior constitutes a Nash equilibrium. Otherwise, some 
player would find it advantageous to defect from the agreement. (The different 
interpretations vary in their explanations of how it might be that such an 
agreement would arise, whether such an agreement must be explicit, etc.) 

Consideration of games in extensive form lead to other, more stringent 
necessary conditions for "agreed-upon" behavior. One such condition is Selten's 
[14] criterion of subgame-perfection. Consider the game depicted in Figure 2. One 
Nash equilibrium for this game has player 1 choosing L and player 2 choosing 1. 
Note well that 1 chooses L because he anticipates the choice of I by 2, while 2 is 
content to choose I only because his choice is irrelevant so long as 1 chooses L. 
But if 1 were to choose R, then it seems reasonable to suppose that 2, facing this 
fait accompli, would choose r. And 1, realizing this, "should" choose R. Selten 
[14] has formalized this intuition in the following criterion. 

DEFINITION: Strategy ST is subgame perfect if for every proper subgame the 
strategy 7T restricted to the subgame constitutes a Nash equilibrium for the 
subgame. 

This definition makes sense because in any proper subgame it makes sense to 
speak of each player's expected utility in that subgame, and thus the Nash 

l L 1L I R 2 

-1 0 

FIGURE 2. 
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criterion can be applied (in Figure 2, to the subgame with root x). (In Selten [14], 
nature's moves are not all put at the beginning of the tree T. This gives him 
"'more" proper subgames and, correspondingly, more applications for the crite- 
rion above. The difference is insignificant. We have put nature's moves at the 
beginning of the tree for convenience only-nothing in the analysis changes if 
this is relaxed. We could also remedy matters by calling a subform T proper if 
there is a unique probability distribution p on W such that p(w)P[W] = 

for all w E W-then this p is the natural candidate for the initial assessment.) 
And it is a natural restriction for any "agreed-upon" behavior-otherwise the 
agreement would not hold up if the subgame were reached. Accordingly some 
player might defect from the agreement and cause the subgame to be reached, 
anticipating a breakdown of the agreement favorable to himself. 

4. BELIEFS AND SEQUENTIAL RATIONALITY 

Selten has gone on to observe that the intuitive motivation for the subgame 
perfection criterion can be applied to games that lack proper subgames. This is 
illustrated by the game depicted in Figure 3, taken from [15, Section 6]. One 
Nash equilibrium for this game has player 1 choosing D, player 2 choosing a, 
and player 3 choosing 1. This equilibrium is subgame perfect, as the only proper 
subgame here is the game itself. But, as Selten argues, this equilibrium is not 
sensible. The behavior of player 2 is hard to justify, if it is supposed that 3 will 
choose 1. Note that player 2's information set is a singleton, and therefore there is 
no difficulty in taking the other players' strategies as given and asking: If this 
node is reached, then what action is optimal for 2? That is, the conditional 
expected payoff to 2 on reaching x is calculable from the strategies of the other 
players. Given the supposed behavior of 3, 2 prefers to choose d. (The reader can 
verify that if 1 realizes this, then 1 would optimally choose A instead of D, 
thereby upsetting the equilibrium. The only "sensible" equilibrium in this game 
has 1 choosing A, 2 choosing a, and 3 choosing r with probability at least 3/4.) 

The subgame perfection criterion, as formally defined, fails in this example, 
because there is not a proper subgame starting from the node x-player 3 is 
unable to compute his expected utility in this subgame. But because this 
information set for 2 is a singleton, we can compute expected utility for 2 

1 A x 2 a 1 

lD |d 

* 3 -3 

3 0 4 0 
2 0 4 0 
2 0 0 1 

FIGURE 3. 
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1 A O 

L \ 2 

2 -1 1 -2 
1 -1 1 0 

FIGURE 4. 

conditional on hitting this information set, and this is enough to reject the 
supposed equilibrium. A corresponding general criterion can be formulated as 
follows: A strategy 7T should be such that for any information set h that is a 
singleton, player t(h) should not be able to change his strategy unilaterally and 
thereby improve this expected utility starting from h. 

The restriction of this criterion to singleton information sets h is necessary 
mathematically, so that player t(h)'s expected utility starting from h can be 
calculated. But it does limit the applicability of the criterion. Consider the game 
depicted in Figure 4. A Nash equilibrium for this game has 1 choosing A, and 2 
choosing r. This strategy is subgame perfect, and it satisfies the further criterion 
given above. But if 1 gives the move to 2, then regardless of what 2 thinks the 
chances are that he is at one node or the other in his information set, 2 will do 
better by choosing 1. And if 1 realizes this and concludes that 2 will choose 1, 
then 1 will optimally pick L. 

We are unable to apply the subgame perfection criterion or the other criterion 
above for technical reasons: The strategy w does not provide sufficient informa- 
tion to compute player 2's expected payoff conditional on reaching his informa- 
tion set. But if 2 is rational in the sense of Savage [131-when faced with a choice 
2 makes some assessment about what 1 did that is consistent with what 2 knows, 
and then optimizes accordingly-then 2 will choose 1. This is the substance of 
sequential rationality: The strategy of each player starting from each information 
set must be optimal starting from there according to some assessment over the 
nodes in the information set and the strategies of everyone else. 

To formalize this, as part of the description of an equilibrium we specify for 
each information set h the assessment made by player t(h) over the nodes in h if 
h is reached. A system of beliefs is defined as a function jt: X -> [0, 1] such that 
Exeh A (x) = 1 for each h E H. Interpret jt(x) as the probability assigned by t(h) 
to x E h if h is reached. An assessment is a pair (i, 7T) consisting of a system of 
beliefs y and a strategy 7T. Given an assessment (j, 7T), for each h E H we can 
define "conditional" probability P,'y(. I h) over Z in the obvious fashion: 

If z X Z(h), then P,'T(z I h) = 0. 

If z E Z(h), say pn(z) E h, 

n 
then P ,7' (z I h) = y (Pn (z)) I 71 (a(Pm -I (z))) 

m= 1 
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(We shall use notation such as P,'T(h' I h) as shorthand for P,(Z(h') I h) when 
convenient.) Denoting conditional expectations by E"'T[ I h], we say that the 
assessment is sequentially rational if, for all h E H, 

EI',[ ut(h)(z) I h] > El"7[ Ut(h)(z) I h] 

for all 7- such that 7-i = 7Tj forj #& t(h). 

In words, taking the beliefs as fixed, no player prefers at any point to change his 
part of the strategy 7T. 

A sequential equilibrium, roughly speaking, is a sequentially rational assess- 
ment (t, 7T). This is only a rough definition because we first want to impose 
consistency conditions, such as that assessments obey Bayes' rule when it applies. 
We develop these conditions and give the corresponding definition of a sequen- 
tial equilibrium in the next section. The point to be stressed here is that an 
assessment (and not simply a strategy) will or will not be a sequential equilibrium. 
We require that an equilibrium specify beliefs as well as strategies. 

Selten [15] suggests a somewhat different "cure" for the problem posed by 
examples such as the game depicted in Figure 4. He proposes a criterion called 
(among game theorists) "trembling-hand" perfection. We describe this criterion 
and its relation to ours in Section 7. 

5. CONSISTENT ASSESSMENTS AND SEQUENTIAL EQUILIBRIA 

We begin by giving the formal definition of a consistent assessment ( j, 7T) and 
the corresponding definition of a sequential equilibrium. Let II? be the set of all 
strictly positive strategies. That is, sr E II? if 7(a) > 0 for all a E A. If - E II?H, 
then P'(x) > 0 for all x, and the only reasonable way to define beliefs y 

associated with w is via Bayes' rule: 

M(x) = P'(x)/P'(H(x)). 

Let jO denote that subset of the set of assessments ( , 7T) where 7T E IHo and jt is 
defined from p and 7T by Bayes' rule. 

DEFINITION: An assessment ( j, ST) is consistent if ( A, 7) = limn *cO( jns, W) for 
some sequence {( ,n, ,Tn)} C gI's. The set of consistent assessments is denoted by 
I. (That is, I is the closure of J?.) 

A sequential equilibrium is an assessment (jt, 7T) that is both consistent and 
sequentially rational. 

This definition of consistency is not completely intuitive on its own. We 
propose it because it neatly embodies a number of distinct intuitive notions of 
consistency. To provide motivation, we now survey those more intuitive notions. 

An obvious consistency criterion for any assessment ([t, w) is that y must be 
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FIGURE 5. 

defined from 7T by Bayes' rule whenever possible: 

(5.1) pt(x)PT(H(x)) = PT(x). 

Note that, since p is used to define P"T, consistency with p is embodied in this 
definition. This very basic criterion is clearly implied by ([t, w) CE I. 

This uniquely defines jt(x) for any x such that P'(H(x)) > 0. What happens 
when a player reaches an information set h with P'(h) = O? It is plausible to 
suppose that the player will construct some hypothesis as to how the game has 
been played, in the form of a strategy 7T' that satisfies P"'(h) > 0 and then use 7T' 
and Bayes' rule to compute jt(x) for x E h. This procedure limits the possible 
beliefs of a player. For example, in the part of a game depicted in Figure 5, 
player 2's beliefs in his information set must attach probability 1/3 to the 
left-hand node. This is because player 1 cannot distinguish between the two 
nodes in his information set, so any strategy he could hypothesize that gives 2's 
information set positive probability must (by Bayes' rule) preserve the initial 
probability assessment. That is, simply assuming that the players' beliefs always 
respect the informational structure of the game constrains players' beliefs. 
Formally: 

(5.2) ( j, 7T) is structurally consistent if for each h E H there exists some 

strategy 7T' E 11 such that P`'(h) > 0 and jt(x) = P`'(x)/Pv'(h) 

for all x E h. 

If ( , 7T) E 17, then ( j, 7T) is structurally consistent. (A direct proof is easy.) 
One can carry this "alternative hypothesis" story a step further. Fix a player i. 

His "primary hypothesis" as to how the game will be played is TT, and if his 
beliefs obey (5.1), then he applies 7T to compute y whenever possible. We might 
assume that when w does not apply-when he comes to an information set h with 
P'(h) = 0-then he has a "second most likely hypothesis" 7T(2) that he attempts 
to apply. If that fails, he tries his "third most likely hypothesis" 7T(3), and so on. 
Formally, we suppose that each player i has a finite sequence of hypotheses 
7T(1) = 7T, 7T(2), 7T(3), . .. , 7T(K), where for each h E H', p,(k) (h) > 0 for some 
k < K, and that jt(x) for x E h is computed using Bayes' rule applied to that 
7T(k) of lowest index k that satisfies pv(k) (h) > 0. The force in this is that the 
sequence of "alternative hypotheses" is independent of h-7T(2) is the player's 
second most likely hypothesis for all h E H'. A further strengthening of this 
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requires that all players use the same finite sequence g(1) = w, g(2), . ... ,(K). 
This requirement is in the spirit of the "common knowledge" hypothesis of Nash 
equilibrium-if there are rational secondary hypotheses, they should be unani- 
mously held, just as is the primary hypothesis w. We call this strengthened 
consistency criterion lexicographic consistency. 

A comparison of lexicographic consistency and our original definition of 
consistency is made easy by the following result. Let A\ be the set of all 
probability measures on Z of the form P' for 7T E LI. 

LEMMA 1: A sufficient condition for ( ,u, 7T) to satisfy lexicographic consistency is 
that there exists a sequence of probability measures {Pn)} C A such that limnPn 
= P' and, for each x, ,u(x) = lim,,Pn (x)/Pf (H(x)). 

The proof is left to the reader. (The methods used in the Appendix to prove 
Lemma A2 are easily adapted to this case.) The criterion embodied in this lemma 
is a bit stronger than lexicographic consistency, and the analogous criterion that 
is equivalent to lexicographic consistency is a bit cumbersome. (Essentially, one 
must allow P,n that are in the convex hull of A, and that are asymptotically 
"close" to A\.) But since this criterion is clearly implied by our original definition 
of consistency, we see that lexicographic consistency is subsumed by that 
definition. 

Consideration of some examples motivates further restrictions. Consider, for 
example, the part of an extensive game (with strategies and beliefs) that is 
depicted in Figure 6. (Beliefs are depicted in square brackets, and strategies in 
parentheses.) In particular, compare player 2's beliefs in his two information sets. 
We claim that these beliefs are inconsistent with each other and with player 3's 
strategy. For if player 2 reaches his first information set and adopts the beliefs 
shown, then he expects (given 3's strategy) to reach his second information set. 
And if he uses Bayes' rule starting from his first information set together with 3's 
strategy in order to obtain his beliefs in the second, he would not come up with 
the beliefs shown. This does not violate Bayesian or lexicographic consistency; 
for the latter, the "secondary hypothesis" 7T(2) simply has both players 1 and 3 
changing their strategy. In this instance, what is wanted is an extension of Bayes' 
rule. For a single player, this might be formulated as: 

(5.3) Py T(x' I h) = A (x')P ', (h' I h) 

for all h, h', and x' such that t(h) = t(h'), h -< h', and x' E h'. 

(0) 191 (1) 2 

(1) (0 (1) ( o) l 0 -) 

(0) r.n] [11 

FIGURE 6. 
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In words, starting from any information set, a player uses his beliefs at that point 
together with g and Bayes' rule to compute subsequent beliefs when possible. 
The key here is the continued use of g after an initial defection. The philosophy 
behind this is that the strategy -r at an information set h should encode the 
players' conjectures concerning what will happen if h is reached. If h is reached 
only by a defection, then g at h should encode what will subsequently happen, 
conditional on that initial defection. A first defection does not make a second 
more likely; correlation in defections are (partially) ruled out. 

A referee has suggested an extension to (5.3), following the principle that 
rational beliefs should be common knowledge and thus commonly shared. If one 
accepts this, then in the spirit of (5.3) we could remove the restriction that 
l(h) = t(h') as follows: 

(5.4) P ' (x' I h) ,u(x) = P IT(x I h) ,u(x') 

for all h, h', x, and x' such that x, x' E/ h' and x, x' E S(h). 

(The motivation for this will become clear if the reader draws the picture entailed 
and re-expresses the equation in ratio form.) One special case implied by (5.4) 
deserves mention. This is where h in (5.4) is a singleton set. For this case (5.4) can 
be paraphrased: Players use Bayes' rule applied to g in any proper subgames that 
arise. Of course, (5.4) implies (5.3) (sum over x E h'), and both are implied by 
our general consistency condition. 

Consider lastly the piece of the extensive game given in Figure 7. Player 3's 
beliefs are explicable as follows. Upon unexpectedly reaching his information set, 
he reconstructs the play of the game as follows: 1 changed his strategy to .9 for 
the upper branch, and 2 changed his to give positive probability to a move to the 
right. With this as gi(2), these beliefs are lexicographically consistent. And it is 
easy to verify that (5.4) is satisfied. But are 3's beliefs reasonable? If one grants 
the principle that defections from the equilibrium strategy ought to be uncorre- 
lated-that given that 2 has defected (which he surely must have, given that 3's 
information set has been reached), the most likely (in a lexicographic sense) 
hypothesis is that 1 continues to play according to n-then the answer is no. 
Player 3 should give more credence to the hypothesis that only player 2 defected, 
and he should therefore have beliefs .1 at the top-most node. (This example 
becomes even more stark if we suppose that players 2 and 3 are the same. Then 
the defection by 2 is known to 3-should this player revise his assessments as to 
what 1 did because he himself defected?) 

(1) [.11 

o 2 3 
(9)~ ~~(0 

(1) [U 7. 
FIGURE 7. 
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Our initial consistency criterion is advanced as the way to patch up this final 
difficulty (as well as all the ones encountered previously) and, simultaneously, to 
invoke the "common knowledge" principle for beliefs. Comparison with Lemma 
1 is useful: We require not only convergence of the probability distribution 
on endpoints to the distribution given by 7T (as in Lemma 1), but convergence to 
the strategy 7T everywhere, including those parts of the tree that could be reached 
only if an initial defection occurred. This is equivalent to lexicographic consis- 
tency where we add restrictions on how players devise their secondary hypothe- 
ses g(2), v(3), ... ; v(2) should be a "minimal change" from 7T, and so forth. To 
state precisely the equivalent lexicographic characterization of the consistency 
criterion is quite involved, and we have relegated it to the first part of the 
Appendix. The interested reader may wish at this point to read that part of the 
Appendix, in order to understand how our consistency criterion formalizes two 
ideas: no correlation in defections from v; common knowledge in secondary 
hypotheses and in the formulation of beliefs. 

Upon studying the first part of the Appendix, the reader may well conclude 
that we have required too much consistency in beliefs off the equilibrium path. 
Certainly, weaker consistency criteria can be posed that make sense in particular 
contexts. (But beware: By dropping (5.4), subgame perfection is lost.) We shall 
proceed here to develop the properties of sequential equilibrium as defined 
above; however, we do so with some doubts of our own concerning what 
"ought" to be the definition of a consistent assessment that, with sequential 
rationality, will give the "proper" definition of a sequential equilibrium. 

6. PROPERTIES OF SEQUENTIAL EQUILIBRIA 

We begin by establishing that standard properties hold for sequential equilib- 
ria. 

PROPOSITION 1: For every extensive game, there exists at least one sequential 
equilibrium. 

PROPOSITION 2: Fixing an extensive form, the correspondence from pairs (p, u) of 
initial assessments and payoffs to the set of sequential equilibria for the game so 
defined is upper hemi-continuous. 

Proposition 1 is an easy corollary of Proposition 5 and Theorem 5 of Selten 
[15]. The proof of Proposition 2 follows the usual lines and is left to the reader. 

The next result is no more than a marshalling of definitions. 

PROPOSITION 3: If ( ,u, 7T) is a sequential equilibrium, then 7T is a subgame perfect 
Nash equilibrium. 

Recall that subgame perfection is limited to proper subforms because for 
general subforms T the specification of (p, u) and a strategy w does not necessar- 
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ily yield an initial assessment p on the set of initial nodes W of T. If the given 
strategy 7T is such that P'( W) > 0, then the appropriate choice for p is manifestly 
p = Pw ( w)/P(W); in this case it is easy to show that if 7T is a Nash 
equilibrium then w restricted to T is a Nash equilibrium on the subgame given by 
T, A, and u. Of course, in general will not be strictly positive. 

In seeking to extend this construction to general subforms we make the 
following definition. 

DEFINITION: The strategy S is extended subgame perfect if for every subform 
T there exists a nonnegative probability measure A on W such that together with 
p on W, (a) 7T is a Nash equilibrium for the game defined from T, p and u; and 

_~~~~~~~~7b T A A 

(b) if T C T are two subforms such that P T( 7' T ') > 0, then p is defined from w 
and A by Bayes' formula. 

(We have not formally defined Pq'r(. I T), but its definition should be appar- 
ent.) Part (b) of this definition can be paraphrased: The initializing measures p 
are related to each other (and to p) in the natural fashion, given 7T. 

PROPOSITION 4: If (u, 7T) is a sequential equilibrium, then (t, U7) is extended 
subgame perfect. 

The proof is left to the reader. The basic idea is quite simple: Suppose 
that ([t, ) is a sequential equilibrium. Let {([tn, 'Tn)} be some sequence from 
iF with limit (ji, ). Then for a subform T with initial nodes W, define p(w) = 

limnPq (wW)/P( (W) for w C W, looking along a subsequence if necessary. It is 
straightforward to verify that 7T is a Nash equilibrium for the game so defined. 

The reader may wonder whether something of a converse of Proposition 4 is 
possible. Namely, if w is extended subgame perfect, is it then part of a sequential 
equilibrium? The answer is no, and an example is given in Figure 8. The 
information sets in this game are constructed so that the only subform is the 
original form. Thus every Nash equilibrium is extended subgame perfect. The 
strategies indicated form a Nash equilibrium, but they could never be part of a 
sequential equilibrium: No matter what beliefs player 2 has in his information 
set, B is a better action than A. (And if 2 plays B, then 1 and 3 prefer b and 
b'-the unique sequential equilibrium has the strategies depicted completely 
reversed.) 

We turn next to a study of the topological structure of the set of sequential 
equilibria for generic games. The analysis follows Debreu's [1] study of the 
Walrasian correspondence. 

Fix an arbitrary extensive form and initial assessment p. To specify an 
extensive game, it remains to specify a payoff vector u E RX Z. We say that a 
statement is true generically or for generic u if the closure of the subset in R XZ 
for which it is false has Lebesgue measure zero. 

Let 4(u) denote the set of sequential equilibria for the game with payoffs u. In 
general, the sets 4(u) can be quite complicated. Two examples will illustrate this. 
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Consider the game depicted in Figure 9. This game has two types of sequential 
equilibria. The first has player 1 playing L with probability one and 2 playing 1 
with probability one. The second has 1 playing A with probability one and 2 
playing r with probability 1/3 or more. The latter type requires 2 to have beliefs 
assigning x a probability not exceeding 1/2. If we project J(u) into the space of 
pairs (, (x), v (l)), we have the picture given in Figure 10. Note well the isolated 
point (1, 1). 

1 A 1 
1 L/ \R 

x e--- 2--- h x--x' 

3 -2 2 -1 
1 0 0 1 

FIGURE 9. 

1r 0 

0 
O ,u (x) 

FIGURE 10. 
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The second example concerns the game depicted in Figure 11. It is easiest to 
think of this game as follows. Player 1 either chooses A or chooses one of the 
following two bimatrix games for 2 and 3 to play: 

3 3 
1 ' r' r' 

2 |O 1 I 1 0 |I 2iLI| 1 1 ?LjiI 

(L) (R ) 

Neither 2 nor 3 knows which bimatrix game is selected. Again there are two 
types of equilibria. In the first, 1 moves R with probability one, and 2 and 3 
respond with 1 and 1'. In the second type, 1 moves A with probability one. This 
gives 2 and 3 "freedom" in their beliefs concerning whether 1 chose L or R if 
information sets h and h' are reached. (Because we are looking for beliefs that are 
consistent, these beliefs must coincide.) To have a sequential equilibrium, these 
beliefs must satisfy t(x) E [1/2, 1/1.1], with resulting equilibrium strategies 

1 A1 
2 _ 

2 L R 

x e 2 x 

3 

2 -.1 2 -.1 2 1 0 2.1 0 
1 0 0 1 1 0 0 0 
0 1 1 0 1 0 1 0 

FIGURE I 1. 

1.0 - 

I-M~~~~~~~~~ 

0 
.5 .909 

1L(x) 

FIGURE 12. 
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T(1) = 1/(21(x)) and v(l') = [(x)/(l + ji(x)). Projecting these equilibria into 
the space of pairs (,(x),7r(l')) we get the set shown in Figure 12. Note that the 
isolated point corresponds to the first type of equilibrium, and the curved 
segment to the second. 

In both examples, small perturbations in u do not affect the basic shape of 
4>(u)-the same shape holds for all vectors u in a neighborhood of the payoffs 
depicted. 

These examples illustrate the structure of +(u) for generic u: 4s(u) is typically 
the union of manifolds of various dimensions. The dimensions of these manifolds 
are related to the number of "degrees of freedom" that are available in specifying 
beliefs or strategies off the equilibrium path. The easiest case to understand is 
illustrated by the horizontal segment in Figure 10 and the curved segment in 
Figure 12. In ?(u) (as well as in the projections illustrated) these segments are 
one-dimensional manifolds derived from the one degree of freedom available to 
specify the non-Bayesian beliefs y I h. In Figure 12 we see that this specification 
may have some effect on the corresponding equilibrium strategies. The vertical 
segment in Figure 10 has a more subtle explanation: The "degree of freedom" 
that exists in defining y on h is lost because y on h is set so that player 2 is 
indifferent between 1 and r, but this degree of freedom is regained in the choice 
of X on h because player 2 is indifferent. 

Several definitions are required to be precise. A basis for the extensive form is 
an index set b consisting of decision nodes x E X and actions a E A. Define 

*b= t({zr) E 4': jX) > 0 if and only if x E b, and 7(a) > 0 if and only if 
a E b}. The set of bases for which 'b is nonempty is denoted by B and is called 
the set of consistent bases. Note that B is finite and that the 'b partition I. 

LEMMA 2: For b E B, 'b is a manifold. 

This lemma is proved in the Appendix. Also in the Appendix is a characteriza- 
tion of which bases b are consistent, and a representation of the manifold *'b for 
consistent b. 

Partition ?(u) as follows. Define 'b(U) = -(u) n 'b. Further partition each 
ob(U) into two parts: I?s(u)-the set of strict equilibria in b' wherein any action 
that does as well as an action taken with positive probability is itself taken with 
positive probability; Iw(u)-the remainder of bb(u), consisting of the weak 
equilibria wherein some unused action does as well as the actions having positive 
probability. 

THEOREM 1: For generic u, for each b E B the set Os(u) is either empty or is a 
manifold of dimension n(b) = dim(*b) - #(b n A) + + H, and the set F w(u) is 
precisely the I' b -relative frontier of tV(u). 
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TABLE II 

(Db(U) FOR THE EXAMPLE OF FIGURE 9 

basis b dim('Ph) n(b) 'K(u) (Fj'(u) 

A; x'; r 0 0 the point at the origin in Figure 9 0 
A; x, x'; r I I the horizontal segment not including the right endpoint of 

either endpoint the horizontal segment 
A; x, x'; r, / 2 1 the vertical segment not including the top endpoint of 

either endpoint the vertical segment 
L; x; 1 0 0 the isolated point at the upper right 0 

The proof is given in the Appendix. An intuitive explanation of the dimension 
of Ib(u) can be given: Fixing a basis b and an information set h, suppose that m 
is the cardinality of A (h) n b. Then the equilibrium conditions for h consist of 
m - 1 equality constraints specifying that the expected utilities to player l(h) of 
the m actions he is mixing among are identical, and some further inequality 
constraints. Each equality constraint lowers the dimension of the manifold of 
equilibria by one, so when we sum over all h we have exactly n(b) remaining 
dimensions of "b 

To see how this theorem works, consider again the game depicted in Figure 9. 
The bases b E B such that JD'(u) is nonempty are tabulated in the left column of 
Table II. Also tabulated are dim(Ib) and n(b). In the next column, Ib(u) is 
described, relying on Figure 9. And in the right column, the associated Jbw(u) is 
described. 

This theorem points out that typically there is an infinite number of sequential 
equilibria. This may be misleading, however. The infinite number ensues from 
free variations in allowed behavior and beliefs off the equilibrium path. To be 
more precise, for a fixed extensive form and initial assessment p, define 

Au = { P( - ) E A1: There exists some y such that ( I, w) E >(u)} 

In a sense, Au is the projection of 0(u) onto A. Note that a measure 6 E Au 
represents an equilibrium prior probability assessment on the terminal node at 
which the game will end. 

THEOREM 2: For generic u, the set Au is finite. 

The proof is given in the Appendix. Also in the Appendix are further 
characterizations of the topological properties of the correspondences ?(u) and 

Au. We add two comments here. First, Theorem 2 remains true if we look at all 
Nash equilibria and not only at sequential equilibria. Second, for generic normal 
form games the set Au has odd cardinality. In contrast, this is not the case for 
generic extensive games; cf. the two examples of this section. 
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7. PERFECT EQUILIBRIA 

In this section we establish the relation between sequential and perfect equilib- 
ria. The reader familiar with Selten's [15] exposition of the merits of perfect 
equilibria will recognize that our justification for the criterion of sequential 
rationality substantially overlaps his. Indeed, our analysis has relied heavily on 
the creative insights of Selten's original work, and on the related contributions of 
Harsanyi [4]. We have nevertheless proposed a definition that is formulated quite 
differently, and that yields somewhat different properties. Our approach involves 
directly the criterion of sequential rationality, whereas Selten employs an indirect 
construction to obtain a slightly stronger criterion. Our motivation for simplify- 
ing Selten's construction is principally a matter of analytic ease. Sequential 
equilibria are generally much easier to work with. Below we shall recall Selten's 
definition, contrast it with our own, and then show the sense in which the two are 
virtually equivalent. 

To facilitate comparisons we formulate Selten's definition in terms of assess- 
ments. (Also, we shall follow Selten's second definition [15, Section 12] rather 
than his first.) Recall that the set I of consistent assessments is the closure of the 
set I, of strictly positive assessments. We say that a convergent sequence 
{(Anv,70)} n= 12,.. from 'V justifies the fully consistent assessment (I, 7r) that is 
its limit. Then, an assessment ( , vr) E I is a perfect equilibrium if it is justified by 
a sequence {(pn, 7n,7)} for which, for each player i and each index n, VT' is an 
optimal response for player i to the other players' strategies (7rVT)1G. 

One can interpret this definition as the composition of two criteria. The first, 
implied by the above definition, is that each player i's strategy VT' is an optimal 
response to the assessment (I, w) and that, moreover, (I, w) is a fully consistent 
sequential equilibrium. The second requires that for some sequence that justifies 
(I, Vr), each player's strategy is a robust best response. One can interpret the 
difference between a strategy 7rn in the sequence and the limit strategy Vr as the 
manifestation of particular small probabilities that the other players will err or 
"tremble", and that each player is using a response that is optimal in the event of 
such errors. It is the second of these two criteria that we forego in the definition 
of a sequential equilibrium. This makes apparent the following. 

PROPOSITION 5: Every perfect equilibrium is a sequential equlibrium. 

The converse to this is false. In the game depicted in Figure 13, player 1 
moving L and 2 moving r is a sequential equilibrium that is not perfect. 
Moreover, one can find more complicated games with weak sequential equilibria 
that are not perfect for all payoffs u in a neighborhood of some u*. However, the 
following partial converse to Proposition 5 is true. 

THEOREM 3: For any fixed extensive form and initial assessment p, for generic 
payoffs u every strict sequential equilibrium is perfect. Also, for generic payoffs u the 
projection from perfect equilibria to A coincides with Au. 
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In other words, for generic payoffs, only weak sequential equilibria present a 
problem, and then only off the equilibrium path. From Theorem 1, we know that 
(generically) "almost every" sequential equilibrium is strict, so we can further 
paraphrase Theorem 3 as follows: For almost every game, almost every sequen- 
tial equilibrium is perfect. The proof is in the Appendix. It is a corollary of the 
construction in the Appendix, moreover, that the sets of sequential and perfect 
equilibria fail to coincide only at points u where the perfect equilibrium corre- 
spondence fails to be upper hemi-continuous. 

By modifying Selten's definition of perfection, we can obtain exact coincidence 
of sequential and "perfect" equilibria. To motivate this, we embellish the motiva- 
tion for perfect equilibria: Imagine that some player i is predicting the behavior 
of another player j. To do this requires that i consider j's predictions of the 
behavior of everyone else. That is, the Nash criterion requires that j's behavior 'gJ 
be a best response to the particular prediction (7Tk)k,. of others' behavior. Selten 
has added that j's behavior gi must also be a best response to some sequence of 
strictly positive strategies (Ogn )k+j that approach g. The interpretation is that if 
some information set h C t- 1(j) is reached that has zero prior probability under 
,z, thenj will interpret this event to result from some (vanishingly) small chance 
of a sequence of "errors" and proceed to optimize accordingly. That is, player i 
must suppose that j's actions are a robust best response. This all supposes that i 
knows j's payoffs. We can slightly relax Selten's criterion by allowing some 
(vanishingly) small uncertainty on the part of i aboutj's payoffs; thenj's strategy 
need only be a best response to the perturbed strategies for some payoffs forj 
that are "close" to u. Formally we have the following definition. 

DEFINITION: An assessment ( , ,g) c T is said to be a weak perfect equilibrium 
for payoffs u if there exists a sequence {( [y, u,)} C gJTo x R'>x Z that has the 
limit (I, z, u) and that satisfies, for each n and player j, 7Tj is a best response to 

if j's payoffs are unj 

PROPOSITION 6: For any extensive game, the sets of weak perfect and sequential 
equilibria coincide. 

The proof is quite straightforward, so we only sketch the main idea and leave 
details to the reader. Take any sequence {( jtn ,n)} from Tj with limit ( , ,g). Fix 
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an n. Then working backwards through the game tree, it is possible to perturb 
slightly each uj so that 7Tj is a best response to (7T k #I for the perturbed payoffs. 
(See Part 2 of the Appendix for further details on this backwards recursion.) 

While we are concerned in this paper with extensive games, our three theorems 
combine to give an interesting corollary for normal form games. In a normal 
form game, every Nash equilibrium is sequential. Moreover, knowing P' is 
equivalent to knowing g. Thus we conclude that for generic normal form games, 
there is a finite number of Nash equilibria, every one of which is perfect. 

8. RESTRICTIONS ON BELIEFS 

Besides being easier to apply than perfectness, the concept of sequential 
equilibrium possesses a second advantage. This is that the formulation in terms 
of players' beliefs gives the analyst a tool for choosing among sequential equilib- 
ria. In some cases one can predict that one equilibrium among several will 
prevail because only the beliefs that sustain the one are intuitively plausible. An 
example illustrates this. 

Consider the game depicted in Figure 14, due to Kohlberg [5]. One sequential 
equilibrium for this game has 1 playing A and 2 playing r. This is supported by 
beliefs on the part of 2 that y(x) < 1/2. A second equilibrium has 1 playing L 
and 2 playing 1. In this equilibrium, 2's beliefs are determined by l's strategy. We 
contend that the second equilibrium is more intuitively plausible than the first, 
because 2's beliefs in the first are implausible. Player 2 "ought" not to conclude, 
upon reaching h, that 1 chose R, because R is dominated by A for 1. The only 
beliefs by 2 that make sense assign y(x) = 1 (or, at least, > 1/2), which leads 2 
to prefer 1. Player 1, realizing this, prefers L. 

Now consider the following modification of this game. Suppose that by 
choosing A, player 1 causes the following simultaneous-move, bimatrix game to 
be played: 

2 
2,1 0,2 -10,4 

104 22,2 -8,1 

Player 2 will know that 1 chose A and that they are therefore playing this game. 
In this bimatrix game, there is a unique Nash equilibrium where 1 receives the 

1 _ A 01 
1 L 

x* 2- h ---*x 

2 -10 -1 0 
-1 -2 -2 -1 

FIGURE 14. 
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expected payoff 1. Again we have a sequential equilibrium in the whole game 
where 1 chooses A because 2, upon reaching h, can assess y(x) < 1/2 and 
therefore play r. And again we argue that this is implausible because 2's beliefs 
are implausible. It is no longer the case that playing A guarantees 1 more than he 
can ever get by playing R. But playing A yields an expected equilibrium payoff 
of 1, which is more than 1 gets from R, so 2 "ought not" to attach too much 
weight to the possibility that 1 played R given that 1 has not played A. Again we 
are led to the equilibrium L and / as more plausible. 

One can also interpret Myerson's [10] concept of a proper equilibrium as a 
restriction on beliefs. Myerson argues (essentially) that assessments off the 
equilibrium path should be such that the preponderence of weight goes to the 
"least costly" mistakes. A third example of this approach is used in Kreps and 
Wilson [6, Section 3]; there assessments off the equilibrium path are developed 
by asking which of two players is more likely to defect from a given equilibrium. 

The point that we wish to make is that the basic description, and justifying 
feature, of sequential equilibria, namely probabilistic reassessments of beliefs off 
the equilibrium path, provide an apparatus for comparing sequential equilibria. 
Some sequential equilibria are supported by beliefs that the analyst can reject 
because they are supported by beliefs that are implausible. We will not propose 
any formal criteria for "plausible beliefs" here. In certain cases, such as Myer- 
son's concept of properness, some formalization is possible. In other cases it is 
not clear that any formal criteria can be devised-it may be that arguments must 
be tailored to the particular game. But whether this is done formally or infor- 
mally, we believe that this perspective can occasionally be employed to advan- 
tage. 

9. CONCLUDING REMARKS 

The criterion of sequential rationality is familiar in the analysis of single- 
person decision problems. It justifies the standard "roll-back" procedure for 
constructing a sequentially optimal strategy in a problem described by a decision 
tree. Extensive games are multi-person decision problems. Though complicated 
by the interactions among players, they are not different in substance. An 
extensive game with perfect recall factors into decision problems (and associated 
decision trees) for each player. The complicating feature is that the events in one 
player's decision tree may correspond to actions of others. A player's probability 
assessments must, therefore, depend upon anticipations of others' strategies. An 
equilibrium in Nash's sense supposes that strategies are "common knowledge" 
among the players. Consequently, strategies and beliefs are intertwined in com- 
plicated ways by the information structure of the game. To satisfy sequential 
rationality one must use them in concert to verify an equilibrium. 

We have formulated the concept of sequential equilibrium to emphasize this 
view. Compared to the weaker criterion of Nash equilibrium, the salient differ- 
ence is the key role of players' beliefs off the equilibrium path in determining 
optimal strategies subsequent to unanticipated events. Compared to the slightly 
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stronger criterion of trembling-hand perfect equilibrium, the difference is mainly 
one of tractability. The simpler mathematical properties of the sequential equilib- 
rium correspondence reflect the simpler formulation of the basic criterion. 

We envision the criterion of sequential equilibrium as a step towards unifying 
the formulations and methodologies of game theory and statistical decision 
theory. Among the prospective applications are analyses of games modeling 
competitive strategies in dynamic and uncertain environments. The criterion of 
sequential rationality subjects the (usually) many Nash equilibria to a stronger 
test. As Selton has noted, it is particularly effective in eliminating equilibria 
sustained by "threats" that would be nonoptimal to carry out. 

The idea that an assessment, namely a beliefs-strategy pair, is the relevant 
descriptor of an equilibrium is, we contend, a central principle. Analyses that 
ignore the role of beliefs, such as analysis based on normal-form representation, 
inherently ignore the role of anticipated actions off the equilibrium path in 
sustaining the equilibrium essentially, such analyses allow almost arbitrary 
behavior off the path. This lacuna often weakens the normative implications of 
the analysis, and in the extreme yields Nash equilibria that are patently implausi- 
ble. This is not to say that the sequential equilibrium concept eliminates all or 
even most implausible equilibria. But it does eliminate some, and, perhaps more 
importantly, it gives a language for discussing why one equilibrium or another is 
implausible. 

We close by noting that the ideas here are not original to us. We have already 
cited the seminal work of Harsanyi and Selten, but it would be remiss not to do 
so again. Selten's work on perfection goes at precisely the problem we began 
with. Our concept of sequential equilibrium allows a somewhat freer interpreta- 
tion of the nature of beliefs off the equilibrium path, in that Selten motivates 
them entirely by "trembling-hands." But mathematically the two are equivalent 
(for fully consistent assessments). (The other distinction, that we require optimal- 
ity only "at the limit," while Selten requires optimality approaching the limit, is 
what is significant in terms of tractability and mathematical properties.) And our 
freer interpretation springs directly from Harsanyi's work on games of incom- 
plete information-we simply apply those ideas to players' decision tree prob- 
lems off the equilibrium path. Also, recent papers by Fudenberg and Tirole [2], 
Milgrom and Roberts [8], and Rubinstein [12] contain the basic idea of a 
sequential equilibrium without being quite so formal about it as we have been. 

Stanford University 

Manuscript received February, 1981; revision received June, 1981. 

APPENDIX 

In this Appendix we prove Lemma 2 and Theorems 1, 2, and 3. We begin by considering the 
structure of the sets "b, developing characterizations of consistent bases, and an explicit representa- 
tion of 'b. Lemma 2 is then proven, and an extension is given that will be used in the proof of 
Theorem 3. In the second part of the Appendix, we present a general construction that is used 
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repeatedly in the proofs of the theorems. Then in the third part of the Appendix, we give proofs of 
the three theorems. The basic mathematical tool of our analysis is Sard's Theorem, used in the 
fashion initiated by Debreu [1]. 

A. 1. THE STRUCTURE OF "4h 

To simplify formulae, we assume throughout this section that p 1/# W. This is for notational 
convenience only-none of the analysis to follow depends on this at all. 

Begin with a definition. A labelling for the extensive form is a function K taking A into the 
nonnegative integers. For a given labelling K, there is an associated function JK on X defined by 

l(X)- I 

JK(X) = E K(a( pj(x))). 
1=0 

If x E W, then set JK(X) = 0. That is, K labels the branches of the tree with nonnegative integers (in a 
way that respects the informational constraints of the game) and JK gives for each node x the sum of 
the labels on branches from the beginning of the tree to x. 

The labelling K is said to be a b labelling if: 

(A.l) (a) for every h, there is some a E A (h) with K(a) = 0; 

(b) a E b if and only if K(a) = 0; 

(c) x E b if and only if x minimizes JK() on H(x). 

LEMMA Al: The basis b is consistent ('b is nonempty) if and only if a b labelling exists. 

PROOF: Suppose that a b labelling K exists. Fix any strategy S7 E 1II and define strategies 7T E rIT 
by 

Wn(a) = c(n, H(a))7T(a)( I/n)K(a), 

where c(n, H(a)) is defined as the appropriate normalizing constant. Letting U,n be the beliefs 
consistent with 7Tn it is obvious that the sequence {( tin, Tn)} converges to some assessment ( , 7) that 
belongs to the basis b. Thus 'b is nonempty. 

Now suppose that b is a consistent basis. Since 'b is nonempty, there exists a sequence 
{( 7n Tn))} C '0 with the limit ( , 7) belonging to 'b. Let M denote the finite set of all first degree, 
single term multinomials with coefficient one in the symbols a E A. For m E M, let mn represent m 
evaluated with a = ~n(a). Without loss of generality, we can assume that for every pair m and m' 
from M, the sequence mn/mn converges either to zero, to infinity, or to some strictly positive number. 
(This is wlog because we can look along a subsequence of {( I?X )}for which it is true.) Define 
m < m' if lim mn/m' = oo; then < is an asymmetric and negatively transitive binary relation on M. 
Since M is finite there exists an integer valued function J on M with m < m' if and only if 
J(m) < J(m'). We can pick J so that J(m) = 0 for the < -least m-then J(m) > 0 for all m. For each 
x E X there is an associated mx E M, namely 

l(X)- I 

mx= a(p1(x)). 
1=0 

(For x E W, m-Y = 1.) Now for each a pick an arbitrary x E H(a) such that J(m') is minimal over 
x E H(a) and define 

K(a) = J(mx * a) - J(m-4). 

We leave to the reader the relatively easy tasks of proving that K(a) is well-defined (i.e., the choice of 
a J(m-')-minimal x E H(a) is irrelevant) and that K so defined is a b labelling (with, of course, 
JK(X) = J(m-')). Q. E.D. 
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We can now give the representation of "b. Let -b be the set of functions : A - (0, oc) such that 
for each h e H, 

E ((a)=1. 
aEb nA(h) 

That is, each ( is a strategy that belongs to the basis b together with an assignment of positive 
numbers to all other branches. Next define mappings T b and Itb from -b to II and the space of 
beliefs, respectively, by 

Xb(()(a) { if a X b, and 

and 

[0 if x a b, 

yb(X) M l X(()/ m X(R) if x e b, 
x' Ebn H(x) 

where mx(() is the multinomial mx evaluated with a = ((a). 

LEMMA A2: For each consistent basis b, 1b iS the image of -b under the mapping (Itb, b). 

PROOF: Fix a consistent basis b. We first show that for E= -b, ( b( ), b(T)) 
b 

*b. To do this, let 
K be any b labelling (one exists by Lemma Al) and, for n = 1, 2, . . ., define 7Tvn() e I-l by 

n (() (a) = c (n, H(a))T (a)( 1/ n) K(a), 

where c(n, H(a)) is the appropriate normalizing constant. If ttn(() are the beliefs consistent with Tn(() 

it is easy to see that 

inlmi ( tin (W) 7n (0)) =t 
b 

(t), 7T b( 

SO (Mlb((), 7b(()) E: '. (Note that each c(n, H(a)) goes to one.) By definition, (,b(t ) t b(()) has the 
basis b and hence is in *b 

Conversely, we must show that for every ( L, 7) EC+ 'b there exists E b with (p tt,7T) =(It 
qb(t))* Fix (j, 7) E 4', and let {( ,X,,} C '0 be any fixed sequence that justifies (has limit) (p,a). 
Let Q be the set of all algebraic expressions of the form 

q= II aq(a) 
aEA 

for rational numbers q(a). Note that M is the subset of Q for which each q(a) is either zero or one. 
Note that Q has a countable number of elements. Without loss of generality, then, we can assume 
that for each pair q, q' ( Q the limit limnqn/qn exists (allowing oo as a limit), where qn is the 
expression q evaluated with a = r,(a). This is wlog because we can use the standard diagonalization 
procedure to find a subsequence along which it is true. Define binary relations < on Q as before, 
and let -represent the associated equivalence relation. 

Now we define ((a). For a E b, set ((a) = r(a). We shall define the remaining ((a) one at a time, 
taking care so that at each step along the way the following statement is true: 

If q and q' are from Q with q(a) = q'(a) = 0 for any a whose ((a) value has not yet been 

assigned, and if q q', then limnqn/qn = q(t)Iq (t) 

Here q(4) means q evaluated with a = 4(a). To verify that this is possible, note first that for the initial 
assignment given above, the statement is true for a E b-this follows from limn7n = 7 and T(a) > 0 
for a E b. Now suppose that we have assigned ((a) for some subset of A so that the statement holds, 
and we try to assign ((a*) for some unassigned a* so that it holds for the augmented subset. 

If q'and q" are two algebraic expressions in the already-assigned a and in a* such that q'-q", 
then we can formally solve the "equation" q' = q" for a* to get a* = q for some q in the 



SEQUENTIAL EQUILIBRIA 889 

already-assigned a. Moreover, it is easy to see that for this q, a* q. And if we ensure that 
lim,,f,(a*)1q, = C(a*)/q(C) for this q, then we will have lim,q1/q,' = q'(C)/q"(C) for the original q' 
and q". So in checking that an assignment of ((a*) can be made that preserves the statement, we need 
only check the cases a* q for q an expression in the already-assigned a. 

Now if no q in the already-assigned a satisfies a* q, ((a*) can be arbitrarily assigned. While if 
a* q and a* -q, we have q q=, and the "induction hypothesis" implies that limnqn/qn = 

q(C)/q(C), which in turn implies that the necessary assignment of ((a*), 

(a*)= [limrn (a*)/qn ] - (C) 

does not depend on which q -a* is selected. 
All this implies that we can find an assignment of ((a) (with ((a) = s7(a) for a E b) so that the 

statement holds for all q, q' E Q. In particular, the statement holds for each pair mx and mx where x 
and x' are both in b and are in the same information set. For such x and x' we know that ti(x) 
and ti(x') are both greater than zero, and thus that mx mx'. Therefore, limn(Mx)n/(Mx)n= 

mx(C)/mx(C) which immediately implies that ,i = , b((). That g = gb(C) is apparent, and we are 
done. Q.E.D. 

PROOF OF LEMMA 2: We now make a convenient change of variables. Fixing a consistent basis b, 
let Zb be the subset of D E R A satisfying 

E exp(D(a)) = 1 for every h E H. 
aCEbn A (h) 

Let e: Zb -_ Zb be the map e(D)(a) = exp( (a)). Clearly, e is an isomorphism. Now redefine ,1b and 
77b above so that their domain is Zb. That is, set 7rb( )(a) = exp(D(a)) for a E b, and so on. By 
Lemma A2, "b is the image of Zb under the (redefined) map (1 kb, 77 b). 

Define 

E)b = { 9 E RA: :(a) =0 ifa E b; and for each h if x,x' E b n h then 

I(x)-1I I(x')-1 I 

E (a (pl(x))) = E 0(a(pj(x'))) . 
I=0 1=0 J 

Note that eb is a subspace of RA and that eb + Zb = Zb. Moreover, we assert that the null space of 
the Jacobian of ( Mb, 77 b) iS eb at every point D E- Zb. And moreover, ( Mb, 77 b)(g) = (1b, gb)(gt) if and 
only if - g E' .b 

Some temporary notation will be useful. For w E R A and x E X, let Y:(x, w) denote 
Z(x-7' cw(a(pj(x))). Then for D E Zb and x E b, h = H(x), we have 

A b(l)(X) = exp(Y:(x, t)) E exp (Y(x',D 
x'ebfnh 

So for arbitrary D E Zb and 9 E= b we have 

Ib(t + 0)(x) = exp(Y (x, 
' + 9)) / exp(Y:(x', D + 0)) 

= exp(Y:(x, D ) + Y:(x, 9 )) E exp(Y:(x', D ) + Y:(x', 9)) 
x'ebfnh 

exp(Y:(x, D)) * exp( (x, 0)) exp(:(x, D)) 

xEx eb nh exp (Y_(x',)exp (YE(x', )) xEX- eb nh exp (YE(x',) 

= b 
(L)fdo T 

Of course, ttb(t + f9) = ttb(g) for all D' E Zb and 9 E eib, since 9(a) = 0 for a E b. Thus ( ,1b qtb)(g) 
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= (,yb, b)(g.) if D-' E b. This in turn implies that eb is always contained in the null-space of the 
Jacobian of (1 b, jb) 

Conversely, suppose that D-D = 6 E eb. If 8(a) #& 0 for some a E b, then gb(g) 
g Tb(gt). And 

if for some x E b, Y(x, 8) - E(x', 8) for some x' E b n H(x), then letting x* be that element of 
b n H(x) with largest Y:( , 8), it is easy to see that tib(_)(X*) iS strictly increasing along the line from 
D' to t. Certainly, then, (Itb, bb)(g) = (b, qb)(gt) only if D-D' EOb. And certainly, the null-space 
of the Jacobian of ( Mb, X7 ) contains no vector not in eb . (This last statement requires that we show 
that tb( .)(x*) has nonzero derivative in the direction of D from D'. This is true, as the reader can 
verify.) 

To complete the proof, note that the Jacobians of (1kb, 7b) at two points D and D' such that 
(b, g b)(g) = ( b, qb)(g t) are identical. This implies that ( Mb, qb)(Zb) is a manifold, with dimension 
equal to #A -# H - dim(eb). Q. E.D. 

The proof of the lemma yields a small sharpening that is useful in the proof of Theorem 3. Let 

Zb = Zb n perp(Eb)- 

Then it is clear from the proof of the lemma that (sb, b) is a diffeomorphism from Zb to *b. 

LEMMA A3: For each consistent basis b we can find some manifold ,0 5 40 such that '2 U "b is a 
smooth manifold with boundary, the boundary being "b. 

(For the definition of a smooth manifold with boundary, see Milnor [9].) We will only give the 
construction '2 here-verification of the lemma is straightforward. Fix a b labelling K and, for 

E- Zb and r E (0, 1), define a strategy e r E Ho by 

7T~,r(a) = c(r,H(a))exp( (r))rK(a) 

for appropriate normalizing constants c(r, H(a)). Let Asr be the beliefs consistent with '7D r. Then for 
'i, take all such (,r T,r) for D E Zb and r E (0, 1). 

A.2. A GENERAL CONSTRUCTION 

In order to prove the three theorems, it will be convenient to work with the players' decision trees. 
It is easiest to think of the game tree as beginning with some initial node 0 that precedes all nodes. 
Then the decision tree (T', -<) of player i consists of all information sets h E H', all actions a E A', 
all terminal nodes z E Z, and the node 0. Precedence is inherited in natural fashion from the game 
tree. (Note the reliance here on perfect recall.) The set of immediate successors to any node y E T\ Z 
in i's decision tree will be denoted by S'(y). The immediate predecessor of y E T' \{0} will be 
denoted by p'(y). (See Wilson [6].) 

For every ( t, g) E 4, we obtain a corresponding transition probability assessment on each player's 
decision tree as follows: Fixing the player i, the probability of transition from a node h E H' to a 
node a E A' where a E A(h) (= S'(h)) is simply g'(a). For a node a E A(h) where h E H' and for 
y E S'(a) (5 H' U Z), the transition probability from a to y is defined to be Pt,(a)(y I h), where 
r7(a) is the strategy gr changed so that action a is taken with certainty in information set h. Transition 
probabilities from 0 to its immediate successors, each of which will be somey E H' U Z, are given by 
P'(y). Let v' be the map from 4 to the space of transition probabilities on player i's decision tree, 
and let v denote the vector map (v')i,E. Clearly, v is a smooth map, consisting only of iterated 
multiplications and additions and having derivatives of all orders. We will write v'( t, ,)(y) to denote 
the appropriate transition probability to a node y E T'\{O}. Note that for each y' E T'\Z, 
EyES(y,) v'(ti,,)(y)= 1 for all ( 

The following is simply a matter of marshalling definitions, and so is stated without proof. 

LEMMA A3: For ( E ,,) E 4, (,, r) is a fully consistent sequential equilibrium for payoffs u if and 
only if for each i, when we iteratively compute 

(A.2) (a) v'(a) = E v'( ti ,)(y) v'(y), for a E A', and 
y E 5 (a) 

(b) v'(h) = max v (a) for h E H', 
a HA (h) 
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initializing with v'(z) = u'(z), we find that a attains the maximum in (A.2)(b) if r(a) > 0. Moreover, a 
strict equilibrium is where a attains the maximum in (A.2)(b) if and only if g(a) > 0. 

That is, an equilibrium in the game tree corresponds to "individually rational behavior" in the 
decision tree, using the standard roll-back procedure from decision analysis. 

For each player i, let g': TV\Z - T'\{O} be any arbitrarily selected function that specifies for 
each nonterminal node y in i's decision tree some immediate successor g'(y) of this node. Define 

D' = {d E R T: d(g'(y)) = O for everyy E Ti\Z }. 

In words, d E D' assigns numbers to every node in i's decision tree, with the constraint that zero is 
assigned to the nodes selected by g' (one in every set of immediate successors to some nonterminal 
node.) Note that dim(D')= #Z. Recall that U' = R Z denotes the space of payoffs for player i. 

For each (p y,) E 4' and u' E Ui, recursively define a function vI'( p. r, u') on T' by setting 
v'(i, g,u')(z) = u'(z) for z E Z, and, fory E T'\Z, 

(A.3) v' ( i, 'r, u')y) = Z vi( , g)(y') vI( , sr, u')(y'). 
y E s'(y) 

Also define a map y':4 x U'-D' by 

(A.4) (a) yi( , u')(y) = vi( v(,r, ui)(y)-'V( , sr, ui)(gi(p'(y))) for y E T'\ {0), 

and 

(b) y'( ,7, u')(O) = v'( ,u')(O). 

In words, we roll-back the tree, obtaining the "value functions" v', and then we find the differences 
in values among branches leading out of each node. 

LEMMA A5: Fixing (p., r) E 4, y' is a biection from U' to D'. 

PROOF: We only sketch the proof, as it is straightforward to verify but tedious to write out in 
complete detail. For fixed (p,r) and d' E D', we will construct the unique u' E Ui such that 
y'([i, r, u') = d'. We do this by "rolling forward" through the tree, constructing the corresponding 
v'( if, r, u') recursively. 

Begin by setting v'( [ ,r, u')(O) = d'(O). Note that if (A.3) and (A.4)(b) are both to be satisfied, we 
must have 

vI ' (,7 u i)(0) = PIv'( ,u, g) (y) [vi ( ,, g, u) i( gi(0)) + d '(y)] 

= V'(i,O,U,)(gim) + P v', ,T)(y) d'(y), 
yES'(O) 

or, for each y' E S'(O), 

v'( ,u, 9T, u') (y') = vi( ,u, 9T, u')(0) - PIv( ,u, 9T)(y) * d'(y) + d'(y'). 
yEsl(o) 

We can repeat this procedure throughout the tree-if we know v'( p, 7r, u')(y) for any node y, then 
(A.3) and (A.4)(b) uniquely determine vI( p, 7r, u')(y') for all y' E S'(y). Note well that because the 
transition probabilities out of any node sum to one, there is always a solution to these equations that 
involves only multiplication, addition, and subtraction. When v'I( ., 7r, u') has been computed for 
everyy, we have, of course, that the unique corresponding u' is u'(z) = v'( p., 7r, ui)(z). Q.E.D. 

Define ': 4' x D'--- U' to be the "inverse" of yy' given in the proof above. Let D = X, 1 D' and 
U = X iI U'. Let 4 be the vector map (0')j,I from D x 4' to U. Since 4 consists of iterated 
multiplications, additions and subtractions (no divisions!), we have the following result. 
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LEMMA A6: The map 4 is smooth (infinitely differentiable in all of its arguments). In fact, 4 can be 
extended smoothly to an open domain containing its domain of definition. 

The reason for this construction can now be stated. Fix any consistent basis b, and let B C5 A be 
such that /B D A n b. Let D: be the subset of D where, for each h, if t(h) = i, then d'(a) = d'(a') for 
alla,a' EA(h)fn / andd'(a)> d'(a')foralla eA(h) n / anda' EA(h) n (A\ ).Note thatD, is 
a manifold of dimension # / - # H less than the dimension of D. 

LEMMA A7: The assessment (, 7r) E 'P is in 1b(U) if and only if, for some /8 D b n A, (fi, ) 
E proj ,(4- l(u) n [D: X Pb]). Moreover, (Is(u) = proj ,^(4- I(u) n [DbAA x 'Pj) 

In words, if we look at 4) on the domain U: 3D bnA D8 x 'Pb, then the set of pre-images of any 
u E U is precisely the set of equilibria for u that belong to the basis b. This lemma is a direct 
application of the definitions of D and the map 4) and Lemma A4. 

A.3. PROOFS OF THE THEOREMS 

PROOF OF THEOREM 1: A point u E U will be called nice if for every consistent basis b and every 
subset 3 of A such that /3 D b n A, the map 4) restricted to the domain D 3 X 'b has u as a regular 
value. If u is a critical value for any of these domains, u will be said to be not nice. 

Because the number of pairs (/,, b) as above is finite, Sard's Theorem (see Milnor [9]) implies that 
the set of not nice u has Lebesgue measure zero. We also assert that the set of not nice u is closed. 
Suppose {un} is a sequence of not nice points that converges to some u. Let (dn, p,n,,rn) be a 
pre-image of un at which the map is critical. We can bound the dn by the bounds on the p.n, 7rn, and 
uw so without loss of generality we can assume that the (dn, ln,, 7n) lies in some single D# X 'b and 
that they converge to some (d, L, 7r). If this limit (d, L, Jr) lies within the manifold DX x'b, then 
continuity of the Jacobian of 4) on this domain assures us that u must also be a critical value, and 
hence not nice. If (d, IL, r) lies on the frontier of D i3 x 'b, then greater care must be taken. In this 
case (d, ,, rg) lies in some D X X 'bP where /3' D /3 and b' C b. One can show (using the first part of 
the Appendix) that any vector in the tangent map at (d, ti, r) in D, X 'b' can be approached by 
vectors in the tangent maps at the (dn, p,,, 7zn). Since the Jacobian is continuous, the criticality of the 
points (dn,, An,,gn) implies that (d, A, s7) is a critical point, and thus that u is not nice. 

Summing up so far, the set of not nice u is a closed set of measure zero. The set of nice u is 
generic. 

Fix any nice u and basis b. From Lemma A7, 

41(u) = proj +,(4 (u) n [DbnA X 'b]). 

Because u is nice, a standard application of the regularity of u implies that 4 -(u) n [DbnA X 'b] iS 

either empty or is a manifold of dimension 

dim(DbnA) + dim('b) - dim(U) = #ZZ #I- (#(b n A) - #H) 

+ dim('b) - # Z I 

=n(b). 

The first part of Theorem 1 is completed by noting that if q is a diffeomorphism carrying some 
neighborhood of 4)'(u) n [DbnA X 'Pb] into R(b), then *(p,7r) = n (y(p,7,u), ,7) is a 
diffeomorphism carrying the 'b-projection of this neighborhood into Rnb). 

For the second part of Theorem 1, note that the sets D for /3 D A n b, /8 7# A n b, form regular 
boundaries of DbflA-they are hyperplane restrictions. Thus an easy extension of Milnor [9, Lemma 
4] yields that for nice u, 

- '(u) n ( Ul [Da3 X Ob]) 
: 3#bnlA 

(i 7# b nl A 

is precisely the frontier of 4 - l(u) n [DbnA X 'b] in D X 'b. The same is clearly true when we 
project onto 'Pb. Applying Lemma A7 completes the proof. Q.E.D. 
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PROOF OF THEOREM 2: If ([ i, ) E Db(U), then P'(*) depends on 7r restricted to actions a that are 
basic and that, in some player's decision tree, have only basic predecessors. Call this set of actions 
A (b). We therefore will have proved the theorem when we show that for generic u, there is for each b 
a finite number of 7 | A (b) such that ( , g) E (Db(U). 

Fixing a basis b, consider the extensive form constructed by taking the tree T and deleting all 
nodes x whose actions a(x) are not in b, together will all successors of such nodes. Call the resulting 
tree (and, loosely, the resulting extensive form) Tb. Note that in Tb, the set of actions is A (b). If 
(, . 7) E 'b is an equilibrium for u in the original extensive form, then ([i, g) restricted to Tb is surely 
an equilibrium for u in Tb. Moreover, 7r restricted to Tb is strictly positive. 

Call u very nice if it is nice for the original tree and if, moreover, its projection onto relevant 
endpoints Tb n Z is nice for the games given by Tb, for each b. Call u not very nice if this fails. From 
the proof of Theorem 1, we know that the set of not very nice points is closed and has Lebesgue 
measure zero. That is, generic u are very nice. 

Fix a very nice u. Applying Theorem 1, the set of strict equilibria for the game Tb where gr is 
strictly positive is a manifold of dimension zero. Moreover, there are no weak equilibria for the game 
with tree Tb wherein all actions in each information set are equally good. (This simply requires 
applying Theorem 1 and counting dimensions.) So the set of strict equilibria for the game Tb where gr 
is strictly positive must be finite: If the set were infinite, then it would have a limit point, because the 
bound on y and gr combined with fixed u yields a bound on d. Any limit point is an equilibrium in 
which all actions in each information set are equally good. And no such limit point can be strictly 
positive-it then would not be part of a manifold of dimension zero-nor can it have some action 
taken with zero probability-for very nice u there are no equilibria for the game with tree Tb wherein 
all actions in each information set are equally good and where some action has probability zero. 

Putting everything together, this shows that for generic (very nice) u, Au must be finite. Q.E.D. 

Some comments are in order. As an immediate corollary to this, for generic normal form games 
there are a finite number of equilibria, none of which is weak. Secondly, Theorem 2 as stated applies 
equally well to the standard Nash equilibrium definition, by exactly the same argument. (If gr is a 
Nash equilibrium for T, and A(b) is formed in the fashion above, then gr must be a strictly posi- 
tive Nash equilibrium (hence sequential) for Tb.) Thirdly, we can sharpen this result and show that in 
neighborhoods of generic u, the correspondence u >AU consists of a finite number of differentiable 
functions. 

Concerning this last comment, we note that it ought to be possible to sharpen Theorem 1 to 
something like the following. In neighborhoods of generic u, the correspondences u ==> (u) (for 
b E B) are smooth deformations of manifolds. 

PROOF OF THEOREM 3: Call u wonderful if u is very nice and if, moreover, u is a regular value of 
the mapping 0 on each of the manifolds Do x 'I' for each b E B and ,B D b n A (cf. Lemma A3). 
The argumcnt in the proof of Theorem 1 easily extends to show that the set of wonderful u is generic. 

Fix a wonderful u, and let (p,r) be a strict sequential equilibrium. In particular, let (p,77) 
E Wb(u). Then there exists d E DbnA such that (d, ,p,rr) E- 4-Vl(u) n [DbnA X 'b]. By Milnor [9, 
Lemma 4], there exists a sequence {(dn, Un I X))} 5 - I9(u) n [DbA X *?'] with limit (d, p.r). Since 
each (dn, [i, n) E 4- 9(u) n [DbnA X *'], each (in, ,n) is a "constrained equilibrium," where the 
constraints for (in, ,n) are rr(a) > min(l/n, gn(a)) if a E b and rr(a) > gn(a) if a a b. These con- 
straints vanish as n -> oo, so by Selten's first definition of a perfect equilibrium, ( p, g) is perfect. 

To obtain the second half of Theorem 3, again fix a wonderful u and any sequential equilibrium 
( , r). By Theorem 1, we know that there are strict sequential equilibria arbitrarily close to ( ,). 
Moreover, we claim that if ( ', r') is a strict sequential equilibrium close enough to ( ,), we have 
P'r(-) =_ Pr'(). This follows directly from the fact that Au is finite. But by the above, (i', r') is 
perfect, so that P'(.) is in the projection of the set of perfect equilibria onto A. Q.E.D. 
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