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Chapter 1

Normal and Extensive Form
Games1

1.1 Normal Form Games

Example 1.1.1 (Prisoner’s Dilemma)

II

Confess Don’t confess

I Confess −6,−6 0,−9

Don’t confess −9,0 −1,−1

Often interpreted as a partnership game: effort E produces an
output of 6 at a cost of 4, with output shared equally, and S denotes
shirking.

E S

E 2,2 −1,3

S 3,−1 0,0 «

1Copyright December 7, 2011 by George J. Mailath
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2 CHAPTER 1. NORMAL AND EXTENSIVE FORM GAMES

Definition 1.1.1 An n-player normal (or strategic) form game G is
an n-tuple
{(S1, u1), . . . , (Sn, un)}, where for each i,

• Si is a nonempty set, called i’s strategy space, and

• ui :
∏n
k=1 Sk → R is called i’s payoff function.

Equivalently, a normal form game is simply a vector-valued function
u :

∏n
i=1 Si → Rn.

Notation: S ≡∏n
k=1 Sk,

s ≡ (s1, . . . , sn) ∈ S,
s−i ≡ (s1, . . . , si−1, si+1, . . . , sn) ∈ S−i ≡

∏
k≠i Sk.

(s′i , s−i) ≡ (s1, . . . , si−1, s′i , si+1, . . . , sn) ∈ S.
Example 1.1.2 (Sealed bid second price auction) 2 bidders, bi = i’s
bid, vi = i’s reservation price (willingness to pay).

Then, n = 2, Si = R+, and

ui(b1, b2) =


vi − bj, if bi > bj,
1
2(vi − bj), if bi = bj,
0, if bi < bj. «

Example 1.1.3 (Sealed bid first price auction) 2 bidders, bi = i’s
bid, vi = i’s reservation price (willingness to pay).

Then, n = 2, Si = R+, and

ui(b1, b2) =


vi − bi, if bi > bj,
1
2(vi − bi), if bi = bj,
0, if bi < bj. «

Example 1.1.4 (Cournot duopoly) Perfect substitutes, so that mar-
ket clearing price is given by P(Q) = max{a −Q,0}, Q = q1 + q2,
C(qi) = cqi, 0 < c < a, and n = 2

Quantity competition: Si = R+, and ui(q1, q2) = (P(q1 + q2) −
c)qi.

2
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«

Example 1.1.5 (Bertrand duopoly) Economic environment is as for
example 1.1.4, but price competition. Since perfect substitutes,
lowest pricing firm gets the whole market (with the market split
in the event of a tie). We again have Si = R+, but now

u1(p1, p2) =


(p1 − c)max{a− p1,0}, if p1 < p2,
(p1 − c)max{(a−p1),0}

2 , if p1 = p2,
0, if p1 > p2. «

Example 1.1.6 (Voting by veto) Three outcomes: x,y, and z. Player
1 first vetoes an outcome, and then player 2 vetoes one of the re-
maining outcomes. The non-vetoed outcome results. Suppose 1
ranks outcomes: x � y � z (i.e., u1(x) = 2, u1(y) = 1, u1(z) = 0),
and 2 ranks outcomes as: y � x � z (i.e., u2(x) = 1, u2(y) =
2, u2(z) = 0).

1’s strategy is an uncontingent veto, so S1 = {x,y, z}.
2’s strategy is a contingent veto, so S2 = {(abc) : a ∈ {y,z}, b ∈

{x, z}, c ∈ {x,y}}.

2

(yxx) (yxy) (yzx) (yzy) (zxx) (zxy) (zzx) (zzy)

x 0,0 0,0 0,0 0,0 1,2 1,2 1,2 1,2

1 y 0,0 0,0 2,1 2,1 0,0 0,0 2,1 2,1

z 1,2 2,1 1,2 2,1 1,2 2,1 1,2 2,1 «

Definition 1.1.2 s′i strictly dominates s′′i if ∀s−i ∈ S−i,
ui(s′i , s−i) > ui(s

′′
i , s−i).

si is a strictly dominant strategy if si strictly dominates every
strategy s′′i ≠ si, s

′′
i ∈ Si.

3



4 CHAPTER 1. NORMAL AND EXTENSIVE FORM GAMES

If i has a strictly dominant strategy, then

arg max
si

ui(si,, s−i) =
{
si : ui(si,, s−i) =max

s′i
ui(s′i,, s−i)

}

is a singleton and is independent of s−i.

Remark 1.1.1 The definition per se of a normal form game (or strict
dominance for that matter) makes no assumption about the knowl-
edge that players have about the game. We will, however, typically
assume (at least) that players know the strategy spaces, and their
own payoffs as a function of strategy profiles. However, as the large
literature on evolutionary game theory in biology suggests (see also
Section 4.2), this is not necessary.

The assertion that players will not play a strictly dominant strat-
egy is compelling when players know the strategy spaces and their
own payoffs. But (again, see Section 4.2), this is not necessary for
the plausibility of the assertion.

	

Definition 1.1.3 s′i (weakly) dominates s′′i if ∀s−i ∈ S−i,
ui(s′i , s−i) ≥ ui(s′′i , s−i),

and ∃ s′−i ∈ S−i,
ui(s′i , s

′
−i) > ui(s

′′
i , s

′
−i).

A strategy is said to be strictly or weakly undominated if it is not
strictly or weakly dominated by some other strategy. If the adjec-
tive is omitted from dominated (or undominated), weak is typically
meant (but not always, unfortunately). A strategy is weakly domi-
nant if it weakly dominates every other strategy.

Lemma 1.1.1 If a weakly dominant strategy exists, it is unique.

Proof. Suppose si is a weakly dominant strategy. Then for all s′i ∈
Si, there exists s−i ∈ S−i, such that

ui(si, s−i) > ui(s′i , s−i).

4



December 7, 2011 5

But this implies that s′i cannot weakly dominate si, and so si is the
only weakly dominant strategy.

Remark 1.1.2 (Warning) There is also a notion of dominant strat-
egy:

Definition 1.1.4 s′i is a dominant strategy if ∀s′′i ∈ Si,∀s−i ∈ S−i,

ui(s′i , s−i) ≥ ui(s′′i , s−i).

If s′i is a dominant strategy for i, then s′i ∈ arg maxsi ui(si,, s−i),
for all s−i; but arg maxsi ui(si,, s−i) need not be a singleton and it
need not be independent of s−i [example?]. If i has only one dom-
inant strategy, then that strategy weakly dominates every other
strategy, and so is weakly dominant.

Dominant strategies have played an important role in mecha-
nism design and implementation (see Remark 1.1.3), but not other-
wise (since a dominant strategy–when it exists–will typically weakly
dominate every other strategy, as in Example 1.1.7).

	

Remark 1.1.3 (Strategic behavior is ubiquitous) Consider a society
consisting of a finite number n of members and a finite set of out-
comes X. Suppose each member of society has a strict preference
ordering of X, and let Θ be the set of all possible strict orderings
on X. A profile (θ1, . . . , θn) ∈ Θn describes a particular society (a
preference ordering for each member).

A social choice rule or function is a mapping f : Θn → X. For
any θi ∈ Θ, let t(θi) be the top-ranked outcome in X under θi. A
social choice rule f is dictatorial if there is some i such that for all
(θ1, . . . , θn) ∈ Θn, f(θ1, . . . , θn) = t(θi). A social choice rule f is
unanimous if f(θ1, . . . , θn) = x whenever x = t(θj) for all j.

The direct mechanism is the normal form game in which all
members of society simultaneously announce a preference order-
ing and the outcome is determined by the social choice rule as a
function of the announced preferences.

5



6 CHAPTER 1. NORMAL AND EXTENSIVE FORM GAMES

Theorem 1.1.1 (Gibbard-Satterthwaite) Suppose |X| ≥ 3 and f is
unanimous. Then, announcing truthfully in the direct mechanism
is a dominant strategy for all preference profiles if, and only if, the
social choice rule is dictatorial.

A social choice rule is said to be strategy proof if announcing
truthfully in the direct mechanism is a dominant strategy for all
preference profiles. It is trivial that for any dictatorial social choice
rule, it is a dominant strategy to always truthfully report in the
direct mechanism. The surprising result is the converse.

	

Example 1.1.7 (Continuation of example 1.1.2) In the 2nd price auc-
tion, each player has a weakly dominant strategy, given by b1 = v1.

Sufficient to show this for 1. First argue that bidding v1 is a best
response for 1, no matter what bid 2 makes (i.e., it is a dominant
strategy). Recall that payoffs are given by

u1(b1, b2) =


v1 − b2, if b1 > b2,
1
2(v1 − b2), if b2 = b1,
0, if b1 < b2.

Two cases:

1. b2 < v1: Then u1(v1, b2) = v1 − b2 ≥ u1(b1, b2).

2. b2 ≥ v1: Then, u1(v1, b2) = 0 ≥ u1(b1, b2).

Thus, bidding v1 is optimal.
Bidding v1 also weakly dominates every other bid (and so v1

is weakly dominant). Suppose b1 < v1 and b1 < b2 < v1. Then
u1(b1, b2) = 0 < v1 − b2 = u1(v1, b2). If b1 > v1 and b1 > b2 > v1,
then u1(b1, b2) = v1 − b2 < 0 = u1(v1, b2). «

Example 1.1.8 (Provision of public goods) n people. Agent i val-
ues public good at ri, total cost of public good is C .

Suppose costs are shared uniformly and utility is linear, so agent
i’s net utility is vi ≡ ri − 1

nC .

6
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Efficient provision: Public good provided iff 0 ≤ ∑
vi, i.e., C ≤∑

ri.
Eliciting preferences: Agents announce v̂i and provide if

∑
v̂i ≥

0? Gives incentive to overstate if vi > 0 and understate if vi < 0.
Groves-Clarke mechanism: if public good provided, pay agent i

amount
∑
j≠i v̂j (tax if negative) .

Agent i’s payoff(v̂i) =
 vi +

∑
j≠i v̂j, if v̂i +

∑
j≠i v̂j ≥ 0,

0, if v̂i +
∑
j≠i v̂j < 0.

Dominant strategy to announce v̂i = vi: If vi +
∑
j≠i v̂j > 0, an-

nouncing v̂i = vi ensures good is provided, while if vi+
∑
j≠i v̂j < 0,

announcing v̂i = vi ensures good is not provided. Moreover, con-
ditional on provision, announcement does not affect payoff—note
similarity to second price auction.

No payments if no provision, but payments large if provision:

Total payments to agents when provision = ∑
i

(∑
j≠i v̂j

)
= (n −

1)
∑
i v̂i. Taxing agent i by an amount independent of i’s behavior

has no impact, so tax i the amount max{∑j≠i v̂j,0}. Result is

payoff to i =



vi, if
∑
j v̂j ≥ 0 and

∑
j≠i v̂j ≥ 0,

vi +
∑
j≠i v̂j, if

∑
j v̂j ≥ 0 and

∑
j≠i v̂j < 0,

−∑j≠i v̂j, if
∑
j v̂j < 0 and

∑
j≠i v̂j ≥ 0,

0, if
∑
j v̂j < 0 and

∑
j≠i v̂j < 0.

This is the pivotal mechanism. Note that i only pays a tax if i
changes social decision. Moreover, total taxes are no larger than∑
imax{v̂i,0} if the good is provided and no larger than

∑
imax{−v̂i,0}

if the good is not provided. «

Example 1.1.9 (Continuation of example 1.1.4, Cournot) There are
no weakly dominating quantities in the Cournot duopoly: Suppose
q2 < a. Then arg maxq1 u1(q1, q2) = arg max(a−c−q1−q2)q1. First

7



8 CHAPTER 1. NORMAL AND EXTENSIVE FORM GAMES

order condition implies a− c − 2q1 − q2 = 0 or

q1(q2) = a− c − q2

2
.

Since arg maxu1 is unique and a nontrivial function of q2, there is
no weakly dominating quantity. «

1.2 Iterated Deletion of Dominated Strate-
gies

Example 1.2.1

L M R

T 1,0 1,2 0,1

B 0,3 0,1 2,0

Delete R and then B, and then L to get (T ,M). «

Example 1.2.2 (Continuation of example 1.1.6) Apply iterative dele-
tion of weakly dominated strategies to veto game. After one round
of deletions,

2

(z, z,x)

1 y 2,1

z 1,2

and so 1 vetoes y , and not z! «

Remark 1.2.1 For finite games, the order of removal of strictly dom-
inated strategies is irrelevant (see Problem 1.4.4(a)). This is not true
for weakly dominated strategies:

8
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L M R

T 1,1 1,1 0,0

B 1,1 0,0 1,1

Both TL and BL can be obtained as the singleton profile that remains
from the iterative deletion of weakly dominated strategies. In ad-
dition, {TL, TM} results from a different sequence, and {BL, BR}
from yet another sequence.

Similarly, the order of elimination may matter for infinite games
(see Problem 1.4.4(b)).

Because of this, the procedure of the iterative deletion of weakly
(or strictly) dominated strategies is often understood to require that
at each stage, all weakly (or strictly) dominated strategies be deleted.
We will follow that understanding in this class (unless explicitly
stated otherwise). With that understanding, the iterated deletion of
weakly dominated strategies in this example leads to {TL, BL}.

	

Remark 1.2.2 The plausibility of the iterated deletion of dominated
strategies requires something like players knowing the structure of
the game (including that other players know the game), not just
their own payoffs. For example in Example 1.2.1, in order for the
column player to delete L at the third round, then the column
player needs to know that the row player will not play B, which
requires the column player to know that the row player knows that
the column player will not play R.

As illustrated in Section 4.2, this kind of iterated knowledge is
not necessary for the plausibility of the procedure (though in many
contexts it provides the most plausible foundation).

	

9



10 CHAPTER 1. NORMAL AND EXTENSIVE FORM GAMES

1.3 Extensive Form Games

Game trees look like decision trees. Role of definition is to make
clear who does what, when, knowing what.

Definition 1.3.1 A finite extensive form game consists of :

1. A set of players {1, . . . , n} and nature, denoted player 0.

2. A game tree (T ,≺), where (T ,≺) is an arborescence: T is a
finite set of nodes and ≺ is a binary relation on T denoting
“precedence” satisfying

(a) ≺ is asymmetric (t ≺ t′ ⇒ t′ 6≺ t),2
(b) transitive (∀t, t′, t′′ ∈ T , t ≺ t′, t′ ≺ t′′ ⇒ t ≺ t′′),3
(c) if t ≺ t′′ and t′ ≺ t′′ then either t ≺ t′ or t′ ≺ t, and finally,

(d) there is a unique initial node, t0 ∈ T , i.e., {t0} = {t ∈ T :
 t′ ∈ T , t′ ≺ t}.

Let Z ≡ {t ∈ T :6∃t′ ∈ T , t ≺ t′}, Z is the set of terminal nodes.
NOTE: (a)–(d) implies that∀t ≠ t0, ∃! path from the initial node
to t (see Problem 1.4.5).

3. Assignment of players to nodes, ι : T\Z → {0,1, . . . n}. Define
Tj ≡ ι−1(j) = {t ∈ T\Z : ι(t) = j}, ∀j ∈ {0,1, . . . , n}.

4. Actions: Define s(t) ≡ {t′ ∈ T : t ≺ t′ and 6∃t′′, t ≺ t′′ ≺ t′},
the set of immediate successors of t. Actions lead to (label)
immediate successors, i.e., there is a set A and a mapping

α : T\{t0} → A,
such that α(t′) ≠ α(t′′) for all t′, t′′ ∈ s(t). Define A(t) ≡
α(s(t)), the set of actions available at t ∈ T\Z .

5. Information sets: Hi is a partition of Ti for all i ≠ 0 (Hi is a
collection of subsets of Ti such that (i) ∀t ∈ Ti,∃h ∈ Hi, t ∈ h,
and (ii) ∀h,h′ ∈ Hi, h ≠ h′ ⇒ h∩ h′ = ∅). Assume ∀t, t′ ∈ h,

2Note that this implies that ≺ is irreflexive: t 6≺ t for all t ∈ T .
3A binary relation satisfying 2(a) and 2(b) is called a strict partial order.

10



December 7, 2011 11

(a) t 6≺ t′, t′ 6≺ t,
(b) A(t) = A(t′) ≡ A(h), and

(c) perfect recall (every player knows whatever he knew pre-
viously, including own previous actions).

6. Payoffs, ui : Z → R.

7. Prob dsn for nature, ρ : T0 → ∪t∈T0∆(A(t)) such that ρ(t) ∈
∆(A(t)).

Definition 1.3.2 A strategy for player i is a function

si : Hi → ∪hA(h) such that si(h) ∈ A(h), ∀h ∈ Hi. (1.3.1)

The set of player i’s strategies is i’s strategy space, denoted Si.
Strategy profile is (s1, . . . , sn).

Definition 1.3.3 Suppose there are no moves of nature.
The outcome path is the sequence of nodes reached by strategy

profile, or equivalently, the sequence of specified actions.
The outcome is the unique terminal node reached by the strategy

profile s, denoted z(s). In this case, the normal form representation
is given by {(S1, U1), . . . , (Sn, Un)}, where Si is the set of i’s extensive
form strategies, and

Ui(s) = ui(z(s)).

Definition 1.3.4 If there are moves of nature, the outcome is the
implied probability distribution over terminal nodes, denoted π s ∈
∆(Z). In this case, in the normal form representation given by
{(S1, U1), . . . , (Sn, Un)}, where Si is the set of i’s extensive form strate-
gies, we have

Ui(s) =
∑
z
π s(z)ui(z).

For an example, see Example 3.1.1.

Example 1.3.1 The extensive form for example 1.1.6:

11



12 CHAPTER 1. NORMAL AND EXTENSIVE FORM GAMES

1 t0
x y z

t1

2

y

t4
0
0

z

t5
1
2

t2
2

x

t6
0
0

z

t7
2
1

t3

2

x

t8
1
2

y

t9
1
2

The result of the iterative deletion of weakly dominated strate-
gies is (y, zzx), implying the outcome (terminal node) t7.

Note that this outcome also results from the profiles (y,yzx)
and (y, zzy), and (y,yzy). «

Definition 1.3.5 A game has perfect information if all information
sets are singletons.

Example 1.3.2 (Simultaneous moves) The prisoners’ dilemma:

I
t0

S E

t1S

t3
0
0

E

t4
3
−1

II
t2S

t5−1
3

E

t6
2
2

«
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1.3.1 The Reduced Normal Form

Example 1.3.3 Consider the extensive form:

I
Go

Stop
z1

II Go

Stop
z2

I Go1 z4

Stop1
z3

Note that payoffs have not been specified, just the terminal nodes.
The normal form is (where u(z) = (u1(z),u2(z))):

Stop Go

Stop,Stop1 u(z1) u(z1)

Stop,Go1 u(z1) u(z1)

Go,Stop1 u(z2) u(z3)

Go,Go1 u(z2) u(z4)

I’s strategies of Stop,Stop1 and Stop,Go1 are equivalent. «

Definition 1.3.6 Two strategies si, s′i ∈ Si are strategically equiva-
lent if uj(si, s−i) = uj(s′i , s−i) for all s−i ∈ S−i and all j.

In the (pure strategy) reduced normal form of a game, every set
of strategically equivalent strategies is replaced by a single repre-
sentative.

Example 1.3.4 (Example 1.3.3 continued) The reduced normal form
is

Stop Go

Stop u(z1) u(z1)

Go,Stop1 u(z2) u(z3)

Go,Go1 u(z2) u(z4)

13



14 CHAPTER 1. NORMAL AND EXTENSIVE FORM GAMES

The strategy Stop for player I in the reduced normal form should
be interpreted as the equivalence class of extensive form strategies
{Stop,Stop1, Stop,Go1}, where the equivalence relation is given by
strategic equivalence. «

When describing the normal form representation of an extensive
form, it is common to (and we will typically) use the reduced normal
form.

An extensive form strategy always has the form given by (1.3.1),
while a normal form strategy may represent an equivalence class
of extensive form strategies (and a reduced normal form strategy
always does).

1.4 Problems

1.4.1. Describe a social choice rule that is unanimous, nondictatorial, and
strategy proof when there are two alternatives.

1.4.2. Consider the following social choice rule over the set X = {x,y, z}.
There is an exogenously specified order x � y � z, and define
S(X′) ≡ {a ∈ X′ : a � a′ ∀a′ ∈ X′ \ {a}}. Then,

f(θ) = S({a ∈ X : a = t(θi) for some i}).

Prove that f is unanimous and nondictatorial, but not strategy proof.

1.4.3. Consider the Cournot duopoly example (Example 1.1.4).

(a) Characterize the set of strategies that survive iterated deletion
of strictly dominated strategies.

(b) Formulate the game when there are n ≥ 3 firms and identify
the set of strategies surviving iterated deletion of strictly dom-
inated strategies.

1.4.4. (a) Prove that the order of deletion does not matter for the process
of iterated deletion of strictly dominated strategies in a finite
game (Remark 1.2.1 shows that strictly cannot be replaced by
weakly).

14
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(b) Show that the order of deletion matters for the process of iter-
ated deletion of strictly dominated strategies for the following
game: S1 = S2 = [0,1] and payoffs

ui(s1, s2) =


si, if si < 1,
0, if si = 1, sj < 1,
si, if si = sj = 1.

1.4.5. Suppose (T ,≺) is an arborescence (recall Definition 1.3.1). Say a
node t′ is an immediate predecessor of a node t if t′ ≺ t and there
are no intervening nodes, that is, there does not exist a node t′′
satisfying

t′ ≺ t′′ ≺ t.
Prove that every noninital node has a unique immediate predecessor
(and so there is a unique path to every noninitial node from the
initial node).

1.4.6. (a) Prove that each player i’s information sets Hi are strictly par-
tially ordered by the precedence ranking ≺∗ , where we define
h′ ≺∗ h if there exists t ∈ h and t′ ∈ h′ such that t′ ≺ t.

(b) Give an example showing that the set of all information sets is
not similarly strictly partially ordered. (Perfect recall implies
that the set of i’s information sets also satisfy Property 2(c).)

(c) Prove that if h′ ≺∗ h for h,h′ ∈ Hi, then for all t ∈ h, there
exists t′ ∈ h′ such that t′ ≺ t. (In other words, an individual
players information is refined through play in the game.)

15
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Chapter 2

A First Look at Equilibrium1

2.1 Nash Equilibrium

Example 2.1.1 (Battle of the sexes)

Sheila

Opera Ballet

Bruce Opera 2,1 0,0

Ballet 0,0 1,2
«

Definition 2.1.1 s∗ ∈ S is a Nash equilibrium ofG = {(S1, u1), . . . , (Sn, un)}
if for all i and for all si ∈ Si,

ui(s∗i , s
∗
−i) ≥ ui(si, s∗−i).

Example 2.1.2 A simple extensive form:

1Copyright December 7, 2011 by George J. Mailath
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I
t0

L R

t1
II

`

t3
2
3

r

t4
4
2

t2
II

`′

t5
1
0

r ′

t6
3
1

S1 = {L,R}, S2 = {``′, `r ′, r`′, rr ′}.
Uj(s1, s2) = uj(z), where z is terminal node reached by (s1, s2).

II

``′ `r ′ r`′ rr ′

I L 2,3 2,3 4,2 4,2

R 1,0 3,1 1,0 3,1

Two Nash equilibria: (L, ``′) and (R, `r ′). Though `r ′ is a best
reply to L, (L, `r ′) is not a Nash equilibrium.

Note that the equilibria are strategy profiles, not outcomes. The
outcome path for (L, ``′) is L`, while the outcome path for (R, `r ′)
is Rr ′. In examples where the terminal nodes are not separately
labeled, it is common to also refer to the outcome path as simply
the outcome—recall that every outcome path reaches a unique ter-
minal node, and conversely, every terminal node is reached by a
unique sequence of actions (and moves of nature).

NOTE: (R, rr ′) is not a Nash eq, even though the outcome path
associated with it, Rr ′, is a Nash outcome path. «

℘(Y) ≡ collection of all subsets of Y , the power set of Y ≡ {Y ′ ⊂
Y}.

A function φ : X → ℘(Y)\∅ is a correspondence from X to Y ,
sometimes written φ : X ⇒ Y .

18
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Note that φ(x) is simply a nonempty subset of Y . If f : X →
Y is a function, then φ(x) = {f(x)} is a correspondence and a
singleton-valued correspondence can be naturally viewed as a func-
tion.

Definition 2.1.2 The best reply correspondence for player i is

φi(s−i) = arg max
si∈Si

ui(si, s−i)

={si ∈ Si : ui(si, s−i) ≥ ui(s′i , s−i),∀s′i ∈ Si}.
Note: without assumptions on Si and ui, φi is not well defined.

When it is well defined everywhere, φi : S−i ⇒ Si.
Ifφi(s−i) is a singleton for all s−i, thenφi is i’s reaction function.

Remark 2.1.1 Defining φ : S ⇒ S by

φ(s) :=
∏
i

φi(s−i) = φ1(s−1)× · · · ×φn(s−n),

we have that s∗ is a Nash equilibrium if, and only if,

s∗ ∈ φ(s∗).
	

Example 2.1.3 (Continuation of example 1.1.9, Cournot) Recall that,
if q2 < a− c, arg maxui(q1, q2) is unique and given by

q1(q2) = a− c − q2

2
.

More generally, i’s reaction function is

φi(qj) =max{1
2
(a− c − qj),0}.

Nash eq (q∗1 , q∗2 ) solves

q∗1 =φ1(q∗2 ),
q∗2 =φ2(q∗1 ).

19
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q1

(a− c)/2

a− c

q2

(a− c)/2 a− c

φ1

φ2

(q∗1 , q∗2 )

Figure 2.1.1: The reaction (or best reply) functions for the Cournot game.

So (ignoring the boundary conditions for a second),

q∗1 =
1
2
(a− c − q∗2 )

=1
2
(a− c − 1

2
(a− c − q∗1 ))

=1
2
(a− c)− 1

4
(a− c)+ q

∗
1

4

=1
4
(a− c)+ q

∗
1

4

and so

q∗1 =
1
3
(a− c).

Thus,

q∗2 =
1
2
(a− c)− 1

6
(a− c) = 1

3
(a− c).

20
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Since

p = a− q∗1 − q∗2 = a−
2
3
(a− c) = 1

3
a+ 2

3
c > 0.

Thus the boundary condition is not binding. Note also that there
is no equilibrium with zero prices. «

Example 2.1.4 (continuation of Example 1.1.7) Suppose v1 < v2,
and the valuations are commonly known. There are many Nash
equilibria: Bidding vi for each i is a Nash equilibrium (of course?).
But so is any bidding profile (b1, b2) satisfying b1 < b2, b1 ≤ v2 and
v1 ≤ b2 (Why? Make sure you understand why some inequalities are
weak and some are strict). Are there any other equilibria? «

Example 2.1.5 (continuation of example 1.1.3) Suppose v1 = v2 =
v , and the valuations are commonly known. The unique Nash equi-
librium is for both bidders to bid bi = v . But this eq is in weakly
dominated strategies. But what if bids are in pennies? «

2.1.1 Why Study Nash Equilibrium?

Nash equilibrium is based on two principles:

1. each player is optimizing given beliefs/predictions about the
behavior of the other players; and

2. these beliefs/predictions are correct.

While optimization is not in principle troubling (it is true almost
by definition), the consistency of beliefs with the actual behavior is
a strong assumption. Where does this consistency come from?

Several arguments have been suggested:

1. preplay communication (but see Section 2.5.2),

2. self-fulfilling prophecy (if a theory did not specify a Nash equi-
libria, it would invalidate itself),

21
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Entrant

Out

0
4

Incumbent

In

Fight

−1
1

Accommodate

1
2

Figure 2.2.1: An entry game.

3. focal points (natural way to play),

4. introspection more generally (currently not viewed as persua-
sive),

5. learning (either individual or social), see Section 4.2, and

6. provides important discipline on modelling.

2.2 Credible Threats and Backward Induc-
tion

Example 2.2.1 (Entry deterrence) The entry game illustrated in Fig-
ure 2.2.1 has two Nash equilibria: (In, Accommodate) and (Out,
Fight). The latter violates backward induction. «

Example 2.2.2 (The case of the reluctant kidnapper) Kidnapper has
two choices after receiving ransom: release or kill victim. After re-
lease, victim has two choices: whether or not to reveal identity of
kidnapper. Payoffs are illustrated in Figure 2.2.2. Victim is killed in
only outcome satisfying backward induction.

22
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Kidnapper

kill

−1
−100

Victim

release

don’t reveal

10
1

reveal

−5
2

Figure 2.2.2: The Reluctant Kidnapper

I
Go

Stop

1
0

II Go

Stop

0
10

I Go1 10
1,000

Stop1

100
1

Figure 2.2.3: A short centipede game.

«

Example 2.2.3 (Rosenthal’s centipede game) The perils of backward
induction are illustrated in Figure 2.2.3, with reduced normal form
given in Figure 2.2.4.

A longer (and more dramatic version of the centipede is given in
Figure 2.2.5.

Backward induction solution in both cases is that both players
choose to stop the game at each decision point. «

23
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Stop Go

Stop 1,0 1,0

Go,Stop1 0,10 100,1

Go,Go1 0,10 10,1000

Figure 2.2.4: The reduced normal form for the short centipede in Figure
2.2.3

I
Go

Stop

1
0

II Go

Stop

0
10

I Go1

Stop1

100
1

II Go1

Stop1

10
1,000

I Go2 1,000
100,000

Stop2

10,000
100

Figure 2.2.5: A long centipede game.
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I

R

L

2
−1
−1

II

T B

`

0
0
0

r

0
0
1

III
`

3
1
1

r

0
1
0

Figure 2.3.1: (L, T , r) is Nash. Is it plausible?

Theorem 2.2.1 (Zermelo, Kuhn): A finite game of perfect informa-
tion has a pure strategy Nash equilibrium.

2.3 Subgame Perfection

Example 2.3.1 In the game illustrated in Figure 2.3.1, the profile
(L, T , r) is Nash. Is it plausible? «

Define S(t) ≡ {t′ ∈ T : t ≺ t′}.

Definition 2.3.1 The subset T t ≡ {t}∪S(t), of T , together with pay-
offs, etc. appropriately restricted to T t, is a subgame if for all infor-
mation sets h,

h∩ T t ≠∅⇒ h ⊂ T t.
The information set containing the initial node of a subgame is

necessarily a singleton (see Problem 2.6.6).

25
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Definition 2.3.2 The strategy profile s is a subgame perfect equilib-
rium if s prescribes a Nash equilibrium in every subgame.

Example 2.3.2 (augmented PD)

E S P

E 2,2 −1,3 −1,−1

S 3,−1 0,0 −1,−1

P −1,−1 −1,−1 −2,−2

Play game twice and add payoffs.
Nash strategy profile: E in first period, and S in second period as

long as opponent also cooperated in first period, and P if opponent
didn’t exert effort in first period. Every first period action profile
describes an information set for each player. Player i’s strategy is

s1
i = E,

s2
i (ai, aj) =

{
S, if aj = E,
P, if aj ≠ E.

Not subgame perfect: Every first period action profile induces a
subgame, on which SS must be played. But the profile prescribes
SP after ES, for example. Only subgame perfect equilibrium is al-
ways S. «

Example 2.3.3 (A different repeated game) The stage game is

L C R

T 4,6 0,0 9,0

M 0,0 6,4 0,0

B 0,0 0,0 8,8

.

(T , L) and (M,C) are both Nash eq of the stage game. The profile
(s1, s2) of the once-repeated game with payoffs added is subgame
perfect:

s1
1 = B,

26
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s2
1(x,y) =

{
M, if x = B,
T , if x ≠ B,

s1
2 = R,

s2
2(x,y) =

{
C, if x = B, and

L, if x ≠ B.

The outcome path induced by (s1, s2) is (BR,MC).
These are strategies of the extensive form of the repeated game,

not of the reduced normal form. The reduced form strategies cor-
responding to (s1, s2) are

ŝ1
1 = B,

ŝ2
1(y) = M, for all y,
ŝ1

2 = R,

s2
2(x) =

{
C, if x = B, and

L, if x ≠ B. «

Example 2.3.4 Consider the extensive form in Figure 2.3.2.
The game has three Nash eq: (RB, r), (LT , `), and (LB, `). Note

that (LT , `), and (LB, `) are distinct extensive form strategy pro-
files.

The only subgame perfect equilibrium is (RB, r).
But, (L, `) also subgame perfect in the extensive form in Figure

2.3.3.
Both games have the same reduced normal form, given in Figure

2.3.4. «

Remark 2.3.1 (Equivalent representations?) A given strategic set-
ting has both a normal form and an extensive form representation.
Moreover, the extensive form apparently contains more informa-
tion (since it in particular contains information about dynamics and
information). For example, the application of weak domination to
rule out the (Stay out, Fight) equilibrium can be argued to be less

27
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I

R

L

2
0 I

T B

`

−1
1

r

4
0

II
`

0
0

r

5
1

Figure 2.3.2: A game with “nice” subgames.

I
L

2
0 T B

`

−1
1

r

4
0

II
`

0
0

r

5
1

Figure 2.3.3: An “equivalent” game with no “nice”subgames.
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` r

L 2,0 2,0

T −1,1 4,0

B 0,0 5,1

Figure 2.3.4: The reduced form for the games in Figures 2.3.2 and 2.3.3.

compelling than the backward induction (ex post) argument in the
extensive form: faced with the fait accompli of Enter, the incum-
bent “must” Accommodate. As Kreps and Wilson (1982, p. 886)
write: “analysis based on normal form representation inherently
ignore the role of anticipated actions off the equilibrium path...and
in the extreme yields Nash equilibria that are patently implausible.”

But, backward induction and iterated deletion of weakly domi-
nated strategies lead to the same outcomes in finite games of per-
fect information. Motivated by this and other considerations, a
“classical” argument holds that all extensive forms with the same
reduced normal form representation are strategically equivalent
(Kohlberg and Mertens (1986) is a well known statement of this
position; see also Elmes and Reny (1994)). Such a view implies that
“good” extensive form solutions should not depend on the exten-
sive form in the way illustrated in Example 2.3.4. For more on this
issue, see van Damme (1984) and Mailath, Samuelson, and Swinkels
(1993, 1997).

	

2.4 Mixing

2.4.1 Mixed Strategies and Security Levels

Example 2.4.1 (Matching Pennies) A game with no Nash eq:

29
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H T

H 1,−1 −1,1

T −1,1 1,−1

The greatest payoff that player 1 can guarantee himself may ap-
pear to be −1 (the unfortunate result of player 2 correctly antici-
pating 1’s choice).

But suppose that player 1 flips a fair coin so that player 2 cannot
anticipate 1’s choice. Then, 1 should be able to do better. «

Definition 2.4.1 Suppose {(S1, ui), . . . , (Sn, un)} is an n-player nor-
mal form game. A mixed strategy for player i is a probability distri-
bution over Si, denoted σi. Strategies in Si are called pure strategies.
A strategy σi is completely mixed if σi(si) > 0 for all si ∈ Si.

In order for the set of mixed strategies to have a nice mathe-
matical structure (such as being metrizable or compact), we need
the set of pure strategies to also have a nice structure (often com-
plete separable metric, i.e., Polish). For our purposes here, it will
suffice to consider finite sets, or nice subsets of Rk. More gener-
ally, a mixed strategy is a probability measure over the set of pure
strategies. The set of probability measures over a set A is denoted
∆(A).

If Si is finite, σi : Si → [0,1] such that
∑
si∈Si σi(si) = 1.

Extend ui to
∏n
j=1∆(Sj) by taking expected values, so that ui is

i’s expected payoff under randomization.
If Si is finite,

ui(σ1, . . . , σn) =
∑
s1∈S1

· · ·
∑
sn∈Sn

ui(s1, . . . , sn)σ1(s1) · · ·σn(sn).

Writing
ui(si, σ−i) =

∑
s−i∈S−i

ui(si, s−i)
∏
j≠i

σj(sj),

we then have

ui(σi, σ−i) =
∑
si∈Si

ui(si, σ−i)σi(si).
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Definition 2.4.2 Player i’s security level is the greatest payoff that
i can guarantee himself:

vi = sup
σi∈∆(Si)

inf
σ−i∈

∏
j≠i∆(Sj)

ui(σi, σ−i).

If σ∗i achieves the sup, then σ∗i is a security strategy for i.

In matching pennies, each player’s security level is 0, guaranteed
by the security strategy 1

2 ◦H + 1
2 ◦ T .

2.4.2 Domination and Optimality

Example 2.4.2 In the following game (payoffs are for the row player),
M is not dominated by any strategy (pure or mixed) and it is the
unique best reply to 1

2 ◦ L+ 1
2 ◦ R:

L R

T 3 0

M 2 2

B 0 3

In the following game (again, payoffs are for row player), M is
not dominated by T or B, it is never a best reply, and it is strictly
dominated by 1

2 ◦ T + 1
2 ◦ B:

L R

T 5 0

M 2 2

B 0 5 «

Definition 2.4.3 The strategy s′i ∈ Si is strictly dominated by the
mixed strategy σi ∈ ∆(Si) if

ui(σi, s−i) > ui(s′i , s−i) ∀s−i ∈ S−i.
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Henceforth, a strategy is strictly (or weakly) undominated if there
is no pure or mixed strategy that strictly (or weakly, respectively)
dominates it.

It is immediate that Definition 2.4.3 is equivalent to Definition
8.B.4 in MWG.

Lemma 2.4.1 Suppose n = 2. The strategy s′1 ∈ S1 is not strictly
dominated by any other pure or mixed strategy if, and only if, s′1 ∈
arg maxu1(s1, σ2) for some σ2 ∈ ∆(S2).

Proof. We present the proof for finite Si.
If there exists σ2 ∈ ∆(S2) such that s′1 ∈ arg maxu1(s1, σ2), then

it is straightforward to show that s′1 is not strictly dominated by
any other pure or mixed strategy (left as exercise).

Suppose s′1 is a player 1 strategy satisfying

s′1 6∈ arg max u1(s1, σ2) ∀σ2 ∈ ∆(S2). (2.4.1)

Define x(s1, s2) = u1(s1, s2) − u1(s′1, s2), and observe that for fixed
s2, we can represent the vector of payoff differences {x(s1, s2) : s1 ≠
s′1} as a point in R|S1|−1. Define

X ≡ conv{x ∈ R|S1|−1 : xs1 = x(s1, s2), s1 ≠ s′1, some s2 ∈ S2}.

Denote the closed negative orthant by R|S1|−1
− ≡ {x ∈ R|S1|−1 : xs1 ≤

0, ∀s1 ≠ s′1}. Equation (2.4.1) implies that for all σ2 ∈ ∆)(S2), there
exists s1 such that

∑
x(s1, s2)σ2(s2) > 0, and so R|S1|−1

− ∩ X = ∅.
Moreover, X is closed, since it is the convex hull of a finite number
of vectors. See Figure 2.4.1.

By an appropriate strict separating hyperplane theorem (see, for
example, Vohra (2005, Theorem 3.7)), ∃λ ∈ R|S1|−1 \ {0} such that
λ · x > λ · x′ for all x ∈ X and all x′ ∈ R|S1|−1

− . Since R|S1|−1
− is

unbounded below, λ(s1) ≥ 0∀s1 (otherwise making |x′(s1)| large
enough for s1 satisfying λ(s1) < 0 ensures λ · x′ > λ · x). Define

σ∗1 (s′′1 ) =
λ(s′′1 )

/∑
s1≠s′1 λ(s1) , if s′′1 ≠ s′1,

0, if s′′1 = s′1.
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s1

ŝ1

x(·, s2)

x(·, s′2)

x(·, ŝ2)
x(·, s̃2)

X

R|S1|−1
−

Figure 2.4.1: The sets X and R|S1|−1
− .

We now argue that σ∗1 is a mixed strategy for 1 strictly dominating
s′1: Since 0 ∈ R|S1|−1

− , we have λ · x > 0 for all x ∈ X, and so∑
si≠s′1

σ∗1 (s1)
∑
s2

x(s1, s2)σ2(s2) > 0, ∀σ2,

i.e., for all σ2,

u1(σ∗1 , σ2) =
∑

s1≠s′1,s2

u1(s1, s2)σ∗1 (s1)σ2(s2)

>
∑

s1≠s′1,s2

u1(s′1, s2)σ∗1 (s1)σ2(s2) = u1(s′1, σ2).

Remark 2.4.1 This proof requires us to strictly separate two dis-
joint closed convex sets (one bounded), rather than a point from
a closed convex set (the standard separating hyperplane theorem).
To apply the standard theorem, define Y ≡ {y ∈ R|S1|−1 : ∃x ∈
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X,y` ≥ x`∀`}. Clearly Y is closed, convex and 0 ∉ Y . We can
proceed as in the proof, since the normal for the separating hyper-
plane must again have only nonnegative coordinates (use now the
unboundedness of Y ).

	

Iterated strict dominance is thus iterated non-best replies—the
rationalizability notion of Bernheim (1984) and Pearce (1984). But,
assumes utilities are disjoint from subjective probabilities—not re-
ally in spirit of Savage, see Börgers (1993).

If n > 2, issue of correlation across other players. Rationaliz-
ability formally does not allow correlation. Above result only holds
if beliefs of opponents play can be correlated.

Lemma 2.4.1 holds for mixed strategies (see Problem 2.6.13).

2.4.3 Equilibrium in Mixed Strategies

Definition 2.4.4 Suppose {(S1, ui), . . . , (Sn, un)} is an n-player nor-
mal form game. A Nash eq in mixed strategies is a profile (σ∗1 , . . . , σ∗n )
such that, for all i, for all σi ∈ ∆(Si),

ui(σ∗i , σ
∗
−i) ≥ ui(σi, σ∗−i). (2.4.2)

Equivalently, for all si ∈ Si,
ui(σ∗i , σ

∗
−i) ≥ ui(si, σ∗−i),

since
ui(σi, σ∗−i) =

∑
si∈Si

ui(si, σ∗−i)σi(si) ≤ ui(s′i , σ∗−i),

where s′i ∈ arg maxui(si, σ∗−i).

Lemma 2.4.2 A strategy σ∗i is a best reply to σ∗−i (i.e., satisfies (2.4.2))
if, and only if,

σ∗i (s
′
i) > 0 =⇒ s′i ∈ arg max

si
ui(si, σ∗−i).
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Proof. Left as an exercise (Problem 2.6.15).

Corollary 2.4.1 A strategy σ∗i is a best reply to σ∗−i (i.e., satisfies
(2.4.2)) if, and only if, for all si ∈ Si,

ui(σ∗i , σ
∗
−i) ≥ ui(si, σ∗−i).

Example 2.4.3

L R

T 2,1 0,0

B 0,0 1,1

∆(S1) = ∆(S2) = [0,1], p = Pr(T), q = Pr(L).
φ is best replies in mixed strategies:

φ1(q) =


{1}, if q > 1

3 ,

[0,1], if q = 1
3 ,

{0}, if q < 1
3 .

φ2(p) =


{1}, if p > 1

2 ,

[0,1], if p = 1
2 ,

{0}, if p < 1
2 .

The best replies are graphed in Figure 2.4.2. «

2.4.4 Behavior Strategies

What does mixing involve in extensive form games? Recall Defini-
tion 1.3.2:

Definition 2.4.5 A pure strategy for player i is a function

si : Hi → ∪hA(h) such that si(h) ∈ A(h) ∀h ∈ Hi.
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p

q

0 11
2

1

1
3

φ1

φ2

Figure 2.4.2: The best reply mappings for Example 2.4.3.

Denote i’s set of pure strategies by Si. Note that |Si| < ∞ for
finite extensive form games.

As above:

Definition 2.4.6 A mixed strategy for player i, σi, is a probability
distribution over Si, i.e., σi ∈ ∆(Si).
Definition 2.4.7 A behavior strategy for player i is a function

bi : Hi → ∪h∆(A(h)) such that si(h) ∈ ∆(A(h)) ∀h ∈ Hi.
Write bi(h)(a) for the probability assigned to the action a ∈ A(h)
by the probability distribution bi(h).

Note that if |Hi| = 3 and |A(h)| = 2 ∀h ∈ Hi, then |Si| = 8
and so ∆(Si) is a 7-dimensional simplex. On the hand, a behavior
strategy in this case requires only 3 numbers (the probability on
the first action in each information set).

The behavior strategy corresponding to a pure strategy si is
given by

bi(h) = δsi(h), ∀h ∈ Hi,
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where δx ∈ ∆(X), x ∈ X, is the degenerate distribution (Kro-
necker’s delta),

δx(y) =
{

1, if y = x,

0, otherwise.

Definition 2.4.8 Two strategies for a player i are realization equiv-
alent if, fixing the strategies of the other players, the two strategies
induce the same distribution over outcomes (terminal nodes).

Thus, two strategies that are realization equivalent are strategi-
cally equivalent (Definition 1.3.6).

Moreover, if two extensive form strategies only differ in the
specification of behavior at an information set that one of those
strategies had precluded, then the two strategies are realization
equivalent. For example the strategies Stop,Stop1 and Stop,Go1 in
Example 2.2.3 are realization equivalent.

Given a behavior strategy bi, the realization-equivalent mixed
strategy σi ∈ ∆(Si) is

σi(si) =
∏
h∈Hi

bi(h)(si(h)).

Theorem 2.4.1 (Kuhn) Every mixed strategy has a realization equiv-
alent behavior strategy.

The behavior strategy realization equivalent to the mixture σi
can be calculated as follows: Fix an information set h for player i
(i.e., h ∈ Hi). Suppose h is reached with strictly positive probability
under σi, for some specification ŝ−i. Then, bi(h) is the distribution
over A(h) implied by σi conditional on h being reached. While this
calculation appears to depend on the particular choice of ŝ−i, it
turns out it does not. (If for all specifications s−i, h is reached with
zero probability under σi, then bi(h) can be determined arbitrarily.)

Using behavior strategies, mixing can be easily accommodated
in subgame perfect equilibria.

37



38 CHAPTER 2. A FIRST LOOK AT EQUILIBRIUM

2.5 Dealing with Multiplicity

2.5.1 I: Refinements

Example 2.5.1 Following game has two Nash equilibria (UL and
DR), but only DR is plausible. The other eq is in weakly dominated
strategies.

L R

U 2,1 0,0

D 2,0 1,1 «

Natural to require eq be “robust” to small mistakes.

Definition 2.5.1 An equilibrium σ of a finite normal from game G
is (normal form) trembling hand perfect if there exists a sequence{
σ k
}
k of completely mixed strategy profiles converging to σ such

that σi is a best reply to every σ k−i in the sequence.

This is NOT the standard definition in the literature (see Subsec-
tion 10.1.1.

Every finite normal form game has a trembling hand perfect
equilibrium (see Subsection 10.1.1).

Note that weakly dominated strategies cannot be played in a
trembling hand perfect equilibrium:

Theorem 2.5.1 If a strategy profile in a finite normal from game is
trembling hand perfect then it is a Nash equilibrium in weakly un-
dominated strategies. If there are only two players, every Nash equi-
librium in weakly undominated strategies is trembling hand perfect.

Proof. The proof of the first statement is straightforward and left
as an exercise (Problem 2.6.16). A proof of the second statement
can be found in van Damme (1991, Theorem 3.2.2).

Can similarly explore the role of trembles in extensive form
games, which we will do in Chapter 5.

Some additional material on trembling hand perfect equilibria
are collected in the appendix to this chapter (Section 10.1).
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2.5.2 II: Selection

Example 2.5.2 (Focal Points)

A a b

A 2,2 0,0 0,0

a 0,0 0,0 2,2

b 0,0 2,2 0,0 «

Example 2.5.3 (payoff dominance)

` r

T 2,2 0,0

B 0,0 1,1 «

Example 2.5.4 (Renegotiation) Compare with example 2.3.3. The
stage game is

L C R

T 4,4 0,0 9,0

M 0,0 6,6 0,0

B 0,0 0,0 8,8

.

(T , L) and (M,C) are both Nash eq of the stage game. The profile
(s1, s2) of the once-repeated game with payoffs added is subgame
perfect:

s1
1 = B,

s2
1(x,y) =

{
M, if x = B,
T , if x ≠ B,

s1
2 = R,
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s2
2(x,y) =

{
C, if x = B, and

L, if x ≠ B.

The outcome path induced by (s1, s2) is (BR,MC). But TL is Pareto
dominated by MC , and so players may renegotiate from TL to MC
after 1’s deviation. But then 1 has no incentive not to play T in the
first period. «

Example 2.5.5 (risk dominance)

A B

A 9,9 0,5

B 5,0 7,7

While AA is the efficient profile (payoff dominant), BB has some
interest. In particular, B is “less risky” than A: technically, it is risk
dominant since B is the unique best reply to the uniform lottery
over {A,B}, i.e., to the mixture

1
2
◦A+ 1

2
◦ B.

«

2.6 Problems

2.6.1. Suppose {(Si, Ui)ni=1} is a normal form game, and ŝ1 ∈ S1 is a weakly
dominated strategy for player 1. Let S′1 = S1 \ {ŝ1}, and S′i = Si for
i ≠ 1. Suppose s is a Nash equilibrium of {(S′i , Ui)ni=1}. Prove that s
is a Nash equilibrium of {(Si, Ui)ni=1}.

2.6.2. Suppose {(Si, Ui)ni=1} is a normal form game, and s is a Nash equi-
librium of {(Si, Ui)ni=1}. Let {(S′i , Ui)ni=1} be the normal form game
obtained by the iterated deletion of some or all strictly dominated
strategies. Prove that s is a Nash equilibrium of {(S′i , Ui)ni=1}. (Of
course, you must first show that si ∈ S′i for all i.) Give an example
showing that this is false if strictly is replaced by weakly.
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2.6.3. Consider (again) the Cournot example (Example 1.1.4). What is the
Nash Equilibrium of the n-firm Cournot oligopoly? What happens
to both individual firm output and total output as n approaches
infinity?

2.6.4. Consider now the Cournot duopoly where inverse demand is P(Q) =
a −Q but firms have asymmetric marginal costs: ci for firm i, i =
1,2.

(a) What is the Nash equilibrium when 0 < ci < a/2 for i = 1,2?
What happens to firm 2’s equilibrium output when firm 1’s
costs, c1, increase? Can you give an intuitive explanation?

(b) What is the Nash equilibrium when c1 < c2 < a but 2c2 > a+c1?

2.6.5. Consider the following Cournot duopoly game: The two firms are
identical. The cost function facing each firm is denoted by C(q),
is continuously differentiable with C(0) = 0, C′(0) = 0, C′(q) >
0 ∀q > 0. Firm i chooses qi, i = 1,2. Inverse demand is given
by p = P(Q), whereQ = q1+q2 is total supply. Suppose P is contin-
uous and there exists Q > 0 such that P(Q) > 0 for Q ∈ [0,Q) and
P(Q) = 0 for Q ≥ Q. Assume firm i’s profits are strictly concave in
qi for all qj, j ≠ i.

(a) Prove that for each value of qj , firm i (i ≠ j) has a unique
profit maximizing choice. Denote this choice Ri(qj). Prove that
Ri(q) = Rj(q), i.e., the two firms have the same reaction func-
tion. Thus, we can drop the subscript of the firm on R.

(b) Prove that R(0) > 0 and that R(Q) = 0 < Q.

(c) We know (from the maximum theorem) that R is a continu-
ous function. Use the Intermediate Value Theorem to argue
that this Cournot game has at least one symmetric Nash equi-
librium, i.e., a quantity q∗, such that (q∗, q∗) is a Nash equi-
librium. [Hint: Apply the Intermediate Value Theorem to the
function f(q) = R(q)− q. What does f(q) = 0 imply?]

(d) Give some conditions on C and P that are sufficient to imply
that firm i’s profits are strictly concave in qi for all qj, j ≠ i.

2.6.6. (easy) Prove that the information set containing the initial node of a
subgame is necessarily a singleton.
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2.6.7. In the canonical Stackelberg model, there are two firms, I and II, pro-
ducing the same good. Their inverse demand function is P = 6−Q,
where Q is market supply. Each firm has a constant marginal cost
of $4 per unit and a capacity constraint of 3 units (the latter restric-
tion will not affect optimal behavior, but assuming it eliminates the
possibility of negative prices). Firm I chooses its quantity first. Firm
II, knowing firm I’s quantity choice, then chooses its quantity. Thus,
firm I’s strategy space is S1 = [0,3] and firm II’s strategy space is
S2 = {τ2 | τ2 : S1 → [0,3]}. A strategy profile is (q1, τ2) ∈ S1 × S2,
i.e., an action (quantity choice) for I and a specification for every
quantity choice of I of an action (quantity choice) for II.

(a) What are the outcome and payoffs of the two firms implied by
the strategy profile (q1, τ2)?

(b) Show that the following strategy profile does not constitute a
Nash equilibrium: (1

2 , τ2), where τ2(q1) = (2 − q1)/2. Which
firm(s) is (are) not playing a best response?

(c) Prove that the following strategy profile constitutes a Nash equi-
librium: (1

2 , τ̂2), where τ̂2(q1) = 3
4 if q1 = 1

2 and τ̂2(q1) = 3 if

q1 ≠
1
2 , i.e., II threatens to flood the market unless I produces

exactly1
2 . Is there any other Nash equilibrium which gives the

outcome path (1
2 ,

3
4)? What are the firms’ payoffs in this equi-

librium?

(d) Prove that the following strategy profile constitutes a Nash equi-
librium: (0, τ̃2), where τ̃2(q1) = 1 if q1 = 0 and τ̃2(q1) = 3 if
q1 ≠ 0, i.e., II threatens to flood the market unless I produces
exactly 0. What are the firms’ payoffs in this equilibrium?

(e) Given q1 ∈ [0,2], specify a Nash equilibrium strategy profile
in which I chooses q1. Why is it not possible to do this for
q1 ∈ (2,3]?

(f) What is the unique backward induction equilibrium of this game?

2.6.8. Consider the extensive form in Figure 2.6.1.

(a) What is the normal form of this game?

(b) Describe the pure strategy Nash equilibrium strategies and out-
comes of the game.
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I

L R

I

L′ R′

`

3
1

r

−4
0

II
`

1
0

r

−5
1

II

`′

2
1

r ′

0
0

Figure 2.6.1: The game for Problem 2.6.8

(c) Describe the pure strategy subgame perfect equilibria (there
may only be one).

2.6.9. Consider the following game G between two players. Player 1 first
chooses between A or B, with A giving payoff of 1 to each player,
and B giving a payoff of 0 to player 1 and 3 to player 2. After player
1 has publicly chosen between A and B, the two players play the
following bimatrix game (with 1 being the row player):

L R

U 1,1 0,0

D 0,0 3,3

Payoffs in the overall game are given by the sum of payoffs from 1’s
initial choice and the bimatrix game.

(a) What is the extensive form of G?

(b) Describe a subgame perfect equilibrium strategy profile in pure
strategies in which 1 chooses B.
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(c) What is the reduced normal form of G?

(d) What is the result of the iterated deletion of weakly dominated
strategies?

2.6.10. Suppose s is a pure strategy Nash equilibrium of a finite extensive
form game, Γ . Suppose Γ ′ is a subgame of Γ that is on the path of
play of s. Prove that s prescribes a Nash equilibrium on Γ ′. (It is
probably easier to first consider the case where there are no moves
of nature.) (The result is also true for mixed strategy Nash equilibria,
though the proof is more notationally intimidating.)

2.6.11. Suppose the 2 × 2 normal form game G has a unique Nash equi-
librium, and each player’s Nash equilibrium strategy and security
strategy are both completely mixed.

(a) Describe the implied restrictions on the payoffs in G.

(b) Prove that each player’s security level is given by his/her Nash
equilibrium payoff.

(c) Give an example showing that (in spite of part 2.6.11(b)), the
Nash equilibrium profile need not agree with the strategy pro-
file in which each player is playing his or her security strategy.
(This is not possible for zero-sum games, see Problem 4.3.1.)

(d) For games like you found in part 2.6.11(c), which is the better
prediction of play, security strategy or Nash equilibrium?

2.6.12. Suppose {(S1, u1), . . . , (Sn, un)} is a finite normal form game. Prove
that if s′1 ∈ S1 is strictly dominated in the sense of Definition 2.4.3,
then it is not a best reply to any belief over S−i. [While you can prove
this by contradiction, try to obtain the direct proof, which is more
informative.] (This is the contrapositive of the “straightforward”
direction of Lemma 2.4.1.)

2.6.13. (a) Prove that Lemma 2.4.1 also holds for mixed strategies, i.e.,
prove that σ1 ∈ ∆(S1) is not a best reply to any mixture σ2 ∈
∆(S2) if and only if σ1 is strictly dominated by some other strat-
egy σ ′1 (i.e., u1(σ ′1, s2) > u1(σ1, s2),∀s2 ∈ S2).

(b) For the game illustrated in Figure 2.6.2, prove that 1
2 ◦ T + 1

2 ◦ B
is not a best reply to any mixture over L and R. Describe a
strategy that strictly dominates it.
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L R

T 5,0 0,1

C 2,6 4,0

B 0,0 5,1

Figure 2.6.2: The game for Problem 2.6.13(b).

2.6.14. Suppose {(S1, u1), (S2, u2)} is a two player finite normal form game
and let Ŝ2 be a strict subset of S2. Suppose s′1 ∈ S1 is not a best
reply to any beliefs with support Ŝ2. Prove that there exists ε > 0
such that s′1 is not a best reply to any beliefs µ ∈ ∆(S2) satisfying
µ(Ŝ2) > 1− ε. Is the restriction to two players important?

2.6.15. Prove Lemma 2.4.2.

2.6.16. Is it necessary to assume that σ is a Nash equilibrium in the defi-
nition of normal form trembling hand perfection (Definition 2.5.1)?
Prove that every trembling hand perfect equilibrium of a finite nor-
mal form game is a Nash equilibrium in weakly undominated strate-
gies.
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Chapter 3

Games with Nature1

3.1 An Introductory Example

Example 3.1.1 (Incomplete information version of example 1.1.4)
Firm 1’s costs are private information, while firm 2’s are public. Na-
ture determines the costs of firm 1 at the beginning of the game,
with Pr(c1 = cH) = θ ∈ (0,1). As in example 1.1.4, firm i’s profit is

πi(q1, q2; ci) = [(a− q1 − q2)− ci]qi,
where ci is firm i’s cost. Assume cL, cH , c2 < a/2. A strategy for
player 2 is a quantity q2. A strategy for player 1 is a function q1 :
{cL, cH} → R. For simplicity, write qL for q1(cL) and qH for q1(cH).

Note that for any strategy profile ((qH , qL), q2), the associated
outcome is

θ ◦ (qH , q2)+ (1− θ) ◦ (qL, q2),
that is, with probability θ, the terminal node (qH , q2) is realized,
and with probability 1− θ, the terminal node (qL, q2) is realized.

To find a Nash equilibrium, we must solve for three numbers
q∗L , q∗H , and q∗2 .

Assume interior solution. We must have:

(q∗H , q∗L ) = arg max
qH ,qL

θ[(a− qH − q∗2 )− cH]qH
+ (1− θ)[(a− qL − q∗2 )− cL]qL.

1Copyright December 7, 2011 by George J. Mailath
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This implies pointwise maximization, i.e.,

q∗H = arg max
q1

[(a− q1 − q∗2 )− cH]q1

= 1
2
(a− q∗2 − cH).

and

q∗L =
1
2
(a− q∗2 − cL).

We must also have

q∗2 = arg max
q2

θ[(a− q∗H − q2 − c2]q2

+ (1− θ)[(a− q∗L − q2 − c2]q2

= arg max
q2

[(a− θq∗H − (1− θ)q∗L − q2)− c2]q2

=1
2

(
a− c2 − θq∗H − (1− θ)q∗L

)
.

Solving,

q∗H = a− 2cH + c2

3
+ 1− θ

6
(cH − cL)

q∗L = a− 2cL + c2

3
− θ

6
(cH − cL)

q∗2 = a− 2c2 + θcH + (1− θ) cL
3 «

3.2 Purification

Player i’s mixed strategy σi in a complete information game G is
said to be purified if in an incomplete information version of G
(with player i’s type space given by Ti), that player’s behavior can
be written as a pure strategy si : Ti → Ai such that

σi(ai) = Pr{si(ti) = ai},
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where Pr is given by the prior distribution over Ti (and so is player
j ≠ i beliefs over Ti).

Example 3.2.1

A B

A 9,9 0,5

B 5,0 7,7

Mixed strategy equilibrium: Let p = Pr {A}, then

9p = 5p + 7
(
1− p)

a 9p = 7− 2p

a 11p = 7 a p = 7
11
.

Trivial purification: give player i payoff irrelevant type ti where
ti ∼ U([0,1]), and t1 and t2 are independent. Then, the mixed
strategy eq is purified by many pure strategy eq in the incomplete
information game, such as

si(ti) =
{
B, if ti ≤ 4/11,

A, if ti ≥ 4/11.

Harsanyi (1973) purification: Consider game of incomplete in-
formation, denoted G(ε), where ti ∼ U([0,1]) and t1 and t2 are
independent:

A B

A 9+ εt1,9+ εt2 0,5

B 5,0 7,7

Pure strategy for player i is si : [0,1] → {A,B}. Suppose 2 is
following a cutoff strategy,

s2(t2) =
{
A, t2 ≥ t̄2,
B, t2 < t̄2,

with t̄2 ∈ (0,1).
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Type t1 expected payoff from A is

U1 (A, t1, s2) = (9+ εt1)Pr {s2(t2) = A}
= (9+ εt1)Pr

{
t2 ≥ t̄2

}
= (9+ εt1)(1− t̄2),

while from B is

U1 (B, t1, s2) = 5 Pr
{
t2 ≥ t̄2

}+ 7 Pr
{
t2 < t̄2

}
= 5(1− t̄2)+ 7t̄2
= 5+ 2t̄2.

Thus, A is optimal iff

(9+ εt1)(1− t̄2) ≥ 5+ 2t̄2

i.e.,

t1 ≥ 11t̄2 − 4
ε(1− t̄2).

Thus the best reply to the cutoff strategy s2 is a cutoff strategy with
t̄1 = (11t̄2 − 4)/ε(1 − t̄2).2 Since the game is symmetric, try for a
symmetric eq: t̄1 = t̄2 = t̄. So

t̄ = 11t̄ − 4
ε(1− t̄) ,

or
εt̄2 + (11− ε)t̄ − 4 = 0. (3.2.1)

Let t(ε) denote the value of t̄ satisfying (3.2.1). Note first that
t(0) = 4/11, and that writing (3.2.1) as g(t, ε) = 0, we can apply the
implicit function theorem to conclude that for ε > 0 but close to 0,
the cutoff type t(ε) is close to 4/11, the probability of the mixed
strategy eq in the unperturbed game. In other words, for ε small,
there is a symmetric equilibrium in cutoff strategies, with t̄ ∈ (0,1).
This equilibrium is not only pure, but almost everywhere strict!

2indeed, even if player 2 were not following a cutoff strategy, player 1’s best
reply is a cutoff strategy.
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The interior cutoff equilibrium of G(ε) approximates the mixed
strategy equilibrium of G(0) in the following sense: Let p(ε) be
the probability assigned to A by the symmetric cutoff equilibrium
strategy of G(ε). Then p(0) = 7/11 and p(ε) = 1 − t(ε). Since we
argued in the previous paragraph that t(ε) → 4/11 as ε → 0, we
have that for all η > 0, there exists ε > 0 such that

|p(ε)− p(0)| < η. «

Harsanyi’s (1973) purification theorem is the most compelling
justification for mixed equilibria in finite normal form games: Take
any sequence of incomplete-information games, where each player’s
payoffs are subject to private shocks, converging to the complete-
information normal form game. Harsanyi proved that every equilib-
rium (pure or mixed) of the original game is the limit of equilibria
of these close-by games with incomplete information. Moreover, in
the incomplete-information games, players have essentially strict
best replies, and so will not randomize. Consequently, a mixed
strategy equilibrium can be viewed as a pure strategy equilibrium
of any close-by game of incomplete information.

See Govindan, Reny, and Robson (2003) for a modern exposition
and generalization of Harsanyi (1973). A brief introduction can also
be found in Morris (2008).

3.3 Auctions and Related Games

Example 3.3.1 (First-price sealed-bid auction—private values)
Bidder i’s value for the object, vi is known only to i. Nature

chooses vi, i = 1,2 at the beginning of the game, with vi being
independently drawn from the interval [

¯
vi, v̄i], with CDF Fi, density

fi. Bidders know Fi (and so fi).
This is an example of independent private values.

Remark 3.3.1 An auction (or similar environment) is said to have
private values if each buyer’s (private) information is sufficient to
determine his value (i.e., it is a sufficient statistic for the other buy-
ers’ information). The values are independent if each buyer’s pri-
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vate information is stochastically independent of every other bid-
der’s private information.

An auction (or similar environment) is said to have interdepen-
dent values if the value of the object to the buyers is unknown at
the start of the auction, and if a bidder’s (expectation of the) value
can be affected by the private information of other bidders. If all
bidders have the same value, then we have the case of pure common
value.

	

Set of possible bids, R+.
Bidder i’s ex post payoff as a function of bids b1 and b2, and

values v1 and v2:

ui(b1, b2, v1, v2) =


0, if bi < bj,
1
2 (vi − bi) , if bi = bj,
vi − bi, if bi > bj.

Suppose 2 uses strategy σ2 : [
¯
v2, v̄2] → R+. Then, bidder 1’s

expected (or interim) payoff from bidding b1 at v1 is

U1 (b1, v1;σ2) =
∫
u1 (b1, σ2 (v2) , v1, v2) dF2(v2)

= 1
2
(v1 − b1)Pr {σ2(v2) = b1}

+
∫
{v2:σ2(v2)<b1}

(v1 − b1) f2 (v2) dv2.

Player 1’s ex ante payoff from the strategy σ1 is given∫
U1(σ1(v1), v1;σ2)dF1(v1),

and so for an optimal strategy σ1, the bid b1 = σ1(v1) must maxi-
mize U1(b1, v1;σ2) for almost all v1.

Suppose σ2 is strictly increasing. Then, Pr {σ2 (v2) = b1} = 0
and

U1 (b1, v1;σ2) =
∫
{v2:σ2(v2)<b1}

(v1 − b1) f2 (v2) dv2
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= E[v1 − b1 | winning]Pr{winning}
= (v1 − b1)Pr {σ2 (v2) < b1}
= (v1 − b1)Pr{v2 < σ−1

2 (b1)}
= (v1 − b1)F2(σ−1

2 (b1)).

Assuming σ2 is, moreover, differentiable, and an interior maximum,
the first order condition is

0 = −F2

(
σ−1

2 (b1)
)+ (v1 − b1) f2

(
σ−1

2 (b1)
) dσ−1

2 (b1)
db1

.

But
dσ−1

2 (b1)
db1

= 1

σ ′2(σ−1
2 (b1))

,

so
F2

(
σ−1

2 (b1)
)
σ ′2
(
σ−1

2 (b1)
) = (v1 − b1) f2

(
σ−1

2 (b1)
)
,

i.e.,

σ ′2
(
σ−1

2 (b1)
) = (v1 − b1) f2

(
σ−1

2 (b1)
)

F2

(
σ−1

2 (b1)
) .

Suppose F1 = F2 and suppose the eq is symmetric, so that σ1 =
σ2 = σ̃ , and b1 = σ1 (v) =⇒ v = σ−1

2 (b1). Then,

σ̃ ′(v) = (v − σ̃ (v))f (v)
F(v)

. (3.3.1)

If v̄ =
¯
v+1 and values are uniformly distributed on [

¯
v,

¯
v+1], then

σ̃ ′ (v) = v − σ̃ (v)
v −

¯
v

,

i.e.,
(v −

¯
v)σ̃ ′(v)+ σ̃ (v) = v.

But,
d
dv

(
v −

¯
v
)
σ̃ (v) = (v −

¯
v
)
σ̃ ′ (v)+ σ̃ (v) ,

so (
v −

¯
v
)
σ̃ (v) = v

2

2
+ k,
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where k is a constant of integration. Moreover, evaluating both
sides at v =

¯
v shows that k = −

¯
v2/2, and so

(
v −

¯
v
)
σ̃ (v) = v2 −

¯
v2

2

=⇒ σ̃ (v) = 1
2

(
v +

¯
v
)
.

As an illustration of the kind of arguments that are useful, I
now argue that every Nash equilibrium must be in nondecreasing
strategies.

Lemma 3.3.1 Suppose (σ1, σ2) is a Nash equilibrium of the first price
sealed bid auction with independent private values, with CDF Fi on
[
¯
v1, v̄1]. Suppose type v ′i wins the auction with positive probability.

Then, σi(v ′′i ) ≥ σi(v ′i) for all v ′′i > v
′
i .

Proof. Suppose not. Then there exists v ′′1 < v ′1 with σ1(v ′1) =: b′1 >
b′′1 := σ1(v ′′1 ).

Incentive compatibility implies

U1(b′1, v ′1;σ2) ≥ U1(b′′1 , v ′1;σ2),
and U1(b′1, v ′′1 ;σ2) ≤ U1(b′′1 , v ′′1 ;σ2).

Note that

U1(b1, v ′1;σ2)−U1(b1, v ′′1 ;σ2) =
1
2
(v ′1 − v ′′1 )Pr{σ2(v2) = b1} + (v ′1 − v ′′1 )Pr{σ2(v2) < b1}.

Subtracting the second from the first inequality gives

U1(b′1, v ′1;σ2)−U1(b′1, v ′′1 ;σ2) ≥ U1(b′′1 , v ′1;σ2)−U1(b′′1 , v ′′1 ;σ2),

and so substituting,

1
2
(v ′1 − v ′′1 )Pr{σ2(v2) = b′1} + (v ′1 − v ′′1 )Pr{σ2(v2) < b′1} ≥

1
2
(v ′1 − v ′′1 )Pr{σ2(v2) = b′′1 } + (v ′1 − v ′′1 )Pr{σ2(v2) < b′′1 },
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and simplifying (and dividing by (v ′1 − v ′′1 ) < 0) we get

0 ≥ Pr{b′′1 ≤ σ2(v2) < b′1}
+ 1

2

{
Pr{σ2(v2) = b′1} − Pr{σ2(v2) = b′′1 }

}
= Pr{b′′1 < σ2(v2) < b′1}

+ 1
2

{
Pr{σ2(v2) = b′1} + Pr{σ2(v2) = b′′1 }

}
.

This implies

0 = Pr{σ2(v2) = b′1},
0 = Pr{σ2(v2) = b′′1 },

and 0 = Pr{b′′1 < σ2(v2) < b′1}.
That is, bidder 2 does not make a bid between b′′1 and b′1, and there
are no ties at b′1 or b′′1 . A bid of b′1 and b′′1 therefore wins with the
same probability. But this implies a contradiction: Since b′1 wins
with positive probability, v ′1 strictly prefers to win with the same
probability at the strictly lower bid of b′′1 .

«

Example 3.3.2 (independent private values, symmetric n bidders)
Suppose now there n identical bidders, with valuations vi indepen-
dently distributed on [

¯
v, v̄] according to F with density f .

Interested in characterizing the symmetric Nash equilibrium (if
it exists). Let σ be the symmetric strategy, and suppose it is strictly
increasing. Consequently, the probability of a tie is zero, and so
bidder i’s interim payoff from the bid bi is

Ui(bi, vi;σ) = E[vi − bi | winning]Pr{winning}
= (vi − bi)Pr{vj < σ−1(bi), ∀j ≠ i}
= (vi − bi)

∏
j≠i

Pr{vj < σ−1(bi)}

= (vi − bi)Fn−1(σ−1(bi)).

As before, assuming σ is differentiable, and an interior solution,
the first order condition is
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0 = −Fn−1(σ−1(bi))

+ (vi − bi)(n− 1)Fn−2(σ−1(bi))f (σ−1(bi))
dσ−1(bi)
dbi

,

and simplifying (similarly to (3.3.1)), we get

σ ′(v)Fn−1(v)+ σ(v)(n− 1)Fn−2(v)f(v)
= v(n− 1)Fn−2(v)f(v),

that is,
d
dv
σ(v)Fn−1(v) = v(n− 1)Fn−2(v)f(v),

or (where the constant of integration is zero, since F(
¯
v) = 0),

σ(v) = 1
Fn−1(v)

∫ v
¯
v
xdFn−1(x).

Remark 3.3.2 (Order statistics) Given n independent draws from
a common distribution F , denoted v1, . . . , vn, let y(n)1 , y(n)2 , . . . , y(n)n

denote the rearrangement satisfying y(n)1 ≥ y(n)2 ≥ . . . ≥ y(n)n . The
statistic y(n)k is the kth-order statistic. (Warning: Some authors re-
verse the inequalities.)

The distribution of y(n)1 is Pr{y(n)1 ≤ y} = Fn(y).
	

If σ is a symmetric Nash equilibrium, then

σ(v) = E[y(n−1)
1 | y(n−1)

1 ≤ v].
That is, each bidder bids the expectation of the maximum of all the
other bidders’ valuation, conditional on that valuation being less
than his (i.e., conditional on his value being the highest). Equiv-
alently, the bidder bids the expected value of the second order
statistic of values, conditional on his value being the first order
statistic. «
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Example 3.3.3 (First-price sealed-bid auction—pure common values)
Each bidder receives a private signal about the value of the object,
ti, with ti ∈ Ti = [0,1], uniformly independently distributed. The
common (to both players) value of the object is v = t1 + t2.

Ex post payoffs are given by

ui(b1, b2, t1, t2) =


t1 + t2 − bi, if bi > bj,
1
2(t1 + t2 − bi), if bi = bj,
0, if bi < bj.

Suppose 2 uses strategy σ2 : T2 → R+. Suppose σ2 is strictly
increasing. Then, t1’s expected payoff from bidding b1 is

U1(b1, t1;σ2) = E[t1 + t2 − b1 | winning]Pr{winning}
= E[t1 + t2 − b1 | t2 < σ−1

2 (b1)]Pr{t2 < σ−1
2 (b1)}

= (t1 − b1)σ−1
2 (b1)+

∫ σ−1
2 (b1)

0
t2dt2

= (t1 − b1)σ−1
2 (b1)+ (σ−1

2 (b1))2/2.

If σ2 is differentiable, the first order condition is

0 = −σ−1
2 (b1)+ (t1 − b1)

dσ−1
2 (b1)
db1

+ σ−1
2 (b1)

dσ−1
2 (b1)
db1

,

and so
σ−1

2 (b1)σ ′2(σ−1
2 (b1)) = (t1 + σ−1

2 (b1)− b1).
Suppose F1 = F2 and suppose the eq is symmetric, so that σ1 =
σ2 = σ , and b1 = σ1(t) =⇒ t = σ−1

2 (b1). Then,

tσ ′(t) = 2t − σ(t).
Integrating,

tσ(t) = t2 + k,
where k is a constant of integration. Evaluating both sides at t = 0
shows that k = 0, and so

σ(t) = t.
Note that this is NOT the profile that results from the analysis

of the private value auction when
¯
v = 1/2 (the value of the object
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in the common value auction, conditional on only t1, is E[t1 + t2 |
t1] = t1 + 1/2). In particular, letting v ′ = t + 1

2 , we have

σprivate(t) = σ̃ (v ′) = v
′ + 1/2

2
= t + 1

2
> t = σpublic(t).

This illustrates the winner’s curse: E[v | t1] > E[v|t1, winning]. In
particular, in the equilibrium just calculated,

E[v | t1, winning] = E[t1 + t2 | t1, t2 < t1]
= t1 + 1

Pr {t2 < t1}
∫ t1

0
t2dt2

= t1 + 1
t1

[
(t2)2 /2

]t1
0
= 3t1

2
,

while E[v | t1] = t1 + 1
2 > 3t1/2 (recall t1 ∈ [0,1]).

Notice moreover, that the bidder bids as if it is a private values
auction and the value of the object is E[v1 | t1, t2 = t1]. «

Example 3.3.4 (War of attrition)
Action spaces Si = R+.
Private information (type) ti ∈ Ti ≡ R+, CDF Fi, density fi, with

fi strictly positive on Ti.
Ex post payoffs

ui(s1, s2, t1, t2) =
{
ti − sj, if sj < si,
−si, if sj ≥ si.

Suppose 2 uses strategy σ2 : T2 → S2. Then, t1’s expected (or
interim) payoff from stopping at s1 is

U1 (s1, t1;σ2) =
∫
u1 (s1, σ2 (t2) , t) dF2 (t2)

= −s1 Pr {σ2 (t2) ≥ s1} +
∫
{t2:σ2(t2)<s1}

(t1 − σ2 (t2))dF2 (t2) .

Any Nash equilibrium is sequentially rational on the equilibrium
path: Suppose τ < σ1(t1) is reached (i.e., 2 has not yet dropped
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out) and Pr{σ2(t2) > τ} > 0 (so that such an event has positive
probability). Is stopping at σ1 (t1) still optimal? Suppose that, con-
ditional on play reaching τ , the stopping time ŝ1 > τ yields a higher
payoff than the original stopping time s1 = σ1(t1), i.e.,

Et2[u1(s1, σ2(t2), t) | σ2(t2) > τ]
< Et2[u1(ŝ1, σ2(t2), t) | σ2(t2) > τ]

Then,

U1(s1, t1;σ2) = Et2[u1(s1, σ2(t2), t) | σ2(t2) ≤ τ]Pr{σ2(t2) ≤ τ}
+ Et2[u1(s1, σ2(t2), t) | σ2(t2) > τ]Pr{σ2(t2) > τ}
< Et2[u1(s1, σ2(t2), t) | σ2(t2) ≤ τ]Pr{σ2(t2) ≤ τ}
+ Et2[u1(ŝ1, σ2(t2), t) | σ2(t2) > τ]Pr{σ2(t2) > τ}
= Et2[u1(ŝ1, σ2(t2), t) | σ2(t2) ≤ τ]Pr{σ2(t2) ≤ τ}
+ Et2[u1(ŝ1, σ2(t2), t) | σ2(t2) > τ]Pr{σ2(t2) > τ}
= U1(ŝ1, t1;σ2),

and so s1 cannot have been the unconditionally optimal stopping
time. This is an application of the principle of Problem 2.6.10 to an
infinite game.

Define s̄i ≡ inf{si : Pr{σi(ti) ≤ si} = 1} = inf{si : Pr{σi(ti) >
si} = 0}, where inf{∅} = ∞. It can be shown that in any Nash
eq with s̄1, s̄2 > 0, s̄1 = s̄2. (If s̄2 < s̄1, then for sufficiently large
types for player 2, there are late stopping times that are profitable
deviations—see Problem 3.6.3).

Lemma 3.3.2 Suppose (σ1, σ2) is a Nash eq. profile. Then, σi is
nondecreasing for i = 1,2.

Proof. We use a standard revealed preference argument. Let s′1 =
σ1(t′1) and s′′1 = σ1(t′′1 ), with s′1, s′′1 ≤ s̄1. If σ1 is a best reply to σ2,

U1(s′1, t′1;σ2) ≥ U1(s′′1 , t′1;σ2)

and
U1(s′′1 , t′′1 ;σ2) ≥ U1(s′1, t′′1 ;σ2).

59



60 CHAPTER 3. GAMES WITH NATURE

Thus,

U1(s′1, t′1;σ2)−U1(s′1, t′′1 ;σ2) ≥ U1(s′′1 , t′1;σ2)−U1(s′′1 , t′′1 ;σ2).

Since,

U1(s1, t′1;σ2)−U1(s1, t′′1 ;σ2) = (t′1 − t′′1 )Pr{t2 : σ2(t2) < s1}
we have

(t′1 − t′′1 )Pr{t2 : σ2(t2) < s′1} ≥ (t′1 − t′′1 )Pr{t2 : σ2(t2) < s′′1 },
i.e.,

(t′1 − t′′1 )
[
Pr{t2 : σ2(t2) < s′1} − Pr{t2 : σ2(t2) < s′′1 }

] ≥ 0.

Suppose t′1 > t′′1 . Then, Pr{t2 : σ2(t2) < s′1} ≥ Pr{t2 : σ2(t2) <
s′′1 }. If s′1 < s′′1 , then Pr{t2 : s′1 ≤ σ2(t2) < s′′1 } = 0. That is, 2 does
not stop between s′1 and s′′1 .

The argument to this point has only used the property that σ1 is
a best reply to σ2. To complete the argument, we appeal to the fact
that s̄1 ≤ s̄2 (an implication of σ2 being a best reply to σ1), which
implies Pr{σ2(t2) ≥ s′′1 } > 0, and so stopping earlier (at a time
s1 ∈ (s′1, s′′1 )) is a profitable deviation for t′′1 . Thus, s′1 = σ1(t′1) ≥
s′′1 = σ1(t′′1 ).

It can also be shown that in any Nash eq, σi is a strictly increas-
ing and continuous function. Thus,

U1 (s1, t1;σ2)

= −s1 Pr
{
t2 ≥ σ−1

2 (s1)
}+ ∫

{t2<σ−1
2 (s1)}

(t1 − σ2 (t2)) f2 (t2) dt2

= −s1
(
1− F2

(
σ−1

2 (s1)
))+ ∫ σ−1

2 (s1)

0
(t1 − σ2 (t2)) f2 (t2) dt2.

Assuming σ2 is, moreover, differentiable, the first order condition
is

0 = − (1− F2

(
σ−1

2 (s1)
))
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+ s1f2

(
σ−1

2 (s1)
) dσ−1

2 (s1)
ds1

+ (t1 − s1) f2

(
σ−1

2 (s1)
) dσ−1

2 (s1)
ds1

.

But
dσ−1

2 (s1)
ds1

= 1
/
σ ′2
(
σ−1

2 (s1)
)
,

so {
1− F2

(
σ−1

2 (s1)
)}
σ ′2
(
σ−1

2 (s1)
) = t1f2

(
σ−1

2 (s1)
)
,

i.e.,

σ ′2
(
σ−1

2 (s1)
) = t1f2

(
σ−1

2 (s1)
){

1− F2

(
σ−1

2 (s1)
)} .

Suppose F1 = F2 and suppose the eq is symmetric, so that σ1 =
σ2 = σ , and s1 = σ1 (t) =⇒ t = σ−1

2 (s1). Then,

σ ′ (t) = tf (t)
1− F (t).

Since σ (0) = 0,

σ (t) =
∫ t

0

τf (τ)
1− F (τ) dτ.

If f (t) = e−t, then F (t) = 1− e−t, and

σ (t) =
∫ t

0

τe−τ

e−τ
dτ = t2/2.

Note that σ (t) > t for t > 2!
If we extend the strategy space to allow for never stopping, i.e.,

Si = R+∪{∞} and allow payoffs to take on the value −∞, then there
are also two asymmetric equilibria, in which one player drops out
immediately, and the other never drops out. «

Example 3.3.5 (Double Auction) Let vs ∼ U [0,1], vb ∼ U [0,1], vs
and vb independent. If sale occurs at price p, buyer receives vb−p,
seller receives p − vs . Seller and buyer simultaneously propose
prices ps ∈ [0,1] and pb ∈ [0,1] respectively. Trade at 1

2

(
ps + pb

)
if ps ≤ pb; otherwise no trade.
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Buyer’s strategy is a function p̃b : [0,1]→ [0,1], seller’s strategy
is a function p̃s : [0,1] → [0,1]. We check for interim optimality
(i.e., optimality of a strategy conditional on a type). (With a con-
tinuum of strategies, ex ante optimality formally requires only that
the strategy is optimal for almost all types.)

Fix seller’s strategy, p̃s : [0,1]→ [0,1], buyer’s valuation vb and
his bid pb. Buyer’s (conditional) expected payoff is:

Ub
(
pb, vb; p̃s,

) = ∫
{vs :pb≥p̃s(vs)}

(
vb − 1

2

(
p̃s (vs)+ pb

))
dvs

=Pr
({
vs : pb ≥ p̃s (vs)

})
×
(
vb − 1

2
pb − 1

2
E
(
p̃s (vs)

∣∣{vs : pb ≥ p̃s (vs)
}))

.

Suppose that seller’s strategy is linear in his valuation, i.e. p̃s (vs) =
as + csvs , with as ≥ 0, cs > 0 and as + cs ≤ 1. Then,

Pr
({
vs : pb ≥ p̃s (vs)

}) = Pr
({
vs : vs ≤ pb − ascs

})
.

So,

Pr
({
vs : pb ≥ p̃s (vs)

}) =


0, if pb ≤ as,
pb−as
cs
, if as ≤ pb ≤ as + cs,

1, if pb ≥ as + cs,
and so

E
(
p̃s (vs)

∣∣{vs : pb ≥ p̃s (vs)
}) = as + csE (vs ∣∣∣∣{vs : vs ≤ pb − ascs

})
(and if as ≤ pb ≤ as + cs)

= as + cs 1
2
pb − as
cs

= pb + as
2

.

So,

E
(
p̃s (vs)

∣∣{vs : pb ≥ p̃s (vs)
}) =


not defined, if pb < as,
pb+as

2 , if as ≤ pb ≤ as + cs,
as + 1

2cs, if pb ≥ as + cs.
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and

Ub
(
pb, vb; p̃s,

) =


0, if pb ≤ as,(
pb−as
cs

)(
vb − 3

4pb − 1
4as

)
, if as ≤ pb ≤ as + cs,

vb − 1
2pb − 1

2as − 1
4cs, if pb ≥ as + cs.

The interior expression is maximized by solving the FOC

0 = 1
cs

[
vb − 3

4
pb − 1

4
as − 3

4
pb + 3

4
as
]
,

and so

6
4
pb =vb − as

4
+ 3

4
as

=vb + 1
2
as

⇒ pb =1
3
as + 2

3
vb.

Thus any bid less than as is optimal if vb ≤ as , 1
3as + 2

3vb is the

unique optimal bid if as < vb ≤ as + 3
2cs and as + cs is the unique

optimal bid if vb ≥ as + 3
2cs . Thus strategy p̃b (vb) = 1

3as + 2
3vb is a

best response to p̃s (vs) = as + csvs as long as 1 ≤ as + 3
2cs .

Symmetric argument shows that if p̃b (vs) = ab + cbvb, then
seller’s optimal bid (if interior) is p̃s (vs) = 2

3vs+ 1
3 (ab + cb). Thus a

linear equilibrium must have ab = 1
3as , as = 1

3 (ab + cb), cb = 2
3 and

cs = 2
3 , so as = 1

4 and ab = 1
12 . There is then a linear equilibrium

with:

p̃s (vs) = 1
4
+ 2

3
vs

p̃b (vb) = 1
12
+ 2

3
vb

Efficient trade requires trade if vs < vb, and no trade if vs > vb.
Under linear equilibrium, trade occurs iff p̃s(vs) ≤ p̃b(vb), which

requires

vs + 1
4
≤ vb.
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Thus, for valuations in the set
{
(vs, vb) | vs < vb < vs + 1

4

}
, trade is

efficient but does not occur in equilibrium.
Note: there are other equilibria (see Problem 3.6.5). «

3.4 Games of Incomplete Information

Example 3.4.1 Suppose payoffs of a two player two action game
are given by one of the two bimatrices:

H T

H 1,1 0,0

T 0,1 1,0

H T

H 1,0 0,1

T 0,0 1,1

Either player II has dominant strategy to play H or a dominant
strategy to play T . Suppose that II knows his own payoffs but
player I thinks there is probability α that payoffs are given by the
first matrix, probability 1−α that they are given by the second ma-
trix. Say that player II is of type 1 if payoffs are given by the first
matrix, type 2 if payoffs are given by the second matrix. Clearly
equilibrium must have: II plays H if type 1, T if type 2; I plays H if
α > 1

2 , T if α < 1
2 . But how to analyze this problem in general? «

Definition 3.4.1 (Harsanyi) A game of incomplete information or
Bayesian game is the collection

{
(Ai, Ti, pi, ui)ni=1

}
, where

• Ai is i’s action space,

• Ti is i’s type space,

• pi : Ti → ∆
(∏

j≠i Tj
)

is i’s subjective beliefs about the other
players’ types, given i’s type and

• ui :
∏
j Aj ×

∏
j Tj → R is i’s payoff function.
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A strategy for i is
si : Ti → Ai.

Let s(t) ≡ (s1(t1), . . . , sn(tn)), etc.

Definition 3.4.2 The profile (ŝ1, . . . , ŝn) is a Bayesian (or Bayes-Nash)
equilibrium if, for all i and all ti ∈ Ti,

Et−i[ui(ŝ(t), t)] ≥ Et−i[ui(ai, ŝ−i(t−i), t)], ∀ai ∈ Ai, (3.4.1)

where the expectation over t−i is taken with respect to the probability
distribution pi(ti).

If the type spaces are finite, then the probability i assigns to
the vector t−i ∈

∏
j≠i ≡ T−i when his type is ti can be denoted

pi(t−i | ti), and (3.4.1) can be written as∑
t−i

ui(ŝ(t), t)pi(t−i | ti) ≥
∑
t−i

ui(ai, ŝ−i(t−i)pi(t−i | ti), ∀ai ∈ Ai.

Definition 3.4.3 The subjective beliefs are consistent or are said to
satisfy the Common Prior Assumption (CPA) if there exists a prob-
ability distribution p ∈ ∆ (∏i Ti

)
such that pi(ti) is the probability

distribution on T−i conditional on ti implied by p.

If the type spaces are finite, this is equivalent to

pi (t−i|ti) = p (t)∑
t′−i p

(
t′−i, ti

) .
If beliefs are consistent, Bayesian game can be interpreted as

having an initial move by nature, which selects t ∈ T according
to p. The Common Prior Assumption is controversial, sometimes
viewed as a mild assumption (Aumann, 1987) and sometimes not
(Gul, 1998). Nonetheless, in applications it is standard to assume
it.

For simplicity of notation only, suppose type spaces are finite.
Viewed as a game of complete information, a profile ŝ is a Nash
equilibrium if, for all i,∑

t
ui(ŝ(t), t)p(t) ≥

∑
t
ui(si(ti), ŝ−i(t−i), t)p(t), ∀si : Ti → Ai.
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This inequality can be rewritten as (where p∗i (ti) ≡
∑
t−i p (t−i, ti))

∑
ti

∑
t−i

ui (ŝ (t) , t)pi (t−i|ti)
p∗i (ti) ≥

∑
ti

∑
t−i

ui (si (ti) , ŝ−i (t−i) , t)pi (t−i|ti)
p∗i (ti) ,

∀si : Ti → Ai.

If p∗i (ti) ≠ 0, this is then equivalent to the definition of a Bayesian
eq.

3.5 Higher Order Beliefs and Global Games

Example 3.5.1

A B

A θ,θ θ − 9,5

B 5, θ − 9 7,7

For θ = 9, this is the game studied in examples 3.2.1 and 2.5.5.
Suppose, as in example 3.2.1, that there is incomplete infor-

mation about payoffs. However, now the information will be cor-
related. In particular, suppose θ ∈ {4,9}, with prior probability
Pr {θ = 9} > 7/9.

If players have no information about θ, then there are two pure
strategy Nash eq, with (A,A) Pareto dominating (B, B). Now sup-
pose players have some private information represented as follows:
Underlying state space is Ω ≡ {ω1,ω2, . . . ,ωK}, K odd. In all states
ωk, k ≤ K − 1, θ = 9, while in state ωK, θ = 4. Player 1 has
a partition on Ω given by {{ω1} , {ω2,ω3} , . . . , {ωK−1,ωK}}; we
denote {ω1} by t0

1 , and {ω2`,ω2`+1} by t`1 . Player 2 has a parti-
tion {{ω1,ω2} , {ω3,ω4} , . . . , {ωK−2,ωK−1} , {ωK}}, and we denote
{ω2`−1,ω2`} by t`2 and {ωK} by t(K+1)/2

2 . Finally, the probability dis-
tribution on Ω is uniform. Figure 3.5.1 illustrates Ω for K = 9.
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ω1 ω2 ω3 ω4 ω5 ω6 ω7 ω8 ω9

Figure 3.5.1: The dashed lines describe player 1’s information sets, while
the solid lines describe player 2’s.

In stateω5, both players know θ = 9, player 1 knows that
player 2 knows that θ = 9, but player 2 assigns probability
1/2 to ω6, and so to the event that player 1 does not know
that θ = 9.

In state ω4, both players know θ = 9, both players know
that both players know that θ = 9, player 2 knows that player
1 knows that player 2 knows that θ = 9, but player 1 does
not know that player 2 knows that player 1 knows that θ = 9.

A pure strategy for player 1 is

s1 : {t0
1 , t1

1 , . . . , t
(K−1)/2
1 } → {A,B},

while a pure strategy for player 2 is

s2 : {t1
2 , t2

2 , . . . , t
(K+1)/2
2 } → {A,B}.

Before we begin examining eq, note that Pr {θ = 9} = (K − 1) /K,
and this converges to 1 as K →∞.

This game of asymmetric information has a unique equilibrium
(idea similar to Rubinstein’s (1989) email game).

Claim 3.5.1 This game has a unique Nash equilibrium (ŝ1, ŝ2), and
in this equilibrium, both players necessarily choose B, i.e., ŝ1(t1) =
ŝ2(t2) = B for all t1 and t2.

Proof. (by induction) Let s∗ be a Nash equilibrium. Note first that
s∗2 (t

(K+1)/2
2 ) = B (since B is the unique best response at t(K+1)/2

2 ).

Suppose s∗2
(
t`+1

2

)
= B. Then, since

Pr
{
t`+1

2 |t`1
}
= Pr {{ω2`+1,ω2`+2} | {ω2`,ω2`+1}}

= Pr {ω2`+1}
Pr {ω2`,ω2`+1} =

1/K
2/K

= 1
2
,

67



68 CHAPTER 3. GAMES WITH NATURE

s∗1
(
t`1
)
= B (the probability that 2 plays B is at least 1/2). Moreover,

if s∗1
(
t`1
)
= B, then since

Pr
{
t`1|t`2

}
= Pr {{ω2`,ω2`+1} | {ω2`−1,ω2`}}

= Pr {ω2`}
Pr {ω2`−1,ω2`} =

1
2
,

we also have s∗2
(
t`2
)
= B.

The proof actually proves something a little stronger, that only
profile that survives the iterated deletion of strictly dominated strate-
gies involves both players always choosing B. Since B is the unique
best response at t(K+1)/2

2 , any strategy s′2 satisfying s′2(t
(K+1)/2
2 ) = A

is strictly dominated by the strategy ŝ′2 given by ŝ′2(t
(K+1)/2
2 ) = B

and ŝ′2(t2) = s′(t2) for all other t2. We now proceed by iteratively
deleting strictly dominated strategies. «

The complete information version of the game with θ = 9 has
two strict equilibria. None the less, by making a small perturbation
to the game by introducing a particular form of incomplete infor-
mation, the result is stark, with only BB surviving, even in a state
like ω1, where both players know the state to an some large finite
order.

Carlsson and van Damme (1993) introduced the term global games
to emphasize the importance of viewing the benchmark complete
information game in a broader (global), i.e., perturbed, context. The
term global game is now commonly understood to refer to a mod-
elling that incorporates both a richness assumption on the uncer-
tainty (so that each action is dominant for at least one value of the
uncertainty) and small noise (as illustrated next).

Example 3.5.2 (Global Games) The stage game is as in example 3.5.1.
We change the information structure: We now assume θ is uni-
formly distributed on the interval [0,20]. For θ < 5, B is strictly
dominant, while if θ > 16, A is strictly dominant.

Each player i receives a signal xi, with x1 and x2 independently
and uniformly drawn from the interval [θ − ε, θ + ε] for ε > 0. A
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pure strategy for player i is a function

si : [−ε, 20+ ε]→ {A,B}.
First observe that, for xi ∈ [ε, 20− ε], player i’s posterior on θ

is uniform on [xi − ε, xi + ε]. This is most easily seen as follows:
Letting g be the density of θ and h be the density of x given θ, we
immediately have g(θ) = 1

20 for all θ ∈ [0,20] and

h(x | θ) =
{

1
2ε , if x ∈ [θ − ε, θ + ε],
0, otherwise.

Since

h(x | θ) = f(x, θ)
g(θ)

,

where f is the joint density, we have

f(x, θ) =
{

1
40ε , if x ∈ [θ − ε, θ + ε] and θ ∈ [0,20],
0, otherwise.

The marginal density for x ∈ [ε, 20−ε] is thus simply the constant
function 1

20 , and so the density of θ conditional on an x ∈ [ε, 20−ε]
is the constant function 1

2ε on the interval [x − ε, x + ε].
Similar considerations show that for xi ∈ [ε, 20− ε], player i’s

posterior on xj is symmetric around xi with support [xi− 2ε, xi+
2ε]. Hence, Pr{xj > xi | xi} = Pr{xj < xi | xi} = 1

2 .

Claim 3.5.2 For ε small, the game has an essentially unique Nash
equilibrium (s∗1 , s∗2 ), given by

s∗i (xi) =
{
A, if xi ≥ 101

2 ,

B, if xi < 101
2 .

Proof. We again apply iterated deletion of dominated strategies.
Suppose xi < 5. Then, player i’s conditional expected payoff from
A is less than that from B irrespective of player j’s action, and
so i plays B for xi < 5 (as does j for xj < 5). But then at xi = 5,
player i assigns at least probability 1

2 to j playing B, and so i strictly
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prefers B. Let x∗i be the largest signal for which B is implied by
iterated dominance (ı.e., x∗i = sup{x′i | B is implied by iterated
strict dominance for all xi < x′i}). By symmetry, x∗1 = x∗2 = x∗.
At xi = x∗, player i cannot strictly prefer B to A (otherwise, we
can expand the set of signals for which iterated dominance implies
B), and he assigns at least probability 1

2 to j playing B. Hence,

x∗ ≥ 101
2 .

Similarly, for xi > 16, player i’s conditional expected payoff
from A is greater than that from B irrespective of player j’s ac-
tion, and so i plays A for xi > 16 (as does j for xj > 16). Let x∗∗i
be the smallest signal for which A is implied by iterated dominance
(ı.e., x∗∗i = inf{x′i | A is implied by iterated strict dominance for all
xi > x′i}). By symmetry, x∗∗1 = x∗∗2 = x∗∗. At xi = x∗∗, player i
cannot strictly prefer A to B, and he assigns at least probability 1

2

to j playing A. Hence, x∗∗ ≤ 101
2 .

But then

10
1
2
≤ x∗ ≤ x∗∗ ≤ 10

1
2
.

The iterated deletion argument connecting xi in the dominance
regions to values not in the dominance regions is often called an
infection argument.

This idea is not dependent on the particular distributional as-
sumptions made here. See Morris and Shin (2003) for details. «

Remark 3.5.1 (CAUTION) Some people have interpreted the global
games literature as solving the multiplicity problem, at least in
some settings. There is in fact a stronger result: Weinstein and
Yildiz (2007) show that “almost all” games have a unique rationaliz-
able outcome (which of course implies a unique Nash equilibrium)!

Does this mean that we don’t need to worry about multiplicity?
Of course not: This is a result about robustness. The uniqueness of
the rationalizable outcome is driven by similar ideas to that in ex-
ample 3.5.1—“almost all” simply means that all information struc-
tures can be approximated by information structures allowing an
infection argument. In order for a modeler to be confident that he
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knows the unique rationalizable outcome, he needs to be confident
of the information structure.

	

3.6 Problems

3.6.1. There are two firms, 1 and 2, producing the same good. The inverse
demand curve is given by P = θ − q1 − q2, where qi ∈ R+ is firm
i’s output. (Note that we are allowing negative prices.) There is de-
mand uncertainty with nature determining the value of θ, assigning
probability α ∈ (0,1) to θ = 3, and complementary probability 1−α
to θ = 4. Firm 2 knows (is informed of) the value of θ, while firm 1
is not. Finally, each firm has zero costs of production. As usual, as-
sume this description is common knowledge. Suppose the two firms
choose quantities simultaneously. Define a strategy profile for this
game. Describe the Nash equilibrium behavior and interim payoffs
(which may be unique).

3.6.2. Consider the following variant of a sealed bid auction in a setting
of independent private values. The highest bidder wins, and pays
a price determined as the weighted average of the highest bid and
second highest bid, with weight α ∈ (0,1) on the highest bid (ties are
resolved by a fair coin). Suppose there are two bidders, with bidder
i’s value vi randomly drawn from the interval [

¯
vi, v̄i] according to

the distribution function Fi, with density fi.

(a) What are the interim payoffs of player i?

(b) Suppose (σ1, σ2) is a Nash equilibrium of the auction, and as-
sume σi is a strictly increasing and differentiable function, for
i = 1,2. Describe the pair of differential equations the strate-
gies must satisfy.

(c) Suppose v1 and v2 are uniformly and independently distributed
on [0,1]. Describe the differential equation a symmetric in-
creasing and differentiable equilibrium bidding strategy must
satisfy.

(d) Solve the differential equation found in part 3.6.2(c). [Hint:
Conjecture a functional form.]

71



72 CHAPTER 3. GAMES WITH NATURE

(e) For the assumptions under part 3.6.2(c), prove the strategy
found in part 3.6.2(d) is a symmetric equilibrium strategy.

3.6.3. This question asks you to prove a claim made in Example 3.3.4 as
follows:

(a) Suppose s̄2 < s̄1, and set δ ≡ Pr{s̄2 < σ1(t1) ≤ s̄1} > 0. Prove
that there exists s̃1 satisfying Pr{σ1(t1) > s̃1} < δ/2. [Hint: This
is trivial if s̄1 < ∞ (why?). The case where s̄1 = ∞ uses a basic
continuity property of probability.]

(b) Show that a deviation by type t2 > 2s̃1 to a stopping time s2 > s̃1
(which implies that t2 wins the war of attrition with probability
of at least δ/2) satisfying s2 < t2/2 is strictly profitable.

3.6.4. This question concerns Example 3.1.1, the Cournot game with in-
complete information. The idea is to capture the possibility that
firm 2 may know that firm 1 has low costs, cL. This can be done as
follows: Firm 1’s space of uncertainty (types) is, as before, {cL, cH},
while firm 2’s is {tL, tU}. Nature determines the types according to
the distribution

Pr(t1, t2) =


α, if (t1, t2) = (cL, tL),
β, if (t1, t2) = (cL, tU),
1−α− β, if (t1, t2) = (cH , tU),

where α,β ∈ (0,1) and 1−α−β > 0. Firm 2’s type, tL or tU , does not
affect his payoffs (in particular, his cost is c2, as in Example 3.1.1).
Firm 1’s type is just his cost, c1.

(a) What is the probability firm 2 assigns to c1 = cL when his type
is tL? When his type is tU?

(b) What is the probability firm 1 assigns to firm 2 knowing firm
1’s cost? [This may depend on 1’s type.]

(c) What is the Nash equilibrium of this game. Compare your anal-
ysis to that of Example 3.1.1.

3.6.5. The linear equilibrium of Example 3.3.5 is not the only equilibrium
of the double auction.

(a) Fix a price p ∈ (0,1). Show that there is an equilibrium at
which, if trade occurs, then it occurs at the price p.
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(b) What is the probability of trade?

(c) At what p is the probability of trade maximized?

(d) Compare the expected gains from trade under these “fixed price”
equilibria with the linear equilibrium of Example 3.3.5.

3.6.6. In Example 3.5.1, suppose that in the state ω1, θ = 20, while in
states ωk, 2 ≤ k ≤ K − 1, θ = 9 and in state ωK , θ = 4. Suppose
the information partitions are as in the example. In other words,
apart from the probability distribution over Ω (which we have not
yet specified), the only change is that in stateω1, θ = 20 rather than
9.

(a) Suppose the probability distribution over Ω is uniform (as in
the lecture notes). What is the unique Nash equilibrium, and
why? What is the unconditional probability of both players
choosing A in the equilibrium?

(b) Suppose now the probability of ωk is 410−kα, for k = 1, . . . ,9,
where α is chosen so that

∑9
k=1 410−kα = 1. What is the unique

Nash equilibrium, and why? What is the unconditional proba-
bility of both players choosing A in the equilibrium?
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Chapter 4

Existence and Foundations for
Nash Equilibrium1

4.1 Existence of Nash Equilibria

Recall Nash eq are fixed points of best reply correspondence:

s∗ ∈ φ(s∗).

When does φ have a fixed point?

Theorem 4.1.1 (Kakutani’s fixed point theorem) Suppose X ⊂ Rm

for some m and F : X ⇒ X. Suppose

1. X is nonempty, compact, and convex;

2. F has nonempty convex-values (i.e., F(x) is a convex set and
F(x) ≠∅ ∀x ∈ X); and

3. F has closed graph: (xk, x̂k)→ (x, x̂), x̂k ∈ F(xk)⇒ x̂ ∈ F(x).

Then F has a fixed point.

Remark 4.1.1 The closed graph property is sometimes called up-
perhemicontinuity of the correspondence. But note that the closed

1Copyright December 7, 2011 by George J. Mailath
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graph property does not imply continuity of functions: the func-
tion f : R → R given by f(x) = 1/x for x > 0 and f(0) = 0 has a
closed graph but is not continuous (for more on this, see Ok (2007,
§E.2)).

	

Theorem 4.1.2 Given a normal form gameG = {(Si, ui) : i = 1, . . . , n},
if for all i,

1. Si is a nonempty, convex, and compact subset of Rk for some k,
and

2. ui : S1 × · · · × Sn → R is continuous in s ∈ S1 × · · · × Sn and
quasiconcave in si,

then G has a Nash equilibrium strategy profile.

Proof. Since ui is continuous, the Maximum Theorem (MWG Theo-
rem M.K.6) implies that φi has a closed graph.

The quasiconcavity of ui implies that φi is convex-valued: For
fixed s−i ∈ S−i, suppose s′i , s

′′
i ∈ arg maxui(si, s−i). Then, from the

quasiconcavity of ui, for all α ∈ [0,1],

ui(αs′i + (1−α)s′′i , s−i) ≥min{ui(s′i , s−i), ui(s′′i , s−i)},

and so
ui(αs′i + (1−α)s′′i , s−i) ≥maxui(si, s−i)

so that αs′i + (1−α)s′′i ∈ arg maxui(si, s−i).
The theorem then follows from Kakutani’s fixed point theorem

by taking X = S1 × · · · × Sn and F = (φ1, . . . ,φn).

Theorem 4.1.3 (Nash) Every finite normal form game, (Si, ui)i, has
a mixed strategy Nash equilibrium.

Proof. Define Xi = ∆(Si) and X ≡ ∏
iXi. Then X ⊂ RΣ|Si| and X is

nonempty, convex and compact.
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In this case, rather than appealing to the maximum theorem, it
is an easy (and worthwhile!) exercise to prove that φi is convex-
valued and has a closed graph.

In some applications, we need an infinite dimensional version of
Kakutani’s fixed point theorem.

Theorem 4.1.4 (Fan-Glicksberg fixed point theorem) Suppose X is
a nonempty compact convex subset of a locally convex Hausdorff
space, and suppose F : X ⇒ X. Suppose

1. F has nonempty convex-values (i.e., F(x) is a convex set and
F(x) ≠∅ ∀x ∈ X); and

2. F has closed graph: (xk, x̂k)→ (x, x̂), x̂k ∈ F(xk)⇒ x̂ ∈ F(x).

Then F has a fixed point.

In particular, every normed vector space is locally convex Haus-
dorff. Locally convex Hausdorff spaces generalize many of the nice
properties of normed vector spaces. This generalization is needed
in the following theorem, since the spaces are typically not normed.

Theorem 4.1.5 Suppose X is a compact metric space. Then the
space of probability measures on X is a nonempty compact convex
subset of a locally convex Hausdorff space. Moreover, if f : X → R is
a continuous function, then

∫
fdµ is a continuous function of µ.

Corollary 4.1.1 Suppose Si is a compact subset of a finite dimen-
sional Euclidean space Rmi , and suppose ui : S → R is continuous.
Then {(Si, ui)i} has a Nash equilibrium in mixed strategies.

Proof. The proof mimics that of Theorem 4.1.3.

Example 4.1.1 (An example of mixed strategies) Return to first price
sealed bid auction with independent private values (Example 3.3.1),
but assume that the value for each bidder is drawn independently
from a uniform distribution on the two point set {

¯
v, v̄}, with

¯
v < v̄ .
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This game has no equilibrium in pure strategies (see problem 4.3.3).
Even though the game has discontinuous payoffs (why?), it does
have an equilibrium in mixed strategies.

Suppose bidder 2 follows the strategy σ2 of bidding
¯
v if v2 =

¯
v

(why is that a reasonable “guess”?), and of bidding according to the
distribution function F2(b) if v2 = v̄ . Then, assuming there are no
atoms in F2, player 1 has interim payoffs from b >

¯
v given by

U1(b, v̄, σ2) =1
2
(v̄ − b)+ 1

2
(v̄ − b)F2(b)

=1
2
(v̄ − b)(1+ F2(b)).

Note that the minimum of the support of F2 is given by
¯
v (why?).

Denote the maximum of the support by b̄.
Suppose 1 is also randomizing over the set of bids, (

¯
v, b̄]. The

indifference condition requires that 1 is indifferent over all b ∈
(
¯
v, b̄]. The bid b =

¯
v is excluded because there is a positive prob-

ability of a tie at
¯
v (from the low value bidder) and so it cannot be

optimal for v̄ to bid
¯
v . That is, for all ε > 0,

1
2
(v̄ − b)(1+ F2(b)) = U1(

¯
v + ε, v̄, σ2),

and

U1(
¯
v + ε, v̄, σ2) = 1

2
(v̄ −

¯
v − ε)(1+ F2(

¯
v + ε)).

Since limε→0 F2(
¯
v + ε) = F2(

¯
v) = 0 (where the first equality follows

from the continuity of probabilities and the second equality follows
from the assumption of no atoms), and so

(v̄ − b)(1+ F2(b)) = v̄ −
¯
v,

yielding

F2(b) = b − ¯
v

v̄ − b, ∀b ∈ (0, b̄].

Note that F2(
¯
v) = 0 as required for a distribution function. More-

over, F2(b̄) = 1 implies b̄ = (v̄ +
¯
v)/2.
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It is straightforward to verify that the symmetric profile in which
each bidder bids

¯
v if v =

¯
v , and according to the distribution func-

tion F(b) = (b −
¯
v)/(v̄ − b) if v = v̄ . «

Remark 4.1.2 (More formal treatment of mixed strategies) For con-
tinuum action spaces (such as auctions), a mixed strategy for a
player i is a probability distribution on R (which we can denote
Fi). Player 1’s expected payoff from an action b1 is∫

u1(s1, s2)dF2(s2).

As an aside, note that this notation (which may not be familiar to
all of you) covers all relevant possibilities: If the mixed strategy of
player 2 has a countable support {sk} with action sk having proba-
bility σ2(sk) > 0 (the distribution is said to be discrete in this case),
we have ∫

u1(s1, s2)dF2(s2) =
∑
sk
u1(s1, sk)σ2(sk).

Note that
∑
sk σ2(sk) = 1. Any single action receiving strictly pos-

itive probability is called an atom. If the distribution function de-
scribing player 2’s behavior has a density f2, then∫

u1(s1, s2)dF2(s2) =
∫
u1(s1, s2)f2(s2)ds2.

Finally, combinations of distributions with densities on part of the
support and atoms elsewhere, as well as more esoteric possibilities
(that are almost never relevant) are also covered.

Suppose F1 is a best reply for player 1 to player 2’s strategy F2.
Then ∫∫

u1(s1, s2)dF2(s2)dF1(s1) =max
s1

∫
u1(s1, s2)dF2(s2).

Observe first that if F1 is discrete with support {sk} and action sk
having probability σ1(sk) > 0 , then∫∫

u1(s1, s2)dF2(s2)dF1(s1) =
∑
sk

∫
u1(sk, s2)dF2(s2)σ1(sk),
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and so we immediately have∑
sk

∫
u1(sk, s2)dF2(s2)σ1(sk) =max

s1

∫
u1(s1, s2)dF2(s2)

and so, for all sk,∫
u1(sk, s2)dF2(s2) =max

s1

∫
u1(s1, s2)dF2(s2).

This is just the familiar statement that player 1 is indifferent over
all actions in his support, and each such action maximizes his pay-
off against F2.

What is the appropriate version of this statement for general
F1? The key observation is that zero probability sets don’t mat-
ter. Thus, the statement is: Let Ŝ1 be the set of actions that are
suboptimal against F2, i.e.,

Ŝ1 =
{
ŝ1 :

∫
u1(ŝ1, s2)dF2(s2) <max

s1

∫
u1(s1, s2)dF2(s2)

}
.

Then, the set Ŝ1 is assigned zero probability by any best response
F1. [If such a set received positive probability under some F1, then
F1 could not be a best reply, since expected payoffs are clearly in-
creased by moving probability weight off the set Ŝ1.]

In most applications, the set Ŝ1 is disjoint from the support of
F1, in which case player 1 is indeed indifferent over all actions in
his support, and each such action maximizes his payoff against F2.
However, Example 4.1.1 is an example where Ŝ1 includes one point
of the support.

	

Example 4.1.2 (Examples of nonexistence) The following example
of nonexistence in a game of complete information is due to Sion
and Wolfe (1957): S1 = S2 = [0,1] and payoff are

u1(sl, s2) =


−1, if s1 < s2 < s1 + 1

2 ,
0, if s1 = s2 or s2 = s1 + 1

2 ,
+1, otherwise,
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and u2(s1, s2) = −u1(s1, s2) (i.e., the game is zero sum). The proof
of nonexistence is beyond the scope of this course.

I am almost certain that a simpler example of nonexistence in
games of incomplete information is provided by the following ex-
ample of a private value first price auction with ties broken using a
fair coin. Bidder 1 has value 3 and bidder 2 has value 3 with proba-
bility 1

2 and value 4 with probability 1
2 . An intuition for nonexistence

can be obtained by observing that since there is positive probabil-
ity that 2 has value 3, bidder 1 will not bid over 3 (since he may
win). Moreover, bidder 1 cannot randomize on bids below 3 be-
cause there is positive probability of bidder 2 having value 3 (and
so responding to bidder 1’s randomization). But if bidder 1 bids
3, then bidder of value 4 does not have a best reply. Existence is
restored if ties are broken in favor of bidder 2.

Suppose now we assume that there is a joint distribution over
bidder valuations, so that

• with prob 1
2 , v1 = 3 and v2 = 3 with prob 1

2 and 4 with prob 1
2 ;

and

• with prob 1
2 , v2 = 3 and v1 = 3 with prob 1

2 and 4 with prob 1
2 .

Note that the valuations are not independent. Moreover, existence
would only be restored by using a tie breaking rule that awarded
the item to the highest value bidder. For (much) more on this, see
Jackson, Simon, Swinkels, and Zame (2002) (note that the similar
example given in Jackson, Simon, Swinkels, and Zame (2002) is in-
correct). «

Existence results that replace continuity assumptions on pay-
offs with complementarity or supermodularity assumptions are of
increasing importance. For an excellent introduction, see chapter 7
in Vohra (2005).

4.2 Foundations for Nash Equilibrium

A good book length treatment of the general topic covered here
is Fudenberg and Levine (1998). For much more on evolution, see
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Samuelson (1997) and Weibull (1995) (or Mailath (1998) for a longer
nontechical introduction).

Consider two players repeatedly playing a 2× 2 matrix game.
Neither player knows how opponent will play.
Suppose each player is Bayesian in the following way: each be-

lieves the opponent plays the first strategy in each period with the
same fixed probability, and the prior on this probability is uniform
on [0,1].

After each round of play, players update to posterior.
This behavior, while Bayesian, is not “rational”: players make as-

sumptions on opponents that they should know, by introspection,
are false.

Rational Learning: Bayesian learning with a prior and likelihood
that encompasses the “truth.”

Must good Bayesians be rational learners?
If so, not all Savage-Bayesians are good Bayesians.

4.2.1 Boundedly Rational Learning

Motivated by concerns over

• informational (knowledge) requirements of traditional analy-
ses.

• Coordination: beliefs about endogenous variables are correct.
where does information about endogenous variables (that leads
to coordinated behavior) come from?

• rationality (computational) requirements and

• (?) Bayesian paradigm.

– Can agents formulate a sufficiently general model to en-
compass the “truth”? Updating on small (prior) probabil-
ity events. At which point should agents question their
view of the world?

Rationality and coordination are distinct and independent ideas.
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Common thread:

• behavior is myopic,

• dynamic analysis, focusing on asymptotic properties, and

• focus on interaction of learning with evolution of system.

4.2.2 Social Learning (Evolution)

Example 4.2.1 Large population of players randomly and repeat-
edly matched (paired) to play the same game:

A B

A 1 0

B 0 1

No role identification, so the payoff represents the payoff to a
player who chooses the row action, when facing the column action.
If α is fraction of population playing A, then

u(A;α) =α,
and u(B;α) =1−α.

Then

α̇ = dα
dt
> 0 iff u(A;α) > u(B;α) iff α >

1
2
,

and

α̇ < 0 iff u(A;α) < u(B;α) iff α <
1
2
.

0 1
2

1

The symmetric mixed strategy equilibrium 1
2◦A+1

2◦B is unstable.
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«

Example 4.2.2 Large population paired to play:

A B

A 1 2

B 2 1

No role identification (so that AB and BA are infeasible). If α is
fraction of population playing A, then

u(A;α) =α+ 2(1−α) = 2−α,
and u(B;α) =2α+ 1−α = 1+α.

Then

α̇ > 0 iff 2−α > 1+α iff
1
2
> α,

and

α̇ < 0 iff 2−α < 1+α iff
1
2
< α.

0 1
2

1
«

Let S denote a finite set of strategies in a symmetric game. In
the above examples, S = {A,B}. Payoff to playing the strategy s ∈ S
against an opponent who plays r ∈ S is u(s, r).

State of society is σ ∈ ∆(S). Expected payoff to s when state of
society is σ is

u(s,σ) =
∑
r
u(s, r)σ(r).

Dynamics:
F : ∆(S)×R+ → ∆(S),

with
F(σ, t′ + t) = F(F(σ, t′), t).
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Definition 4.2.1 A state σ∗ is a rest (or stationary) point of F if

σ∗ = F(σ∗, t) ∀t.
A rest point σ∗ is asymptotically stable under F if there exists ε > 0
such that if | σ ′ − σ∗ |< ε, then F(σ ′, t)→ σ∗.

Assume F is continuously differentiable in all its arguments (on
boundaries, the appropriate one-sided derivatives exist and are con-
tinuous).

Interpretation: if population strategy profile is σ ′ at t′, then at
time t′ + t it will be F(σ ′, t). Write σ̇ for ∂F(σ, t)/∂t|t=0.

Note that ∑
s
σ(s) = 1⇒

∑
s
σ̇ (s) = 0.

Definition 4.2.2 F is a myopic adjustment dynamic if ∀σ , s, r ∈ S
satisfying σ(s),σ(r) > 0,

u(s,σ) > u(r ,σ)⇒ σ̇ (s) > σ̇(r).
Theorem 4.2.1 Suppose F is a myopic adjustment dynamic.

1. If σ∗ is asymptotically stable under F , then it is a symmetric
Nash equilibrium.

2. If σ∗ is a strict Nash equilibrium, then σ∗ is asymptotically
stable under F .

Proof.

1. Left as an exercise.

2. Suppose σ∗ is a strict Nash equilibrium. Then σ∗ is a pure
strategy s and u(s, s) > u(r , s) for all r ≠ s. This implies that
there exists ε̄ > 0 such that for all σ satisfying σ(s) > 1− ε,

u(s,σ) > u(r ,σ), ∀r ≠ s.
Suppose 1 > σ(s) > 1 − ε and σ(r) > 0 for all r . Myopic
adjustment implies σ̇ (s) > max{σ̇ (r) : r ≠ s}, and so σ̇ (s) >
0 (since

∑
r∈S σ̇ (r) = 0).
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Consider now σ satisfying 1 > σ(s) > 1 − ε with σ(r) = 0
for some r . Since σ̇ is continuous in σ (since F is continu-
ously differentiable, including on the boundaries), σ̇ (s) ≥ 0
and σ̇ (s) ≥ σ̇ (r). Suppose σ̇ (s) = 0 (so that σ̇ (r) ≤ 0). Then,
σ̇ (r ′) < 0 for all r ′ satisfying σ(r ′) > 0 and so σ̇ (r) > 0, a
contradiction.

Hence, if 1 > σ(s) > 1 − ε, then σ̇ (s) > 0. Defining σ t ≡
F(σ, t) ∈ ∆(S), this implies σ t(s) > 1 − ε̄ for all t, and so
σ t(s)→ 1 .

There are examples of myopic adjustment dynamics that do not
eliminate strategies that are iteratively strictly dominated. Stronger
conditions (such as aggregate monotonicity) are needed—see
Fudenberg and Levine (1998). These conditions are satisfied by the
replicator dynamic:

Biological model, payoffs are reproductive fitness (normalize pay-
offs so u(s, r) > 0 for all s, r ∈ S). At the end of each period, each
agent is replaced by a group of agents who play the same strategy,
with the size of the group given by the payoff (fitness) of the agent.
Let xs(t) be the size of the population playing s in period t. Then,

xs(t + 1) = xs(t)u(s,σ t),

where

σ t(s) = xs(t)∑
r xr(t)

≡ xs(t)
x̄(t)

.

Then, since x̄(t + 1) = x̄(t)u(σ t, σ t),

σ t+1(s) = σ t(s) u(s,σ
t)

u(σ t, σ t)
,

so the difference equation is

σ t+1(s)− σ t(s) = σ t(s)u(s,σ
t)−u(σ t, σ t)
u(σ t, σ t)

.
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Thus, σ t+1(s) > (<)σ t(s) iff u(s,σ t) > (<)u(σ t, σ t). In continu-
ous time, this is

σ̇ (s) = σ(s)u(s,σ)−u(σ,σ)
u(σ,σ)

.

This has the same trajectories as

σ̇ (s) = σ(s)[u(s,σ)−u(σ,σ)].
Note that under the replicator dynamic, every pure strategy pro-

file is a rest point: if σ(s) = 0 then σ̇ (s) = 0 even when u(s,σ) >
u(σ,σ).

Idea extends in straightforward fashion to games with role iden-
tification. In that case, we have

σ̇i(si) = σi(si)[ui(si, σ−i)−ui(σi, σ−i)].
Example 4.2.3 (Domination) The game is:

L R

T 1,1 1,0

B 1,1 0,0

Let pt be the fraction of row players choosing T , while qt is the
fraction of column players choosing L. The replicator dynamics are

ṗ = p(1− p)(1− q)
and q̇ = q(1− q).

The phase diagram is illustrated in Figure 4.2.1.2 No rest point
is asymptotically stable. «

Example 4.2.4 (Simplified ultimatum game) In the simplified ulti-
matum game, the proposer offer either an equal split, or a small
payment. The responder only responds to the small payment (he
must accept the equal split). The extensive form is given in Figure
4.2.2. The normal form is

2Note that the phase diagram in Mailath (1998, Figure 11) is incorrect.
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0 p 1

1

q

Figure 4.2.1: The phase diagram for the domination example.

row

equal split

50
50

column

small offer

N

0
0

Y

80
20

Figure 4.2.2: The extensive form of the simplified ultimatum game.
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N Y

equal split 50,50 50,50

small offer 0,0 80,20

Let p be the fraction of row players choosing equal split, while
q is the fraction of column players choosing N .

The subgame perfect profile is (0,0). There is another Nash
outcome, given by the row player choosing equal division. The set
of Nash equilibrium yielding this outcome is N = {(1, q) : 3/8 ≤ q}.

The replicator dynamics are

ṗ = p(1− p)(80q − 30)
and q̇ = −20q(1− q)(1− p).

Note that ṗ > 0 if q > 3/8 and ṗ < 0 if q < 3/8, while q̇ < 0 for all
(p, q).

The phase diagram is illustrated in Figure 4.2.3. The subgame
perfect equilibrium B is the only asymptotically stable rest point.

In the presence of drift, the dynamics are now given by

ṗ = p(1− p)(80q − 30)+ δ1(
1
2
− p)

and q̇ = −20q(1− q)(1− p)+ δ2(
1
2
− q).

For small δi, with δ1 << δ2, the dynamics have two asymptoti-
cally stable rest points, one near B and one near A (see Samuelson
(1997, chapter 5)). «

4.2.3 Individual learning

Fix n-player finite strategic form game, G = (S,u), S ≡ S1×· · ·×Sn,
u : S → Rn.

Players play G∞.
History ht ≡ (s0, ..., st−1) ∈ Ht ≡ St.
Assessments µti : Ht → ∆(S−i).
Behavior rule φti : Ht → ∆(Si).
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0 p 1

1

q

A

N

B

Figure 4.2.3: The phase diagram for the simplified ultimatum example. A
is the nonsubgame perfect equilibrium (1,3/8), and B is the
subgame perfect equilibrium.
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Definition 4.2.3 φi is myopic with respect to µi if,∀t and ht,φti(ht)
maximizes ui(σi, µti(ht)).

Definition 4.2.4 µi is adaptive if, ∀ε > 0 and t, ∃T(ε, t) s.t. ∀t′ >
T(ε, t) and ht′ , µt

′
i (ht

′) puts no more than ε probability on pure
strategies not played by −i between t and t′ in ht′ .

Examples:

• fictitious play (play best reply to empirical dsn of history)

• Cournot dynamics

• exponential weighting of past plays

Rules out rationalizability-type sophisticated analysis. Notion of
“adaptive” does not impose any restrictions on the relative weight
on strategies that are not excluded.

Definition 4.2.5 h ≡ (s0, s1, . . .) is compatible with φ if sti is in the
support of φti(ht), ∀i and t.

Theorem 4.2.2 Suppose (s0, s1, . . .) is compatible with behavior that
is myopic with respect to an adaptive assessment.

1. There exists T s.t. st ∈ S̄ ∀t ≥ T , where S̄ is the result of the
iterative deletion of all strictly dominated strategies (= rational-
izable if n = 2).

2. If ∃T s.t. st = s∗ ∀t > T , then s∗ is a (pure-strategy) Nash
equilibrium of G.

Proof.

1. Let Ski denote the set of player i’s strategies after k rounds
of deletions of strictly dominated strategies. Since S is finite,
there exists K <∞ such that S̄ = SK. Proof proceeds by induc-
tion.

There exists T s.t. st ∈ S1 ∀t ≥ T : Any si ∉ S1
i is not a best

reply to any beliefs, myopia implies never chosen.
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Suppose ∃T s.t. st ∈ Sk ∀t ≥ T . If si ∉ Sk+1
i , then si is not a

best reply to any beliefs with support in Sk−i. But then ∃ε > 0
s.t. si is not a best reply to any belief µi ∈ ∆(S−i) satisfying
µi(Sk−i) > 1 − ε. (Exercise: calculate the bound on ε.) Since
assessments are adaptive, ∃T ′ > T s.t. µti(ht)(S

k
−i) > 1− ε for

all t > T . Since behavior is myopic, st ∈ Sk+1 ∀t ≥ T ′.
2. Suppose ∃T s.t. st = s∗ ∀t > T and s∗ is not a Nash equilib-

rium of G. Then ∃i and s′i ∈ Si s.t. ui(s′i , s
∗
−i) > ui(s∗). There

exists ε > 0 s.t. ui(s′i , σ−i) > ui(s
∗
i , σ−i) if σ−i(s∗) > 1 − ε.

But then adaptive assessments with myopic behavior implies
sti ≠ s

∗
i for t large, a contradiction.

Stronger results on convergence (such as to mixed strategy equi-
libria) require more restrictions on assessments. For more, see Fu-
denberg and Levine (1998).

Convergence of beliefs need not imply imply convergence in be-
havior. For example, in matching pennies, empirical distribution
converges to (1

2 ,
1
2), but always play pure strategy.

4.3 Problems

4.3.1. A two-player normal form game G is zero sum if u1(s) = −u2(s) for
all s ∈ S. Suppose G is a finite zero-sum game.

(a) Suppose f : X × Y → R is a continuous function and X and Y
are compact subsets of R. Prove that

max
x∈X

min
y∈Y

f(x,y) ≤min
y∈Y

max
x∈X

f(x,y).

Give an example showing that the inequality can hold strictly
(it suffices to do this for X and Y each only containing two
points—recall matching pennies from Section 2.4.1).

(b) von Neumann’s celebrated Minmax Theorem states the follow-
ing equality:

max
σ1∈∆(S1)

min
σ2∈∆(S2)

u1(σ1, σ2) = min
σ2∈∆(S2)

max
σ1∈∆(S1)

u1(σ1, σ2).
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Deduce this equality from Theorem 4.1.3.3

(c) Prove that (σ∗1 , σ
∗
2 ) is a Nash equilibrium of G if and only if σ∗i

is a security strategy for player i, and that player i’s security
level vi is given by i’s payoff in any Nash equilibrium. (Compare
with problem 2.6.11.)

(d) Prove the following generalization of Problem 2.6.11(b): Sup-
pose a two-player normal form game has a unique Nash equilib-
rium, and each player’s Nash equilibrium strategy and security
strategy are both completely mixed. Prove that each player’s
security level is given by his/her Nash equilibrium payoff.

4.3.2. Consider a first price sealed bid auction with private values. There
are two bidders with values v1 < v2. These values are common
knowledge. Prove that this auction has no pure strategy equilibrium.
Characterize the set of mixed strategy equilibria. [Hint: In these
equilibria, bidder 2 plays a pure strategy and wins with probability
1.]

4.3.3. This question asks you to fill in the details of Example 4.1.1.

(a) Prove that in any equilibrium, any bidder with value
¯
v must bid

¯
v .

(b) Prove that there is no equilibrium in pure strategies.

(c) Prove that in any mixed strategy equilibrium, the minimum of
the support of F2 is given by

¯
v .

(d) Prove that it is not optimal for v̄ to bid
¯
v .

(e) Prove that the symmetric profile in which each bidder bids
¯
v

if v =
¯
v , and according to the distribution function F(b) =

(b −
¯
v)/(v̄ − b) if v = v̄ is a Nash equilibrium.

4.3.4. Consider the following variant of a sealed bid auction: There are two
bidders who each value the object at v , and simultaneously submit
bids. As usual, the highest bid wins and in the event of a tie, the

3 von Neumann’s original argument (1928), significantly predates Nash’s ex-
istence theorem, and the result is true more generally. There are elementary
proofs of the minmax theorem (based on the basic separating hyperplane theo-
rem) that do not rely on a fixed point theorem. See, for example, Owen (1982,
§II.4) for the finite dimensional case, and Ben-El-Mechaiekh and Dimand (2011)
for the general case.
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object is awarded on the basis of a fair coin toss. But now all bidders
pay their bid. (This is an all-pay auction.)

(a) Formulate this auction as a normal form game.

(b) Show that there is no equilibrium in pure strategies.

(c) This game has an equilibrium in mixed strategies. What is it?
(You should verify that the strategies do indeed constitute an
equilibrium).

4.3.5. [Hard] Prove (or provide a counterexample to the claim that) the fol-
lowing game does not have an equilibrium in pure or mixed strate-
gies: The game is a private-value sealed bid auction of incomplete
information with ties broken using a fair coin. Bidder 1 has value
3 for sure and bidder 2 has value 3 with probability 1

2 and value 4

with probability 1
2 .

4.3.6. Prove that the phase diagram for example 4.2.3 is as portrayed in
Figure 4.2.1. [This essentially asks you to give an expression for
dq/dp.]

4.3.7. Prove that if σ∗ is asymptotically stable under a myopic adjustment
dynamic defined on a game with no role identification, then it is a
symmetric Nash equilibrium.

4.3.8. Suppose F : ∆(S)×R+ → ∆(S) is a dynamic on the strategy simplex
with F is continuously differentiable (including on the boundaries).
Suppose that if

η < σ(s) < 1,

for some η ∈ (0,1), then
σ̇ (s) > 0,

where

σ̇ ≡ ∂F(σ, t)
∂t

∣∣∣∣
t=0
.

Fix σ 0 satisfying σ 0(s) > η. Prove that

σ t(s)→ 1,

where σ t ≡ F(σ 0, t).
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4.3.9. Suppose a large population of players are randomly paired to play
the game (where the payoffs are to the row player)

A B C

A 1 1 0

B 0 1 1

C 0 0 1

(such a game is said to have no role identification). Let α denote the
fraction of the population playing A, and γ denote the fraction of
the population playing C (so that 1 − α − γ is the fraction of the
population playing B). Suppose the state of the population adjusts
according to the continuous time replicator dynamic.

(a) Give an expression for α̇ and for γ̇.

(b) Describe all the rest points of the dynamic.

(c) Describe the phase diagram in the space {(α, γ) ∈ R2+ : α+ γ ≤
1}. Which of the rest points are asymptotically stable?
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Chapter 5

Dynamic Games and
Sequential Equilibria1

5.1 Sequential Rationality

Example 5.1.1 (Selten’s horse)

I A

D

II a 1
1
1

d

III
L

0
0
0

R

3
3
2

L

0
0
1

R

4
4
0

Figure 5.1.1: Selten’s horse.

1Copyright December 7, 2011 by George J. Mailath
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Let (p1, p2, p3) denote the mixed strategy profile where

Pr(I plays A) = p1,
Pr(II plays a) = p2, and

Pr(III plays L) = p3.

Consider the Nash equilibrium profile (0,1,0) (i.e., DaR). This pro-
file is subgame perfect, and yet player II is not playing sequentially
rationally. It is also not trembling hand perfect (Definition 2.5.1):
playing a is not optimal against any mixture close to DR.

The only trembling hand perfect equilibrium outcome isAa. The
set of Nash equilibria with this outcome is {(1,1, p3) : 3

4 ≤ p3 ≤ 1}.
In these equilibria, player III’s information set is not reached, and
so the profile cannot be used to obtain beliefs for III. However,
each Nash equilibrium is trembling hand perfect: Fix an equilib-
rium (1,1, p3). Suppose first that p3 ∈ [3

4 ,1) (so that p3 ≠ 1!) and
consider the completely mixed profile

pn1 =1− 1
n
,

pn2 =1− 2
(n− 1)

,

and pn3 =p3.

Note that pn1 , pn2 → 1 as n → ∞. Suppose n ≥ 4. Easy to verify
that both I and II are playing optimally against the mixed profile in
(1,1, p3). What about III? The probability that III is reached is

1
n
+ (n− 1)

n
× 2
(n− 1)

= 3/n,

and so the induced beliefs for III at his information set assign prob-
ability 1

3 to the left node and 2
3 to the right. Player III is therefore

indifferent and so willing to randomize.
The same argument shows that (1,1,1) is trembling hand per-

fect, using the trembles

pn1 =1− 1
n
,
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pn2 =1− 2
(n− 1)

,

and pn3 =1− 1
n
.

Indeed, any sequence of trembles satisfying pn1 → 1, pn2 → 1, and
pn3 → 1 will work, providing

lim sup
n→∞

(1− pn1 )
(1− pn1pn2 )

≤ 1
3
.

Note in particular it is not even necessary for (1− pn1 )/(1− pn1pn2 )
to have a well-defined limit. «

Definition 5.1.1 A system of beliefs µ in a finite extensive form is a
specification of a probability distribution over the decision nodes in
every information set, i.e., µ : X → [0,1] such that∑

x∈h
µ(x) = 1, ∀h.

Note that µ ∈∏h∈∪iHi ∆(h), a compact set.
We interpret µ as describing player beliefs, in particular, if h

is player i’s information set, then µ describes i’s beliefs over the
nodes in h.

Let Pρ,b denote the probability distribution on Z implied by the
behavior profile b (and nature ρ).

Example 5.1.2 Consider the profile (LR,UD) in the game displayed
in Figure 5.1.2. The label [p] indicates that the player owning that
information set assigns probability p to the labeled node. The in-
duced distribution Pρ,b is p ◦ z1 + (1− p) ◦ z8. «

The expected payoff to player i is (recalling Definition 1.3.1)

E[ui|b] ≡
∑
z∈Z
ui(z)Pρ,b(z).

Let Z(h) = {z ∈ Z : ∃x ∈ H,x ≺ z}. Let Pµ,b(·|h) denote the
probability distribution on Z(h) implied by µ ∈ ∆(h) and the be-
havior profile b (interpreted as describing behavior at information
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t1
[p]

R
U z5

D z6

L
Uz1

Dz2

t2
[1− p]

R
U z7

D z8

L
Uz3

Dz4

IIII

Figure 5.1.2: Game for Example 5.1.2.

set h and any that could be reached from h. By setting Pµ,b(z|h) = 0
for all z 6∈ Z(h), Pµ,b(·|h) can be interpreted as the distribution on
Z , conditional on h being reached. Then, player i’s expected payoff
conditional on h is

Eµ,b[ui|h] ≡
∑
z∈Z
ui(z)Pµ,b(z|h).

Definition 5.1.2 A behavior strategy profile b̂ in a finite extensive
form is sequentially rational at h ∈ Hi, given a system of beliefs µ,
if

Eµ,b̂[ui | h] ≥ Eµ,(bi,b̂−i)[ui | h],
for all bi.

A behavior strategy profile b̂ in an extensive form is sequentially
rational, given a system of beliefs µ, if for all players i and all infor-
mation sets h ∈ Hi, b̂ is sequentially rational at h.

A behavior strategy profile b̂ in an extensive form is sequentially
rational if it is sequentially rational given some system of beliefs.

Definition 5.1.3 A one-shot deviation by player i from b̂ is a strat-
egy b′i with the property that there exists a (necessarily unique) in-
formation set h′ ∈ Hi such that b̂i(h) = b′i(h) for all h ≠ h′, h ∈ Hi,
and b̂i(h′) ≠ b′i(h′).
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I
h

Go

Stop

1
0

II Go

Stop

5
0

I
h′

Go1 0
−1

Stop1

10
1

Figure 5.1.3: The game for Example 5.1.3.

A one-shot deviation b′i (from b, given a system of beliefs µ) is
profitable if

Eµ,(b
′
i,b−i)[ui | h′] > Eµ,b[ui | h′],

where h′ ∈ Hi is the information set for which b′i(h′) ≠ bi(h′).

Example 5.1.3 Consider the profile ((Stop,Go1),Go) in the game
in Figure 5.1.3. Player I is not playing sequentially rationally at
his first information set h, but does not have a profitable one-shot
deviation there. Player I does have a profitable one-shot deviation
at his second information set h′. Player II also has a profitable
one-shot deviation. «

The following result is obvious.

Lemma 5.1.1 If b̂ is sequentially rational given µ, then there are no
profitable one-shot deviations.

Without further restrictions on µ (see Theorems 5.1.1 and 5.3.2),
a profile may fail to be sequentially rational and yet have no prof-
itable one-shot deviations (Problem 5.4.1).

Recall from Definition 1.3.5 that a game of perfect information
has singleton information sets. In such a case, the system of be-
liefs is trivial, and sequential rationality is equivalent to subgame
perfection.

Theorem 5.1.1 A strategy profile b in a finite game of perfect in-
formation is subgame perfect if and only if it is sequentially ratio-
nal. A strategy profile b in a finite game of perfect information is
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sequentially rational if and only if there are no profitable one-shot
deviations.

Proof. The equivalence of subgame perfection and sequential ratio-
nality for finite games of perfect information is immediate.

It is immediate that a sequentially rational strategy profile has
no profitable one-shot deviations.

The proof of the other direction is left as an exercise (Problem
5.4.3).

5.2 Perfect Bayesian Equilibrium

Without some restrictions connecting beliefs to behavior, even Nash
equilibria need not be sequentially rational. For any distribution
P ∈ ∆(Z), for any x ∈ X, define

P(x) =
∑

{z∈Z :x≺z}
P(z).

Definition 5.2.1 The information set h in a finite extensive form
game is reached with positive probability under b, or is on the path-
of-play, if

Pρ,b(h) =
∑
x∈h

Pρ,b(x) > 0.

Theorem 5.2.1 The behavior strategy profile b of a finite extensive
form game is Nash if and only if it is sequentially rational at every
information set on the path of play, given a system of beliefs µ ob-
tained using Bayes’ rule at those information sets, i.e., for all h on
the path of play,

µ(x) = Pρ,b(x)
Pρ,b(h)

∀x ∈ h.

The proof of Theorem 5.2.1 is left as an exercise (Problem 5.4.4).

Example 5.2.1 Recall the extensive form from Example 2.3.4, re-
produced in Figure 5.2.1. The label [p] indicates that the player

102



December 7, 2011 103

I

R

L

2
0 I

T B

`

−1
1

r

4
0

[0]
II

[1]

`

0
0

r

5
1

Figure 5.2.1: Game for Example 5.2.1

owning that information set assigns probability p to the labeled
node. The profile RBr (illustrated) is Nash and satisfies the condi-
tions of the theorem. «

Note that Theorem 5.2.1 implies Problem 2.6.10.
In Theorem 5.2.1, sequential rationality is only imposed at infor-

mation sets on the path of play. Strengthening this to all informa-
tion sets yields:

Definition 5.2.2 A strategy profile b of a finite extensive form game
is a weak perfect Bayesian equilibrium if there exists a system of
beliefs µ such that

1. b is sequentially rational given µ, and

2. for all h on the path of play,

µ(x) = Pρ,b(x)
Pρ,b(h)

∀x ∈ h.
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Remark 5.2.1 Note that a strategy profile b is a weak perfect Bayesian
equilibrium, if and only if, it is a Nash equilibrium that is sequen-
tially rational.

	

Using Bayes’ rule “where possible” yields something even stronger.
The phrase “where possible” is meant to suggest that we apply
Bayes’ rule in a conditional manner. We first need (recall from
Problem 1.4.6 that information sets are not partially ordered by
precedence):

Definition 5.2.3 The information set h follows h′ if for all x ∈ h,
there exists x′ ∈ h′ such that x′ ≺ x.

An information set h (following h′) is reached with positive prob-
ability from h′ under (µ, b) if

Pµ,b(h | h′) =
∑
x∈h

Pµ,b(x | h′) > 0.

Note that for any two information sets owned by the same player,
h.h′ ∈ Hi, h follows h′ in the sense of Definition 5.2.3 if, and only
if, h′ ≺∗ h (see Problem 1.4.6).

Definition 5.2.4 A strategy profile b of a finite extensive form game
is an almost perfect Bayesian equilibrium if there exists a system of
beliefs µ such that

1. b is sequentially rational given µ, and

2. for any information set h′ and following information set h
reached with positive probability from h′ under (µ, b),

µ(x) = Pµ,b(x | h′)
Pµ,b(h | h′) ∀x ∈ h.

Theorem 5.2.2 Every almost perfect Bayesian equilibrium is sub-
game perfect.

The proof is left as an exercise (Problem 5.4.5).
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Figure 5.2.2: The profile LB` (illustrated) is weak perfect Bayesian, but not
almost perfect Bayesian.
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Example 5.2.2 Continuing with the extensive form from Example
2.3.4 displayed in Figure 5.2.2: The profile LB` (illustrated) is weak
perfect Bayesian, but not almost perfect Bayesian. Note that LT` is
not weak perfect Bayesian. The only subgame perfect eq is RBr . «

We are not yet at perfect Bayesian equilibrium, because we still
need to address the phenomenon illustrated by MWG Example 9.C.4.
While it is straightforward to directly deal with the example, the
conditions that deal with the general phenomenon are complicated
and hard to interpret. It is rare for the complicated conditions to
be used in practice.

The term perfect Bayesian equilibrium (or PBE) is often used in
applications to describe the collections of restrictions on the sys-
tem of beliefs that “do the right/obvious thing,” and as such is one
of the more abused notions in the literature. I will similarly abuse
the term.

5.3 Sequential Equilibrium

A natural way of restricting the system of beliefs without simply
adding one seemingly ad hoc restriction after another is to use
Bayes’ rule on completely mixed profiles as follows:

Definition 5.3.1 In a finite extensive form game, a system of beliefs
µ is consistent with the strategy profile b if there exists a sequence of
completely mixed sequence of behavior strategy profiles {bk}k con-
verging to b such that the associated sequence of system of beliefs
{µk}k obtained via Bayes’ rule converges to µ.

A strategy profile b is a sequential equilibrium if, for some con-
sistent system of beliefs µ, b is sequentially rational at every infor-
mation set.

To illustrate the type of restrictions that consistency places on
beliefs, consider the game in Figure 5.3.1. The strategy profile b is
indicated by the double thickness arrows, and the tremble proba-
bilities are in parentheses (the superscript k’s have been omitted
for clarity). Note that player II’s trembles must be equal at the
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IIIx5
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Figure 5.3.1: Illustrating sequential equilibrium.

three nodes x2, x3, and x4, since these three nodes are in the same
information set. We then have

µ(x2) = ε
ε + η+ ζ ,

µ(x3) = η
ε + η+ ζ ,

and µ(x4) = ζ
ε + η+ ζ ,

and so any distribution over {x2, x3, x4} can be achieved in the limit
by letting the three tremble probabilities go to zero at appropriate
rates (verify this!). Note that limµ(x4) > 0 requires η/ζ not go to
+∞ (it also requires ε/ζ not go to +∞, but that does not play a role
in determining the limit behavior of µ at III’s information set).

Turning to player III’s information set, this information set is
reached with probability ηα+ ζ and so we have

µ(x5) = ηα
ηα+ ζ ,
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µ(x6) =ζ(1−α)ηα+ ζ ,

and µ(x7) = ζα
ηα+ ζ < α,

and so
lim

η,ζ,α→0
µ(x7) = 0

(note that this in independent of the relative rates at which η,ζ,α
go to zero). Moreover, we have

ηα
ζ
→ 0 implies µ(x6)→ 1,

ηα
ζ
→ +∞ implies µ(x6)→ 0,

and
ηα
ζ
→ M > 0 implies µ(x6)→ 1

M + 1
.

In particular, limµ(x4) > 0 implies limµ(x6) = 1.
Note that it is also possible for limµ(x6) > 0 and limµ(x4) = 0

(this arises when ηα/ζ → M > 0, since α→ 0 requires η/ζ → +∞).

Theorem 5.3.1 A sequential equilibrium is almost perfect Bayesian.

Proof. Obvious (but make sure you understand why!).

Theorem 5.3.2 In a finite extensive form game, suppose µ is consis-
tent with a profile b. The profile b is sequentially rational given µ
(and so a sequential equilibrium) if and only if there are no profitable
one-shot deviations from b (given µ).

Proof. Lemma 5.1.1 is the easy direction.
Suppose b is not sequentially rational given µ. Then there is a

player, denoted i, with a profitable deviation. Denote the profitable
deviation (by player i) by b′i and the information set h′. Player i
information sets Hi are strictly partially ordered by precedence in
the obvious way (see Problem 1.4.6). Let Hi(h′) denote the finite
(since the game is finite) collection of information sets that follow
h′. Let K be the length of the longest chain in Hi(h′), and say
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an information set h ∈ Hi(h′) is of level k if the successor chain
from h′ to h has k links (h′ is 0-level and its immediate successors
are all 1-level). If i has a profitable deviation from bi at any K-
level information set, then that deviation is a profitable one-shot
deviation, and we are done.

Suppose i does not have a profitable deviation from bi at any
K-level information set. Define a strategy b(K)i by

b(K)i (h) =
{
bi(h), if h is a K-level information set or h 6∈ Hi(h′),
b′i(h), if h is a k-level information set, k = 0, . . . , K − 1.

Then Eµ,(b
(K)
i ,b−i)[ui|h′] ≥ Eµ,(b′i,b−i)[ui|h′]. (This requires proof, which

is left as an exercise, see Problem 5.4.11. This is where consistency
is important.)

But this implies that, like b′i, the strategy b(K)i is a profitable
deviation at h′. We now induct on k. Either there is profitable one-
shot deviation from bi at a (K − 1)-level information set (in which
case we are again done), or we can define a new strategy b(K−1)

i
that is a profitable deviation at h′ and which agrees with bi on the
(K − 1)-level as well as the K-level information sets.

Proceeding in this way, we either find a profitable one-shot devi-
ation at some k-level information set, or the action specified at h′
by b′i is a profitable one-shot deviation.

5.4 Problems

5.4.1. Give an example of a game with a profile failing to be sequentially
rational given a system of beliefs and yet with no profitable one-shot
deviations.

5.4.2. This problem concerns the game given in Figure 5.4.1.

(a) Show that (GoStop1Stop2, StopGo1) is a Nash equilibrium.

(b) Identify all of the profitable one-shot deviations.

(c) Does player I choose Go in any subgame perfect equilibrium?

5.4.3. Complete the proof of Theorem 5.1.1.
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Figure 5.4.1: The game for Problem 5.4.2.

5.4.4. Prove Theorem 5.2.1 (recall Problem 2.6.10).

5.4.5. Prove Theorem 5.2.2.

5.4.6. Let p ∈ ∆({x2, x3, x4}) denote beliefs over player II’s information
set in the game of Figure 5.3.1. Prove that p can be obtained as the
limit beliefs for some some sequence of trembles.

5.4.7. Show that (A,a, L) is a sequential equilibrium of Selten’s horse (Fig-
ure 5.1.1) by exhibiting the sequence of converging completely mixed
strategies and showing that the profile is sequentially rational with
respect to the limit beliefs.

5.4.8. Prove by direct verification that the only sequential equilibrium of
the first extensive form in Example 2.3.4 is (RB,R), but that (L, `) is
a sequential equilibrium of the second extensive form.

5.4.9. We return to the environment of Problem 3.6.1, but with one change.
Rather than the two firms choosing quantities simultaneously, firm
1 is a Stackelberg leader: Firm 1 chooses its quantity, q1, first. Firm
2, knowing firm 1’s quantity choice then chooses its quantity. De-
scribe a strategy profile for this dynamic game. What is the ap-
propriate equilibrium notion for this game and why? Describe an
equilibrium of this game. Is it unique?

5.4.10. Fix a finite extensive form game. Suppose µ is consistent with b.
Suppose for some player i there are two information sets h,h′ ∈ Hi
with h ≺∗ h′ and P(µ,b)(h|h′) = 0. Prove that if there exists another
strategy b̂i for player i with the property that P(µ,(b̂i,b−i))(h|h′) > 0,
then

µ(x) = P(µ,(b̂i,b−i))(x|h′)
P(µ,(b̂i,b−i))(h|h′) , ∀x ∈ h.
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5.4.11. Complete the proof of Theorem 5.3.2 by showing that

Eµ,(b
(K)
i ,b−i)[ui|h′] ≥ Eµ,(b′i,b−i)[ui|h′].

Be sure to explain the role of consistency. (Hint: use Problem 5.4.10).
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Chapter 6

Signaling1

6.1 General Theory

Sender (informed player) types t ∈ T ⊂ R. T may be finite. Proba-
bility distribution ρ ∈ ∆(T).

Sender chooses m ∈ M ⊂ R. M may be finite.
Responder chooses r ∈ R ⊂ R. R may be finite.
Payoffs: u(m, r , t) for sender and v(m, r , t) for responder.
Strategy for sender, τ : T → M .
Strategy for responder, σ : M → R.

Definition 6.1.1 A perfect Bayesian equilibrium of the signaling game
is a strategy profile (τ̂, σ̂ ) such that

1. for all t ∈ T ,

τ̂(t) ∈ arg max
m∈M

u(m, σ̂(m), t),

2. for all m, there exists some µ ∈ ∆(T) such that

σ̂ (m) ∈ arg max
r∈R

Eµ[v(m, r , t)],

where Eµ denotes expectation with respect to µ, and

1Copyright December 7, 2011 by George J. Mailath
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Figure 6.1.1: A signaling game

3. for m ∈ τ̂(T), µ in part 2 is given by

µ(t) = ρ{t |m = τ̂(t)}.

Since the different information sets for player II are not ordered
by ≺∗ (recall Problem 1.4.6), consistency places no restrictions on
beliefs at different information sets of player II. This implies the
following result (which Problem 6.3.2 asks you to prove).

Theorem 6.1.1 Suppose T , M , and R are finite. A profile is a perfect
Bayesian equilibrium if, and only if, it is a sequential equilibrium.

Example 6.1.1 (Separating equilibria) In the game given in Figure
6.1.1, (bq, fr) is a separating eq. «

Example 6.1.2 (Beer-quiche) In the game in Figure 6.1.2, (bb, rf )
and (qq, fr) are both pooling eq.

The eq in which the types pool on q is often argued to be un-
intuitive: Would the w type ever “rationally” deviate to b. In this
pooling eq, w receives 0, and this is strictly larger than his pay-
off from b no matter how II responds. On the other hand, if by
deviating to B, s can “signal” that he is indeed s, he is strictly bet-
ter off, since II’s best response is r , yielding payoff of 0. This is
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Figure 6.1.2: The Beer-Quiche game.

an example of the intuitive criterion, or of the test of equilibrium
domination. «

Let BR(T ′,m) be the set of best replies to m of the responder
for some beliefs over T ′, i.e.,

BR(T ′,m) = {r ∈ R : ∃µ ∈ ∆(T ′), r ∈ arg max
r ′∈R

Eµ[v(m, r ′, t)]}

=
⋃

µ∈∆(T ′)
arg max
r ′∈R

Eµ[v(m, r ′, t)].

Suppose (τ̂, σ̂ ) is a perfect Bayesian equilibrium, and let û(t) =
u(τ̂(t), σ̂ (τ̂(t)), t). Define D(m) ⊂ T as the set of types satisfying

û(t) > max
r∈BR(T ,m)

u(m, r , t).

Definition 6.1.2 The equilibrium (τ̂, σ̂ ) fails the intuitive criterion
if there exists m′ (necessarily not in τ̂(T), i.e., an unsent message)
and a type t′ (necessarily not in D(m)) such that

û(t′) < min
r∈BR(T\D(m′),m′)

u(m′, r , t′).

Remark 6.1.1 As defined, the test concerns equilibrium outcomes,
and not the specification of behavior after out-of-equilibrium mes-
sages. However, for messages m′ that satisfy ∅ ≠ D(m′) Î T , it is
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in the spirit of the the test to require out-of-equilibrium responses
r to m′ to satisfy r ∈ BR(T \D(m′),m′).

	

6.2 Job Market Signaling

Worker with private ability θ ∈ Θ.
Worker can signal ability through choice of level of education,

e ∈ R+.
Worker utility

w − c(e, θ),
w is wage, and c is disutility of education. Assume c is C2 and
satisfies single-crossing:

∂2c(e, θ)
∂e∂θ

< 0.

Also assume c(e, θ) ≥ 0, ce(e, θ) ≡ ∂c(e, θ)/∂e ≥ 0, ce(0, θ) = 0,
cee(e, θ) > 0, and lime→∞ ce(e, θ) = ∞.

Two identical firms competing for worker. Each firm values
worker of type θ with education e at f(e, θ). In any discretiza-
tion of the game, in any almost perfect Bayesian equilibrium, after
any e, firms have identical beliefs about worker ability (see Problem
6.3.4). Consequently, the two firms are effectively playing a sealed
bid common value first price auction, and so both firms bid their
value Ef(e, θ). To model as a game, replace the two firms with a
single uninformed receiver (the “market”) with payoff

−(f (e, θ)−w)2.
Strategy for worker, e : Θ → R+.
Strategy for “market”, w : R+ → R+.
Assume f is C2. Assume f(e, θ) ≥ 0, fe(e, θ) ≡ ∂f(e, θ)/∂e ≥ 0,

fθ(e, θ) > 0, fee(e, θ) ≤ 0, and feθ(e, θ) ≥ 0.
Unproductive education is f(e, θ) = θ.
Productive education is fe(e, θ) > 0.
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If market believes worker has ability θ̂, firm pays wage f(e, θ̂).
The result is a signaling game as described in Section 6.1, and so we
can apply equilibrium notion of perfect Bayesian as defined there.

6.2.1 Full Information

If firm knows worker has ability θ, worker chooses e to maximize

f(e, θ)− c(e, θ). (6.2.1)

For each θ there is a unique e∗ maximizing (6.2.1). That is,

e∗(θ) = arg max
e≥0

f(e, θ)− c(e, θ).

Assuming fe(0, θ) > 0 (together with the assumption on c above)
is sufficient to imply that e∗(θ) is interior for all θ and so

de∗

dθ
= −feθ(e, θ)− ceθ(e, θ)

fee(e, θ)− cee(e, θ) > 0.

6.2.2 Incomplete Information

Define
U(θ, θ̂, e) ≡ f(e, θ̂)− c(e, θ).

Note that
e∗(θ) = arg max

e≥0
U(θ, θ, e). (6.2.2)

Suppose (ê, ŵ) is a separating perfect Bayesian equilibrium. The
associated outcome is

(ê(θ), ŵ(ê(θ)))θ∈Θ.

If e′ = ê(θ′) for some θ′ ∈ Θ, then ŵ(e′) = f(e′, (ê)−1(e′)) =
f(e′, θ′), and so the payoff to the worker of type θ is

ŵ(e′)− c(e′, θ) = f(e′, θ′)− c(e′, θ) = U(θ, θ′, e′).
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e

θ̂

e∗

U(θ′, θ̂, e) = k′

U(θ′′, θ̂, e) = k0

U(θ′′, θ̂, e) = k′′U(θ′′, θ̂, e) = k′′

e∗(θ′)

θ′′

e∗(θ′′)

θ′

e′′

“E[θ|e]”

Figure 6.2.1: Indifference curves in θ̂−e space. Note k′ = U(θ′, θ′, e∗(θ′)),
k′′ = U(θ′′, θ′′, e′′), and k0 = U(θ′′, θ′′, e∗(θ′′)), and that
incentive compatibility is satisfied at the indicated points:
U(θ′′, θ′′, e′′) ≥ U(θ′′, θ′, e∗(θ′)) and U(θ′, θ′, e∗(θ′)) ≥
U(θ′, θ′′, e′′). For any e < e′′, firms believe θ = θ′, and for
any e ≥ e′′, firms believe θ = θ′′.
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In equilibrium, no type strictly benefits from mimicking another
type, i.e., for all θ′, θ′′ ∈ Θ,

U(θ′, θ′, ê(θ′)) ≥ U(θ′, θ′′, ê(θ′′)). (6.2.3)

This is called incentive compatibility. See Figure 6.2.1.
Let

¯
θ =minΘ. Sequential rationality implies

ê(
¯
θ) = e∗(

¯
θ). (6.2.4)

(Why?)
The set of separating perfect Bayesian equilibrium outcomes is

illustrated in Figure 6.2.2.
The Riley outcome is ((e∗(θ′), f (e∗(θ′), θ′)), (e′′1 , f (e′′1 , θ′′))); it

is the separating outcome that minimizes the distortion—θ′ is in-
different between ((e∗(θ′), f (e∗(θ′), θ′)) and (e′′1 , f (e′′1 , θ′′))). Any
lower education level for θ′′ violates (6.2.3).

(6.2.3) can be rewritten as

U(θ′, θ′, ê(θ′)) ≥ U(θ′, (ê)−1(e), e) ∀e ∈ ê(Θ).
That is, the function ê : Θ → R+ satisfies the functional equation

ê(θ′) ∈ arg max
e∈ê(Θ)

U(θ′, (ê)−1(e), e), ∀θ′ ∈ Θ. (6.2.5)

Note that (6.2.2) and (6.2.5) differ in two ways: the set of possible
maximizers and how e enters into the objective function.

6.2.3 Refining to Separation

Suppose two types, θ′, θ′′.
Suppose f is affine in θ, so that Ef(e, θ) = f(e, Eθ) (but see

Problem 6.3.3(a)).
The pooling outcome in Figure 6.2.3 is a perfect Bayesian out-

come, but is ruled out by the intuitive criterion: For two types, the
intuitive criterion selects the “Riley” separating outcome, i.e., the
separating outcome that minimizes the signaling distortion.

With three types needs a much stronger refinement (D1, see Cho
and Kreps (1987)).
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e
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e∗

U(θ′, θ̂, e) = k′

U(θ′′, θ̂, e)

e∗(θ′)

θ′′

θ′

e′′1 e′′2

Figure 6.2.2: Separating equilibria. The set of separating per-
fect Bayesian equilibrium outcomes is given by
{((e∗(θ′), f (e∗(θ′), θ′)), (e′′, f (e′′, θ′′))) : e′′ ∈ [e′′1 , e′′2 ]}.
Note that θ′′ cannot receive a lower payoff than
maxeU(θ′′, θ′, e).
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e
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U(θ′, θ̂, e) = k′
U(θ′, θ̂, e) = k′p

U(θ′′, θ̂, e) = k′′p

e∗(θ′)

θ′′

E[θ]

ep ẽ

θ′

“E[θ|e]”

Figure 6.2.3: A pooling outcome at e = ep. k′p = U(θ′, Eθ, ep), k′′p =
U(θ′′, Eθ, ep). Note that E[θ|e], firms’ beliefs after poten-
tial deviating e’s must lie below the θ′ and θ′′ indifference
curves indexed by k′p and k′′p , respectively.
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6.2.4 Continuum of Types

Suppose Θ = [
¯
θ, θ̄] (so that there is a continuum of types), and

suppose ê is differentiable.
Then the first derivative of the objective function in (6.2.5) w.r.t.

e is

Uθ̂(θ
′, (ê)−1(e), e)

d(ê)−1(e)
de

+Ue(θ′, (ê)−1(e), e)

= Uθ̂(θ′, (ê)−1(e), e)
(
dê(θ)
dθ

∣∣∣∣
θ=(ê)−1(e)

)−1

+Ue(θ′, (ê)−1(e), e).

The first order condition is obtained by evaluating this derivative
at e′ = ê(θ′) (so that (ê)−1(e′) = θ′) and setting the result equal to
0:

Uθ̂(θ
′, θ′, e′)

(
dê(θ′)
dθ

)−1

+Ue(θ′, θ′, e′) = 0.

The result is a differential equation characterizing ê,

dê(θ′)
dθ

= −Uθ̂(θ
′, θ′, e′)

Ue(θ′, θ′, e′)
= − fθ(e′, θ′)

fe(e′, θ′)− ce(e′, θ′).

Together with (6.2.4), we have an initial value problem that char-
acterizes the unique separating perfect Bayesian equilibrium strat-
egy for the worker.

Note that because of (6.2.4), as θ →
¯
θ, dê(θ)/dθ → +∞, and that

for θ >
¯
θ, ê(θ) > e∗(θ), that is, there is necessarily a signalling

distortion.

Remark 6.2.1 The above characterization of separating strategies
works for any signaling game, given U(θ, θ̂, e), the payoff to the
informed player of type θ, when the uninformed player best re-
sponds to a belief that the type is θ̂, and e is chosen by the in-
formed player. See Problem 6.3.3 for a description of the canonical
signaling model.

	

122



December 7, 2011 123

t1

[1
2]

R
U 6,3

D 0,0

L
2,0

t2

[1
2]

R
U x,0

D 0,2

L
2,0

II

Figure 6.3.1: Game for problem 6.3.1. The probability that player I is type
t1 is 1/2 and the probability that he is type t2 is 1/2. The
first payoff is player I’s payoff, and the second is player II’s.

6.3 Problems

6.3.1. Show that in the game illustrated in Figure 6.3.1, for all values of x,
the outcome in which both types of player I play L is sequential by
explicitly describing the converging sequence of completely mixed
behavior strategy profiles and the associated system of beliefs. For
what values of x does this equilibrium pass the intuitive criterion?

6.3.2. Prove Theorem 6.1.1.

6.3.3. The canonical signaling game has a sender with private information,
denoted θ ∈ Θ ⊂ R choosing a messagem ∈ R, where Θ is compact.
A receiver, observingm, but not knowing θ then chooses a response
r ∈ R. The payoff to the sender is u(m, r , θ) while the payoff to the
receiver is v(m, r , θ). Assume both u and v are C2. Assume v is
strictly concave in r , so that v(m, r , θ) has a unique maximizer in
r for all (m,θ), denoted ξ(m,θ). Define

U(θ, θ̂,m) = u(m,ξ(m, θ̂), θ).

Assume u is strictly increasing in r , and ξ is strictly increasing in
θ̂, so that U is also strictly increasing in θ̂. Finally, assume that for
all (θ, θ̂), U(θ, θ̂,m) is bounded above (and so has a well-defined
maximum).
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(a) Given a message m∗ and a belief F over θ, suppose r∗ maxi-
mizes the receiver’s expected payoff. Prove there exists θ̂ such
that r∗ = ξ(m∗, θ̂). Moreover, if the support of F is a contin-
uum, [

¯
θ, θ̄], prove that θ̂ is in the support of F .

Assume u satisfies the single-crossing condition:

If θ < θ′ and m < m′, then u(m, r , θ) ≤ u(m′, r ′, θ)
implies u(m, r , θ′) < u(m′, r ′, θ′).

(Draw the indifference curves for different types in m − r space to
see that they can only cross once.)

(b) Provide restrictions on the productive education case covered
in Section 6.2 so that the sender’s payoff satisfies the single-
crossing condition as defined here.

(c) Prove that U satisfies an analogous version of the single-crossing
condition: If θ < θ′ andm <m′, then U(θ, θ̂,m) ≤ U(θ, θ̂′,m′)
implies U(θ′, θ̂,m) < U(θ′, θ̂′,m′).

(d) Prove that the messages sent by the sender in any separating
Nash equilibrium are strictly increasing in type.

(e) Prove that in any separating perfect Bayesian equilibrium, type
θ ≡ minΘ chooses the action m maximizing u(m,ξ(m,θ), θ)
(recall (6.2.4)). How is this implication of separating perfect
Bayesian equilibrium changed if u is strictly decreasing in r? If
ξ is strictly decreasing in θ̂?

6.3.4. Prove that in any discretization of the job market signaling game,
in any almost perfect Bayesian equilibrium, after any e, firms have
identical beliefs about worker ability.

6.3.5. Suppose that, in the incomplete information model of Section 6.2,
the payoff to a firm from hiring a worker of type θ with education e
at wage w is

f(e, θ)−w = 3eθ −w.
The utility of a worker of type θ with education e receiving a wage
w is

w − c(e, θ) = w − e
3

θ
.

Suppose the support of the firms’ prior beliefs ρ on θ is Θ = {1,3}.
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(a) Describe a perfect Bayesian equilibrium in which both types of
worker choose their full information eduction level. Be sure to
verify that all the incentive constraints are satisfied.

(b) Are there other separating perfect Bayesian equilibria? What
are they? Do they depend on the prior distribution ρ?

Now suppose the support of the firms’ prior beliefs on θ is Θ =
{1,2,3}.

(c) Why is it no longer consistent with a separating perfect Bayesian
equilibrium to have θ = 3 choose his full information eduction
level e∗(3)? Describe the Riley outcome (the separating equi-
librium outcome that minimizes the distortion), and verify that
it is indeed the outcome of a perfect Bayesian equilibrium.

(d) What is the largest education level for θ = 2 consistent with
separating perfect Bayesian equilibrium? Prove that any sep-
arating equilibrium in which θ = 2 chooses that level of edu-
cation fails the intuitive criterion. [Hint: consider the out-of-
equilibrium education level e = 3.]

(e) Describe the separating perfect Bayesian equilibria in which
θ = 2 chooses e = 2.5. Some of these equilibria fail the in-
tuitive criterion and some do not. Give an example of one of
each (i.e., an equilibrium that fails the intuitive criterion, and
an equilibrium that does not fail).

6.3.6. The owner of a small firm is contemplating selling all or part of his
firm to outside investors. The profits from the firm are risky and the
owner is risk averse. The owner’s preferences over x, the fraction of
the firm the owner retains, and p, the price “per share” paid by the
outside investors, are given by

u(x,θ,p) = θx − x2 + p(1− x),
where θ is the value of the firm (i.e., expected profits). The quadratic
term reflects the owner’s risk aversion. The outside investors are
risk neutral, and so the payoff to an outside investor of paying p
per share for 1− x of the firm is then

θ(1− x)− p(1− x).
There are at least two outside investors, and the price is determined
by a first price sealed bid auction: The owner first chooses the frac-
tion of the firm to sell, 1 − x; the outside investors then bid, with
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the 1−x fraction going to the highest bidder (ties are broken with a
coin flip).

(a) Suppose θ is public information. What fraction of the firm will
the owner sell, and how much will he receive for it?

(b) Suppose now θ is privately known by the owner. The outside
investors have common beliefs, assigning probability α ∈ (0,1)
to θ = θ1 > 0 and probability 1−α to θ = θ2 > θ1. Characterize
the separating perfect Bayesian equilibria. Are there any other
perfect Bayesian equilibria?

(c) Maintaining the assumption that θ is privately known by the
owner, suppose now that the outside investors’ beliefs over
θ have support [θ1, θ2], so that there a continuum of possi-
ble values for θ. What is the initial value problem (differential
equation plus initial condition) characterizing separating per-
fect Bayesian equilibria?

6.3.7. Firm 1 is an incumbent firm selling widgets in a market in two pe-
riods. In the first period, firm 1 is a monopolist, facing a demand
curve P1 = A− q1

1, where q1
1 ∈ R+ is firm 1’s output in period 1 and

P1 is the first period price. In the second period, a second firm, firm
2, will enter the market, observing the first period quantity choice
of firm 1. In the second period, the two firms choose quantities
simultaneously. The inverse demand curve in period 2 is given by
P2 = A − q2

1 − q2
2, where q2

i ∈ R+ is firm i’s output in period 2 and
P2 is the second period price. Negative prices are possible (and will
arise if quantities exceed A). Firm i has a constant marginal cost of
production ci > 0. Firm 1’s overall payoff is given by

(P1 − c1)q1
1 + (P2 − c1)q2

1,

while firm 2’s payoff is given by

(P2 − c2)q2
2.

Firm 2’s marginal cost, c2, is common knowledge (i.e., each firm
knows the marginal cost of firm 2), and satisfies c2 < A/2.

(a) Suppose c1 is also common knowledge (i.e., each firm knows
the marginal cost of the other firm), and also satisfies c1 < A/2.
What are the subgame perfect equilibria and why?
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(b) Suppose now that firm 1’s costs are private to firm 1. Firm 2
does not know firm 1’s costs, assigning prior probability p ∈
(0,1) to cost cL1 and complementary probability 1 − p to cost
cH1 , where cL1 < c

H
1 < A/2.

i. Define a pure strategy almost perfect Bayesian equilibrium
for this game of incomplete information . What restric-
tions on second period quantities must be satisfied in any
pure strategy almost perfect Bayesian equilibrium? [Make
the game finite by considering discretizations of the action
spaces. Strictly speaking, this is not a signaling game, since
firm 1 is choosing actions in both periods, so the notion
from Section 6.1 does not apply.]

ii. What do the equilibrium conditions specialize to for sepa-
rating pure strategy almost perfect Bayesian equilibria?

(c) Suppose now that firm 2’s beliefs about firm 1’s costs have sup-
port [cL1 , c

H
1 ]; i.e., the support is now an interval and not two

points. What is the direction of the signaling distortion in the
separating pure strategy almost perfect Bayesian equilibrium?
What differential equation does the function describing first pe-
riod quantities in that equilibrium satisfy?

6.3.8. Suppose that in the setting of Problem 3.6.1, firm 2 is a Stackelberg
leader, i.e., we are reversing the order of moves from Problem 5.4.9.

(a) Illustrate the preferences of firm 2 in q2-θ̂ space, where q2 is
firm 2’s quantity choice, and θ̂ is firm 1’s belief about θ.

(b) There is a separating perfect Bayesian equilibrium in which firm
2 chooses q2 = 1

2 when θ = 3. Describe it, and prove it is a
separating perfect Bayesian equilibrium (the diagram from part
6.3.8(a) may help).

(c) Does the equilibrium from part 6.3.8(b) pass the intuitive cri-
terion? Why or why not? If not, describe a separating perfect
Bayesian equilibrium that does.

6.3.9. We continue with the setting of Problem 3.6.1, but now suppose that
firm 2 is a Stackelberg leader who has the option of not choosing be-
fore firm 1: Firm 2 either chooses its quantity, q2, first, or the action
W (for wait). If firm 2 chooses W , then the two firms simultaneously
choose quantities, knowing that they are doing so. If firm 2 chooses
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its quantity first (so that it did not choose W ), then firm 1, knowing
firm 2’s quantity choice then chooses its quantity.

(a) Describe a strategy profile for this dynamic game. Following
the practice in signaling games, say a strategy profile is per-
fect Bayesian if it satisfies the conditions implied by sequential
equilibrium in discretized versions of the game. (In the current
context, a discretized version of the game restricts quantities
to some finite subset.) What conditions must a perfect Bayesian
equilibrium satisfy, and why?

(b) For which parameter values is there an equilibrium in which
firm 2 waits for all values of θ.

(c) Prove that the outcome in which firm 2 does not wait for any
θ, and firms behave as in the separating outcome of question
6.3.8(b) is not an equilibrium outcome of this game.
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Chapter 7

Repeated Games1

7.1 Basic Structure

Stage game G ≡ {(Ai, ui)}:
Action space for i is Ai, with typical action ai ∈ Ai. An action

profile is denoted a = (a1, . . . , an).
Discount factor δ ∈ (0,1).
Play G at each date t = 0,1, . . . .
At the end of each period, all players observe the action profile a

chosen. Actions of every player are perfectly monitored by all other
players.

History up to date t: ht ≡ (a0, . . . , at−1) ∈ At ≡ Ht; H0 ≡ {∅}.
Set of all possible histories: H ≡ ∪∞t=0Ht.
Strategy for player i— si : H → Ai. Often written si = (s0

i , s
1
i , s

2
i , . . .),

where sti : Ht → Ai. Since H0 = {∅}, we have s0 ∈ A, and so can
write a0 for s0.

Note distinction between

• actions ai ∈ Ai and

• strategies si : H → Ai.
Given strategy profile s ≡ (s1, s2, . . . , sn), outcome path induced by
s is a(s) = (a0, a1, a2, . . .), where

a0 =(s0
1 , s0

2 , . . . , s0
n),

1Copyright December 7, 2011 by George J. Mailath
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a1 =(s1
1(a0), s1

2(a0), . . . , s1
n(a0)),

a2 =(s2
1(a0, a1), s2

2(a0, a1), . . . , s2
n(a0, a1)),

...

Payoffs of G(∞) are

Ui(s) = (1− δ)
∞∑
t=0

δtui(at(s)).

Definition 7.1.1 The strategy profile ŝ is a Nash equilibrium ofG(∞)
if, for all i and all s̃i : H → Si,

Ui(ŝi, ŝ−i) ≥ Ui(s̃i, ŝ−i).

Definition 7.1.2 Player i’s pure strategy minmax utility is

¯
vpi =min

a−i
max
ai
ui(ai, a−i).

The profile â−i ∈ arg mina−i maxai ui(ai, a−i) minmaxes player
i. The set of (pure strategy) strictly individually rational payoffs
in {(Si, ui)} is {v ∈ Rn : vi >

¯
vpi }. The set of feasible payoffs in

{(Si, ui)} is conv{v ∈ Rn : ∃a ∈ S,v = u(a)}. Define Fp∗ ≡ {v ∈
Rn : vi >

¯
vpi } ∩ conv{v ∈ Rn : ∃a ∈ S,v = u(a)}.

Theorem 7.1.1 Suppose s∗ is a pure strategy Nash equilibrium. Then,

Ui(s∗) ≥
¯
vpi .

Proof. Let ŝi be a strategy satisfying

ŝi(ht) ∈ arg max
ai

ui(ai, s∗−i(h
t)), ∀ht ∈ Ht

(if the arg max is unique for some history ht, ŝ(i(ht) is uniquely
determined, otherwise make a selection from the argmax). Since

Ui(s∗) ≥ Ui(ŝi, s∗−i),
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and since in every period
¯
vpi is a lower bound for the flow payoff

received under the profile (ŝi, s∗−i), we have

Ui(s∗) ≥ Ui(ŝi, s∗−i) ≥ (1− δ)
∞∑
t=0

δt
¯
vpi =

¯
vpi .

Remark 7.1.1 In some settings it is necessary to allow players to
randomize. For example, in matching pennies, the set of pure strat-
egy feasible and individually rational payoffs is empty.

Definition 7.1.3 Player i’s mixed strategy minmax utility is

¯
vi = min

α−i∈
∏
j≠i∆(Aj)

max
αi∈∆(Ai)

ui(αi, α−i).

The profile α̂−i ∈ arg minα−i maxαi ui(αi, α−i) minmaxes player
i. The set of (mixed strategy) strictly individually rational payoffs
in {(Si, ui)} is {v ∈ Rn : vi >

¯
vi}. Define F∗ ≡ {v ∈ Rn : vi >

¯
vi} ∩ conv{v ∈ Rn : ∃a ∈ S,v = u(a)}.

The Minmax Theorem (Problem 4.3.1) implies that
¯
vi is i’s secu-

rity level (Definition 2.4.2).
A proof essentially identical to that proving Theorem 7.1.1 (ap-

plied to the behavior strategy profile realization equivalent to σ∗)
proves the following:

Theorem 7.1.2 Suppose σ∗ is a (possibly mixed) Nash equilibrium.
Then,

Ui(σ∗) ≥
¯
vi.

Since
¯
vi ≤

¯
vPi (with a strict inequality in some games, such

as matching pennies), lower payoffs often can be enforced using
mixed strategies. The possibility of enforcing lower payoffs allows
higher payoffs to be enforced in subgame perfect equilibria.

	

Given ht′ = (a0, . . . , at′−1) ∈ Ht′ and h̄t = (ā0, . . . , āt−1) ∈ Ht, the
history (a0, . . . , at′−1, ā0, . . . , āt−1) ∈ Ht′+t is the concatenation of ht′
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followed by h̄t, denoted by (ht′, h̄t). Given si, define si|ht′ : H → Si
as follows:

sti|ht′ (h̄t) = st
′+t
i (ht′, h̄t).

Definition 7.1.4 The strategy profile ŝ is a subgame perfect equilib-
rium of G(∞) if, for all histories, ht ∈ Ht, ŝ|ht= (ŝi|ht , . . . , ŝn|ht) is a
Nash equilibrium of G(∞).

Example 7.1.1 (Grim trigger in the repeated PD)

E S

E 2,2 −1,3

S 3,−1 0,0

Grim trigger: player i’s strategy is given by

ŝ0
i =E,

and for t ≥ 1,

ŝti (a
0, . . . , at−1) =

{
E, if at′ = EE for all t′ = 0,1, . . . , t − 1,
S, otherwise.

Payoff to I from (ŝ1, ŝ2) is: (1−δ)∑2×δt = 2. Payoff from deviating
in period t = 0 (most profitable deviation) is (1− δ)3. Nash if

2 ≥ 3(1− δ)⇐⇒ δ ≥ 1
3
.

Strategy profile is subgame perfect: only need to check subgame
after one deviation. On such, ŝ specifies SS in every period and
that is clearly Nash. «

Represent strategy profiles by automata, (W ,w0, f , τ), where

• W is set of states,

• w0 is initial state,
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• f :W → A is output function (decision rule),2 and

• τ :W ×A→W is transition function.

Any automaton (W ,w0, f , τ) induces a pure strategy profile as
follows: First, extend the transition function from the domainW ×
A to the domainW × (H\{∅}) by recursively defining

τ(w,h t) = τ (τ(w,h t−1), a t−1
)
.

With this definition, the strategy s induced by the automaton is
given by s(∅) = f(w0) and

s(ht) = f(τ(w0, ht)),∀ht ∈ H\{∅}.

Conversely, it is straightforward that any strategy profile can be
represented by an automaton. Take the set of histories H as the set
of states, the null history ∅ as the initial state, f(ht) = s(ht), and
τ
(
h t, a

) = h t+1, where h t+1 ≡ (
h t, a

)
is the concatenation of the

history h t with the action profile a.
This representation leaves us in the position of working with

the full set of histories H . However, strategy profiles can often
be represented by automata with finite sets W . The set W is then
a partition on H , grouping together those histories that prompt
identical continuation strategies.

Advantage of automaton representation clearest whenW can be
chosen finite, but also has conceptual advantages.

Example 7.1.2 (Grim trigger in the repeated PD, cont.)
Grim trigger profile has automata representation, (W ,w0, f , τ),

with W = {wEE,wSS}, w0 = wEE, f(wEE) = EE and f(wSS) = SS,
and

τ(w,a) =
{
wEE, if w = wEE and a = EE,
wSS , otherwise.

The automaton can be represented as:

2A profile of behavior strategies (b1, . . . , bn), bi : H → ∆(Ai), can also be
represented by an automaton. The output function now maps into profiles of
mixtures over action profiles, i.e., f :W →∏

i∆(Ai).
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wEEw0 wSS
ES, SE, SS

EE EE, SE, ES, SS

«

If s is represented by (W ,w0, f , τ), the continuation strategy
profile after a history ht, s |ht is represented by the automaton
(W , τ(w0, ht), f , τ), where τ(w0, ht) is the result of recursively ap-
plying τ to ht, i.e., if ht = (ht−1, at−1), then τ(w0, ht) = τ(τ(w0, ht−1), at−1).

Lemma 7.1.1 The strategy profile with representing automaton (W ,w0, f , τ)
is a subgame perfect equilibrium iff for all w ∈ W (satisfying w =
τ(w0, ht) for some ht ∈ H) the strategy profile represented by (W ,w, f , τ)
is a Nash eq of the repeated game.

Given an automaton (W ,w0, f , τ), let Vi(w) be i’s value from
being in the state w ∈W , i.e.,

Vi(w) = (1− δ)ui(f (w))+ δVi(τ(w, f(w))).

Note that ifW is finite, Vi solves a finite set of linear equations (see
Problem 7.6.3).

Compare the following definition with Definition 5.1.3, and the
proofs of Theorem 7.1.3 with that of Theorem 5.3.2.

Definition 7.1.5 Player i has a profitable one-shot deviation from
(W ,w0, f , τ), if there is some history ht and some action ai ∈ Ai
such that (where w = τ(w0, ht))

Vi(w) < (1− δ)ui(ai, f−i(w))+ δVi(τ(w, (ai, f−i(w))).

Theorem 7.1.3 A strategy profile is subgame perfect iff there are no
profitable one-shot deviations.

Proof. Clearly, if a strategy profile is subgame perfect, then there
are no profitable deviations.

We need to argue that if a profile is not subgame perfect, then
there is a profitable one-shot deviation.
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Suppose (s1, . . . , sn) (with representing automaton (W ,w0, f , τ))
is not subgame perfect. Then there exists some history h̃t′ and
player i such that si|h̃t′ is not a best reply to s−i|h̃t′ . That is, there
exists ŝi such that

0 < Ui(ŝi, s−i|h̃t′)−Ui(si|h̃t′ , s−i|h̃t′) ≡ ε.
For simplicity, define s̃j = sj |h̃t′ . Defining M ≡ 2 maxi,a |ui(a)|,
suppose T is large enough so that δTM < ε/2, and consider the
strategy for i defined by

s̄i(ht) =
{
ŝi(ht), t < T ,
s̃i(ht), t ≥ T .

Then,
|Ui(s̄i, s̃−i)−Ui(ŝi, s̃−i)| ≤ δTM < ε/2,

so that

Ui(s̄i, s−i|h̃t′)−Ui(si|h̃t′ , s−i|h̃t′) ≡ Ui(s̄i, s̃−i)−Ui(s̃i, s̃−i) > ε/2 > 0.

Note that s̄i is a profitable “T -period” deviation from s̃i.
Let h̄T−1 be the outcome path up to and including period T − 1

(history) induced by (s̄i, s̃−i), and let w̄ = τ(w0, h̃t′h̄T−1). Note that

Ui(s̃i|h̄T−1, s̃−i|h̄T−1) = Vi(τ(w0, h̃t′h̄T−1)) = Vi(w̄)
and

Ui(s̄i|h̄T−1, s̃−i|h̄T−1)
= (1− δ)ui(s̄i(h̄T−1), f−i(w̄))+ δVi(τ(w̄, (s̄i(h̄T−1), f−i(w̄)))).

Hence, if Ui(s̄i|h̄T−1, s̃−i|h̄T−1) > Ui(s̃i|h̄T−1, s̃−i|h̄T−1), then we are done,
since player i has a profitable one-shot deviation from (W ,w0, f , τ).

Suppose not, i.e., Ui(s̄i|h̄T−1, s̃−i|h̄T−1) ≤ Ui(s̃i|h̄T−1, s̃−i|h̄T−1). For the
strategy ši defined by

ši(ht) =
{
s̄i(ht), t < T − 1,
s̃i(ht), t ≥ T − 1,
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we have

Ui(ši, s̃−i) =(1− δ)
T−2∑
t=0

δtui(at(s̄i, s̃−i))+ δT−1Ui(s̃i|h̄T−1, s̃−i|h̄T−1)

≥(1− δ)
T−2∑
t=0

δtui(at(s̄i, s̃−i))+ δT−1Ui(s̄i|h̄T−1, s̃−i|h̄T−1)

=Ui(s̄i, s̃−i) > Ui(s̃i, s̃−i).
That is, the (T − 1)-period deviation is profitable. But then either
the one-shot deviation in period T − 1 is profitable, or the (T − 2)-
shot deviation is profitable. Induction completes the argument.

See Problem 7.6.4 for an alternative (and perhaps more enlight-
ening) proof.

Corollary 7.1.1 Suppose the strategy profile s is represented by (W ,w0, f , τ).
Then s is subgame perfect if, and only if, for all w ∈ W (satisfying
w = τ(w0, ht) for some ht ∈ H), f(w) is a Nash eq of the normal
form game with payoff function gw : A→ Rn, where

gwi (a) = (1− δ)ui(a)+ δVi(τ(w,a)).
Definition 7.1.6 An action profile a′ ∈ A is enforced by the contin-
uation promises γ : A → Rn if a′ is a Nash eq of the normal form
game with payoff function gw : A→ Rn, where

gwi (a) = (1− δ)ui(a)+ δγi(a).
A payoff v is decomposed on a set of payoffs V if there exists an

action profile a′ enforced by some continuation promises γ : A → V
satisfying, for all i,

vi = (1− δ)ui(a′)+ δγi(a′).
Example 7.1.3 (continuation of grim trigger) We clearly have V1(wEE) =
2 and V1(wSS) = 0, so that the normal form associated with wEE is

E S

E 2,2 −(1− δ),3(1− δ)
S 3(1− δ),−(1− δ) 0,0

,
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while the normal form for wSS is

E S

E 2(1− δ),2(1− δ) −(1− δ),3(1− δ)
S 3(1− δ),−(1− δ) 0,0

.

As required EE is a (but not the only!) Nash eq of the wEE normal
form, while SS is a Nash eq of the wSS normal form. «

Example 7.1.4 Stage game:

A B C

A 4,4 3,2 1,1

B 2,3 2,2 1,1

C 1,1 1,1 −1,−1

Stage game has a unique Nash eq: AA. Suppose δ ≥ 2
3 . Then there is

a subgame perfect equilibrium of G(∞) with outcome path (BB)∞:
(W ,w0, f , τ), whereW = {wBB,wCC}, w0 = wBB, fi(wa) = ai, and

τ(w,a) =
{
wBB, if w = wBB and a = BB, or w = wCC and a = CC ,

wCC , otherwise.

wBBw0 wCC

¬BB

CC

BB

¬CC

Values of the states are

Vi(wBB) =(1− δ)2+ δVi(wBB),

137



138 CHAPTER 7. REPEATED GAMES

and Vi(wCC) =(1− δ)× (−1)+ δVi(wBB).

Solving,

Vi(wBB) =2,
and Vi(wCC) =3δ− 1.

Player 1’s payoffs in the normal form associated with wBB are

A B C

A 4(1− δ)+ δ(3δ− 1) 3(1− δ)+ δ(3δ− 1) 1− δ+ δ(3δ− 1)

B 2(1− δ)+ δ(3δ− 1) 2 1− δ+ δ(3δ− 1)

C 1− δ+ δ(3δ− 1) 1− δ+ δ(3δ− 1) −(1− δ)+ δ(3δ− 1)

,

and since the game is symmetric, BB is a Nash eq of this normal
form only if

2 ≥ 3(1− δ)+ δ(3δ− 1),

i.e.,
0 ≥ 1− 4δ+ 3δ2 a 0 ≥ (1− δ)(1− 3δ),

or δ ≥ 1
3 .

Player 1’s payoffs in the normal form associated with wCC are

A B C

A 4(1− δ)+ δ(3δ− 1) 3(1− δ)+ δ(3δ− 1) 1− δ+ δ(3δ− 1)

B 2(1− δ)+ δ(3δ− 1) 2(1− δ)+ δ(3δ− 1) 1− δ+ δ(3δ− 1)

C 1− δ+ δ(3δ− 1) 1− δ+ δ(3δ− 1) −(1− δ)+ δ2

,

and since the game is symmetric, CC is a Nash eq of this normal
form only if

−(1− δ)+ δ2 ≥ 1− δ+ δ(3δ− 1),

i.e.,
0 ≥ 2− 5δ+ 3δ2 a 0 ≥ (1− δ)(2− 3δ),

or δ ≥ 2
3 . «

138



December 7, 2011 139

7.2 Modeling Competitive Agents (Small/Short-
Lived Players)

Example 7.2.1 (Product-choice game)

h `

H 3,3 0,2

L 4,0 2,1

Player I (row player) is long-lived, player II (the column player) is
short lived.

Subgame perfect equilibrium described by the two state automa-
ton:

wHhw0 wL`
Lh, L`

Hh,H`

The action profile L` is a static Nash equilibrium, and since wL` is
an absorbing state, we trivially have that L` is a Nash equilibrium
of the associated one-shot game, gwL` .

Note that V1(wHh) = 3 and V1(wL`) = 2. Since player 2 is short-
lived, he must myopically optimize in each period. The one-shot
game from Corollary 7.1.1 has only one player. The one-shot game
gwHh associated with wHh is given by

h

H (1− δ)3+ δ3

L (1− δ)4+ δ2

and player I finds H optimal if 3 ≥ 4− 2δ, i.e., if δ ≥ 1/2.
Thus the profile is a subgame perfect equilibrium if, and only if,

δ ≥ 1/2. «
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Example 7.2.2

h `

H 3,3 2,2

L 4,0 0,1

The action profile L` is no longer a static Nash equilibrium, and
so Nash reversion cannot be used to discipline player I’s behavior.

Subgame perfect equilibrium described by the two state automa-
ton:

wHhw0 wL`

Lh, L`

Lh, L`

Hh,H`

Hh,H`

Since player 2 is short-lived, he must myopically optimize in
each period, and he is.

Note that V1(wHh) = 3 and V1(wL`) = (1− δ)0+ δ3 = 3δ. There
are two one shot games we need to consider. The one-shot game
gwHh associated with wHh is given by

h

H (1− δ)3+ δ3

L (1− δ)4+ 3δ2

and player I finds H optimal if 3 ≥ 4− 4δ+ 3δ2 a 0 ≥ (1− δ)(1−
3δ)a δ ≥ 1/3.

The one-shot game gwL` associated with wL` is given by

`

H (1− δ)2+ 3δ2

L (1− δ)0+ 3δ
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and player I finds L optimal if 3δ ≥ 2− 2δ+ 3δ2 a 0 ≥ (1−δ)(2−
3δ))a δ ≥ 2/3.

Thus the profile is a subgame perfect equilibrium if, and only if,
δ ≥ 2/3. «

Example 7.2.3 Stage game: Seller chooses quality, “H” or “L”, and
announces price.

Cost of producing H = cH = 2.
Cost of producing L = cL = 1.
Demand:

x(p) =
{

10− p, if H, and

4− p, if L.

If L, maxp(4− p)(p − cL)⇒ p = 5
2 ⇒ x = 3

2 , π
L = 9

4 .
If H, maxp(10− p)(p − cH)⇒ p = 6⇒ x = 4, πH = 16.
Quality is only observed after purchase.
Model as a game: Strategy space for seller {(H,p), (L,p′) : p,p′ ∈

R+}.
Continuum of (long-lived) consumers of mass 10, each consumer

buys zero or one unit of good. Consumer i ∈ [0,10] values one unit
of good as follows

vi =
{
i, if H, and

max{0, i− 6}, if L.

Strategy space for consumer i is {s : R+ → {0,1}}, where 1 is buy
and 0 is not buy.

Strategy profile is ((Q,p), ξ), where ξ(i) is consumer i’s strat-
egy. Write ξi for ξ(i). Consumer i’s payoff function is

ui((Q,p), ξ) =


i− p, if Q = H and ξi(p) = 1,

max{0, i− 6} − p, if Q = L and ξi(p) = 1, and

0, if ξi(p) = 0.

Firm’s payoff function is

π((Q,p), ξ) =(p − cQ)x̂(p, ξ)

141



142 CHAPTER 7. REPEATED GAMES

≡(p − cQ)
∫ 10

0
ξi(p)di

=(p − cQ)λ{i ∈ [0,10] : ξi(p) = 1},
where λ is Lebesgue measure. [Note that we need to assume that ξ
is measurable.]

Assume firm only observes x̂(p, ξ) at the end of the period, so
that consumers are anonymous.

Note that x̂(p, ξ) is independent of Q, and that the choice (L,p)
strictly dominates (H,p) whenever x̂(p, ξ) ≠ 0.

If consumer i believes the firm has chosen Q, then i’s best re-
sponse to p is ξi(p) = 1 only if ui((Q,p), ξ) ≥ 0. Let ξQi (p) denote
the maximizing choice of consumer i when the consumer observes
price p and believes the firm also chose quality Q. Then,

ξHi (p) =
{

1, if i ≥ p, and

0, if i < p,

so x(p, ξH) = ∫ 10
p di = 10− p. Also,

ξLi (p) =
{

1, if i ≥ p + 6, and

0, if i < p + 6,

so x̂(p, ξL) = ∫ 10
p+6di = 10− (p + 6) = 4− p.

Unique subgame perfect equilibrium of stage game is ((L, 5
2), ξ

L).
Why isn’t the outcome path ((H,6), ξH(6)) consistent with sub-

game perfection? Note that there are two distinct deviations by
the firm to consider: an unobserved deviation to (L,6), and an ob-
served deviation involving a price different from 6. In order to deter
an observed deviation, we specify that consumer’s believe that, in
response to any price different from 6, the firm had chosen Q = L,
leading to the best response ξ̃i given by

ξ̃i(p) =
{

1, if p = 6 and i ≥ p, or p ≠ 6 and i ≥ p + 6,

0, otherwise,

implying aggregate demand

x̂(p, ξ̃) =
{

4, if p = 6,

max{0,4− p}, p ≠ 6.
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wHw0 wL
(Lp,x)

(Hp,x)

(Qp,x)

Figure 7.2.1: Grim trigger in the quality game. Note that the transitions
are only a function of Q.

Clearly, this implies that observable deviations by the firm are not
profitable. Consider then the profile ((H,6), ξ̃): the unobserved
deviation to (L,6) is profitable, since profits in this case are (10 −
6)(6 − 1) = 20 > 16. Note that for the deviation to be profitable,
firm must still charge 6 (not the best response to ξH).

Eq with high quality: buyers believe H will be produced as long
as H has been produced in the past. If ever L is produced, then L
is expected to always be produced in future. See Figure 7.2.1.

It only remains to specify the decision rules:

f1(w) =
{
(H,6), if w = wH , and

(L, 5
2), if w = wL.

and

f2(w) =
{
ξ̃, if w = wH , and

ξL, if w = wL.
Since the transitions are independent of price, the firm’s price is

myopically optimal in each state.
Since the consumers are small and myopically optimizing, in

order to show that the profile is subgame perfect, it remains to
verify that the firm is behaving optimally in each state. The firm
value in each state is V1(wQ) = πQ. Trivially, L is optimal in wL.
Turning to wH , we have

(1− δ)20+ δ9
4
≤ 16 a δ ≥ 16

71
.

There are many other equilibria. «

143



144 CHAPTER 7. REPEATED GAMES

Remark 7.2.1 (Short-lived player) Can model above as a game be-
tween one long-lived player and one short-lived player. In the stage
game, the firm chooses p, and then the firm and consumer simulta-
neously choose quality Q ∈ {L,H}, and quantity x ∈ [0,10]. If the
good is high quality, the consumer receives a utility of 10x − x2/2
from consuming x units. If the good is of low quality, his utility is
reduced by 6 per unit, giving a utility of 4x−x2/2.3 The consumer’s
utility is linear in money, so his payoffs are

uc(Q,p) =
(4− p)x − x2

2 , if Q = L, and

(10− p)x − x2

2 , if Q = H.

Since the period t consumer is short-lived (a new consumer replaces
him next period), if he expects L in period t, then his best reply is
to choose x = xL(p) ≡ max{4 − p,0}, while if he expects H, his
best reply is choose x = xH(p) ≡ max{10 − p,0}. In other words,
his behavior is just like the aggregate behavior of the continuum of
consumers.

This is in general true: a short-lived player can typically repre-
sent a continuum of long-lived anonymous players.

	

7.3 The Folk Theorem (Cooperation from Long-
Run Interactions and an Embarrassment
of Riches)

Theorem 7.3.1 (The Folk Theorem) Suppose F∗ has nonempty in-
terior in Rn. For all v ∈ F∗, there exists a sufficiently large discount
factor δ′, such that for all δ ≥ δ′, there is a subgame perfect equi-
librium of the infinitely repeated game whose average discounted
value is v .

3Note that for x > 4, utility is declining in consumption. This can be avoided
by setting his utility equal to 4x − x2/2 for x ≤ 4, and equal to 8 for all x > 4.
This does not affect any of the relevant calculations.
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Example 7.3.1 (Symmetric folk theorem for PD) Suppose restrict at-
tention to strongly symmetric strategies, i.e., for allw ∈W , f1(w) =
f2(w). When is {(v, v) : v ∈ [0,2]} a set of eq payoffs? Since inter-
ested in strongly symmetric equilibria, will drop player subscripts.
Note that the set of strongly symmetric equilibrium payoffs cannot
be any larger, since [0,2] is the largest set of feasible symmetric
payoffs.

Two preliminary calculations (important to note that these pre-
liminary calculations make no assumptions about [0,2] being a set
of eq payoffs):

1. Let W EE be the set of player 1 payoffs that could be decom-
posed on [0,2] using EE (i.e.,W EE is the set of player 1 payoffs
that could enforceably achieved by EE followed by appropri-
ate symmetric continuations in [0,2]). Then v ∈W EE iff

v =2(1− δ)+ δγ(EE)
≥3(1− δ)+ δγ(SE),

for some γ(EE), γ(SE) ∈ [0,2]. The largest value for γ(EE)
is 2, while the incentive constraint implies the smallest is (1−
δ)/δ, so that W EE = [3(1 − δ), 2]. See Figure 7.3.1 for an
illustration.

2. Let W SS be the set of player 1 payoffs that could be decom-
posed on [0,2] using SS. Then v ∈W SS iff

v =0× (1− δ)+ δγ(SS)
≥(−1)(1− δ)+ δγ(ES),

for some γ(SS), γ(ES) ∈ [0,2]. Since the inequality is satis-
fied by setting γ(SS) = γ(ES), the largest value for γ(SS) is
2, while the smallest is 0, and soW SS = [0, 2δ].

Observe that

[0,2] ⊃W SS ∪W EE = [0,2δ]∪ [3(1− δ),2].
Lemma 7.3.1 (Necessity) Suppose [0,2] is the set of strongly sym-
metric strategy equilibrium payoffs. Then,

[0,2] ⊂W SS ∪W EE.
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v

3− 3δ

2δ 2

γ

1−δ
δ

2

W SS

v = δγSS

v = 2(1− δ)+ δγEE

v0

0

1

2

W EE

Figure 7.3.1: An illustration of the folk theorem. The continuations that
enforce EE are labelled γEE , while those that enforce SS are
labelled γSS . The value v0 is the average discounted value
of the equilibrium whose current value/continuation value
is described by the cycle 0 − 1 − 2 − 0. In this cycle, play
follows EE, EE, SS, EE, · · · The Figure was drawn for δ = 2

3 ;

v0 = 30
19 .
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Proof. Suppose v is the payoff of some strongly symmetric strategy
equilibrium s. Then either s0 = EE or SS. Since the continuation
equilibrium payoffs must lie in [0,2], we immediately have that if
s0 = EE, then v ∈ W EE, while if s0 = SS, then v ∈ W SS . But this
implies v ∈W SS∪W EE. So, if [0,2] is the set of strongly symmetric
strategy equilibrium payoffs, we must have

[0,2] ⊂W SS ∪W EE.

So, when is
[0,2] ⊂W SS ∪W EE?

This holds iff 2δ ≥ 3(1− δ) (i.e., δ ≥ 3
5 ).

Lemma 7.3.2 (Sufficiency) If

[0,2] =W SS ∪W EE,

then [0,2] is the set of strongly symmetric strategy equilibrium pay-
offs.

Proof. Fix v ∈ [0,2], and define a recursion as follows: set γ0 = v ,
and

γ t+1 =
{
(γ t − 2(1− δ))/δ if γ t ∈W EE = [3(1− δ), 2], and

γ t/δ if γ t ∈W SS \W EE = [0, 3(1− δ)).
Since [0,2] ⊂ W SS ∪W EE, this recursive definition is well defined
for all t. Moreover, since δ ≥ 3

5 , γt ∈ [0,2] for all t. The recursion
thus yields a bounded sequence of continuations {γ t}t. Associated
with this sequence of continuations is the outcome path {ãt}t:

ã t =
{
EE if γ t ∈W EE, and

SS if γ t ∈W SS \W EE.

Observe that, by construction,

γ t = (1− δ)(ui(ãt)+ δγ t+1.

Consider the automaton (W ,w0, f , τ) where
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• W = [0,2];

• w0 = v ;

• the output function is

f(w) =
{
EE if w ∈W EE, and

SS if w ∈W SS \W EE, and

• the transition function is

τ(w,a) =


(w − 2(1− δ))/δ if w ∈W EE and a = f(w),
w/δ if w ∈W SS \W EE and a = f(w), and

0, if a ≠ f(w).

The outcome path implied by this strategy profile is {ãt}t. More-
over,

v = γ0 =(1− δ)ui(ã0)+ δγ1

=(1− δ)ui(ã0)+ δ {(1− δ)ui(ã1)+ δγ2
}

=(1− δ)∑T−1
t=0 δtui(ãt)+ δTγT

=(1− δ)∑∞t=0 δtui(ãt)

(where the last equality is an implication of δ < 1 and the sequence
{γT}T being bounded). Thus, the payoff of this outcome path is
exactly v , that is, v is the payoff of the strategy profile described
by the automaton (W ,w0, f , τ) with initial state w0 = v .

Thus, there is no profitable one-deviation from this automaton
(this is guaranteed by the constructions of W SS and W EE and w ∈
W SS \ W EE for w ∈ [0,2]). Consequently the associated strategy
profile is subgame perfect.

See Mailath and Samuelson (2006, chapter 2) for much more on
this. «
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7.4 Efficiency Wages

A slight modification of Section 2.3.D in Gibbons.4 In the stage
game, the worker (player I) first decides whether to be self-employed
or to exert effort (E) for the firm (player II), or to shirk (S) for the
firm. Effort yields output y for sure, while shirking yields output
y with probability p, and output 0 with probability 1−p. The firm
chooses a wage w that period if the worker turns up. At the end
of the period, the firm does not observe effort, but does observe
output.

Suppose

y − e >max{w0, py}

so it is efficient for the worker to exert effort.
Payoffs: self-employed worker receivesw0 > 0, effort has a disu-

tility of e:

I

E

self

(w0,0)

w ∈ [0, y]

(w − e,y −w)

S

Nature

[p] [1− p]

II

w ∈ [0, y]

(w,y −w)

w ∈ [0, y]

(w,−w)

Consider the profile described by the automaton,

4The modification ensures that the firm faces an intertemporal trade-off.
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Hw0 L
¬(y,w)

(y,w∗)

with output function

f(H) = (e,w∗) and f(L) = (self,0),

where w∗ remains to be determined.
The value functions are

V1(L) = w0, V1(H) = w∗ − e,
V2(L) = 0, V2(H) = y −w∗,

In the absorbing state L, play is the unique eq of the stage game,
and so incentives are trivially satisfied.

The worker does not wish to deviate in H if

V1(H) ≥ (1− δ)w∗ + δ{pV1(H)+ (1− p)w0},
i.e.,

δ(1− p)(w∗ −w0) ≥ (1− δp)e
or

w∗ ≥ w0 + 1− δp
δ(1− p)e = w0 + e+ 1− δ

δ(1− p)e.
Note that this also impliesw∗−e ≥ w0, and so choosing self is also
not a profitable deviation.

The firm does not wish to deviate in H if

V2(H) ≥ (1− δ)y,
i.e.,

y −w∗ ≥ (1− δ)y a δy ≥ w∗.
So, the profile is an “equilibrium” if

δy ≥ w∗ ≥ w0 + e+ 1− δ
δ(1− p)e.

In fact, it is implication of the next section that the profile is a
perfect public equilibrium.
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7.5 Imperfect Public Monitoring

As before, action space for i is Ai, with typical action ai ∈ Ai. An
action profile is denoted a = (a1, . . . , an).

At the end of each period, rather than observing a, all players
observe a public signal y taking values in some space Y according
to the distribution Pr{y| (a1, . . . , an)} ≡ ρ(y| a).

Since the signal y is a possibly noisy signal of the action profile
a in that period, the actions are imperfectly monitored by the other
players. Since the signal is public (and so observed by all players),
the game is said to have public monitoring.

Public history up to date t: ht ≡ (a0, . . . , at−1) ∈ At ≡ Ht; H0 ≡
{∅}.

Assume Y is finite.
u∗i : Ai × Y → R, i’s ex post or realized payoff.
Stage game (ex ante) payoffs:

ui(a) ≡
∑
y∈Y

u∗i (ai, y)ρ(y| a).

Public histories:
H ≡ ∪∞t=0Y t,

with ht ≡ (y0, . . . , y t−1) being a t period history of public signals
(Y 0 ≡ {∅}).

Public strategies:
si : H → Ai.

Definition 7.5.1 A perfect public equilibrium is a profile of public
strategies s that, after observing any public history ht, specifies a
Nash equilibrium for the repeated game, i.e., for all t and all ht ∈ Y t,
σ |ht is a Nash equilibrium.

If ρ
(
y|a) > 0 for all y and a, every public history arises with

positive probability, and so every Nash equilibrium in public strate-
gies is a perfect public equilibrium.

Automaton representation of public strategies: (W ,w0, f , τ),
where

• W is set of states,
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• w0 is initial state,

• f :W → A is output function (decision rule), and

• τ :W × Y →W is transition function.

As before, Vi(w) is i’s value of being in state w.

Lemma 7.5.1 Suppose the strategy profile s is represented by (W ,w0, f , τ).
Then s is a perfect public eq if, and only if, for all w ∈W (satisfying
w = τ(w0, ht) for some ht ∈ H), f(w) is a Nash eq of the normal
form game with payoff function gw : A→ Rn, where

gwi (a) = (1− δ)ui(a)+ δ
∑
y
Vi(τ(w,y))ρ(y| a).

See Problem 7.6.12 for the proof.

Example 7.5.1 (PD as a partnership) Effort determines output {
¯
y, ȳ}

stochastically:

Pr{ȳ| a} ≡ ρ(ȳ| a) =


p, if a = EE,

q, if a = SE or ES,

r , if a = SS,

where 0 < q < p < 1 and 0 < r < p.
Ex post payoffs (u∗i ):

ȳ
¯
y

E (3−p−2q)
(p−q) − (p+2q)

(p−q)
S 3(1−r)

(q−r) − 3r
(q−r)

,

so that ex ante payoffs (ui) are:

E S

E 2,2 −1,3

S 3,−1 0,0

.
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«

Example 7.5.2 (One period memory) Two state automaton: W =
{wEE,wSS}, w0 = wEE, f(wEE) = EE, f(wSS) = SS, and

τ(w,y) =
{
wEE, if y = ȳ,
wSS , if y =

¯
y.

wEEw0 wSS

¯
y

ȳ

ȳ

¯
y

Value functions (I can drop player subscripts by symmetry):

V(wEE) = (1− δ) · 2+ δ{pV(wEE)+ (1− p)V(wSS)}
and

V(wSS) = (1− δ) · 0+ δ{rV(wEE)+ (1− r)V(wSS)}.
This is eq if

V(wEE) ≥ (1− δ) · 3+ δ{qV(wEE)+ (1− q)V(wSS)}
and

V(wSS) ≥ (1− δ) · (−1)+ δ{qV(wEE)+ (1− q)V(wSS)}.
Rewriting the incentive constraint at wEE,

(1− δ) · 2+ δ{pV(wEE)+ (1− p)V(wSS)}
≥ (1− δ) · 3+ δ{qV(wEE)+ (1− q)V(wSS)}

or
δ(p − q){V(wEE)− V(wSS)} ≥ (1− δ).
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We can obtain an expression for V(wEE)− V(wSS) without solv-
ing for the value functions separately by differencing the value re-
cursion equations, yielding

V(wEE)− V(wSS) =(1− δ) · 2+ δ{pV(wEE)+ (1− p)V(wSS)}
− δ{rV(wEE)+ (1− r)V(wSS)}

=(1− δ) · 2+ δ(p − r){V(wEE)− V(wSS)},
so that

V(wEE)− V(wSS) = 2(1− δ)
1− δ(p − r),

and so

δ ≥ 1
3p − 2q − r .

Turning to wSS , we have

δ{rV(wEE)+ (1− r)V(wSS)}
≥ (1− δ) · (−1)+ δ{qV(wEE)+ (1− q)V(wSS)}

or
(1− δ) ≥ δ(q − r){V(wEE)− V(wSS)},

requiring

δ ≤ 1
p + 2q − 3r

.

The two bounds on δ are consistent if

p ≥ 2q − r .
Solving for the value functions, V(wEE)

V(wSS)

 =(1− δ)
 1− δp −δ(1− p)
−δr 1− δ(1− r)

−1 2

0


= (1− δ)(

1− δp) (1− δ(1− r))− δ2
(
1− p) r× 1− δ(1− r) δ (1− p)

δr 1− δp

 2

0


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= (1− δ)
(1− δ) (1− δ (p − r))

 2 (1− δ(1− r))
2δr


= 1

1− δ (p − r)
 2 (1− δ(1− r))

2δr

 .
Moreover, for fixed p and r ,

lim
δ→1
V(wEE) = lim

δ→1
V(wSS) = 2r

1− p + r ,

and, for r > 0,
lim
p→1

lim
δ→1

V(wEE) = 2. «

Remark 7.5.1 The notion of PPE only imposes ex ante incentive
constraints. If the stage game has a non-trivial dynamic structure,
such as Problem 7.6.15, then it is natural to impose additional in-
centive constraints.

	

7.6 Problems

7.6.1. Suppose G ≡ {(Ai, ui)} is an n-person normal form game and GT
is its T -fold repetition (with payoffs evaluated as the average). Let
A ≡ ∏iAi. The strategy profile, s, is history independent if for all i
and all 1 ≤ t ≤ T − 1, si(ht) is independent of ht ∈ At (i.e., si(ht) =
si(ĥt) for all ht, ĥt ∈ At). Let N(1) be the set of Nash equilibria
of G. Suppose s is history independent. Prove that s is a subgame
perfect equilibrium if and only if s(ht) ∈ N(1) for all t, 0 ≤ t ≤ T−1
and all ht ∈ At (s(h0) is of course simply s0). Provide examples to
show that the assumption of history independence is needed in both
directions.

7.6.2. Prove the infinitely repeated game with stage game given by match-
ing pennies does not have a pure strategy Nash equilibrium for any
δ.
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7.6.3. Suppose (W ,w0, f , τ) is a (pure strategy representing) finite au-
tomaton with |W| = K. Label the states from 1 to K, so that
W = {1,2, . . . , K}, f : {1,2, . . . , K} → A, and τ : {1,2, . . . , K} × A →
{1,2, . . . , K}. Consider the function Φ : RK → RK given by Φ(v) =
(Φ1(v),Φ2(v), . . . ,ΦK(v)), where

Φk(v) = (1− δ)ui(f (k))+ δvτ(k,f (k)), k = 1, . . . , K.

(a) Prove that Φ has a unique fixed point. [Hint: Show that Φ is a
contraction.]

(b) Given an explicit equation for the fixed point of Φ.

(c) Interpret the fixed point.

7.6.4. A different (and perhaps more enlightening) proof of Theorem 7.1.3
is the following:

Suppose W and Ai are finite. Let Ṽi(w) be player i’s payoff from
the best response to (W ,w, f−i, τ) (i.e., the strategy profile for the
other players specified by the automaton with initial state w).

Prove that

Ṽi(w) = max
ai∈Ai

{
(1− δ)ui(ai, f−i(w))+ δṼi(τ(w, (ai, f−i(w))))

}
.

Note that Ṽi(w) ≥ Vi(w) for all w.

Let awi be the action solving the above maximization, and define

V†i (w) = (1− δ)ui(awi , f−i(w))+ δVi(τ(w, (awi , f−i(w)))).
Prove that if s is not subgame perfect, then there exists a player i
and a state w satisfying

V†i (w) > Vi(w).

What is the profitable one-shot deviation?

Extend the argument to infiniteW and Ai.

7.6.5. Suppose two players play the infinitely repeated prisoners’ dilemma:

E S

E 1,1 − `,1+ g
S 1+ g,−` 0,0

where ` > 0 and g > 0.
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(a) For what values of the discount factor δ is grim trigger a sub-
game perfect equilibrium?

(b) Describe a simple automaton representation of the behavior in
which player I alternates between E and S (beginning with E),
player II always plays E, and any deviation results in permanent
SS. For what parameter restrictions is this a subgame perfect
equilibrium?

(c) For what parameter values of `, g, and δ is tit-for-tat a subgame
perfect equilibrium?

7.6.6. Suppose the following game is infinitely repeated:

L R

U 2,2 x,0

D 0,5 1,1

Let δ denote the common discount factor for both players and con-
sider the strategy profile that induces the outcome pathDL,UR,DL,UR, · · · ,
and that, after any unilateral deviation by the row player speci-
fies the outcome path DL,UR,DL,UR, · · · , and after any unilat-
eral deviation by the column player, specifies the outcome path
UR,DL,UR,DL, · · · (simultaneous deviations are ignored. i.e., are
treated as if neither player had deviated).

(a) What is the simplest automaton that represents this strategy
profile?

(b) Suppose x = 5. For what values of δ is this strategy profile
subgame perfect?

(c) Suppose now x = 4. How does this change your answer to part
7.6.6(b)?

(d) Suppose x = 5 again. How would the analysis in part 7.6.6(b)
be changed if the column player were short-lived (lived for only
one period)?

7.6.7. Fix a stage game G = {(Ai, ui)} and discount factor δ. Let Ep(δ) ⊂
Fp∗ be the set of pure strategy subgame perfect equilibrium pay-
offs. Suppose γ : A → Ep(δ) enforces the action profile a. Describe
a pure strategy profile in which a is played in the first period, and
prove that is subgame perfect equilibrium.
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7.6.8. Consider the prisoner’s dilemma:

E S

E 2,2 −1,3

S 3,−1 0,0

Suppose the game is infinitely repeated with perfect monitoring.
Recall that a strongly symmetric strategy profile (s1, s2) satisfies
s1(ht) = s2(ht) for all ht . Equivalently, its automaton representa-
tion satisfies f1(w) = f2(w) for all w. Let W = {δv,v}, v > 0
to be determined, be the set of continuation promises. Describe a
strongly symmetric strategy profile (equivalently, automaton) whose
continuation promises come from W which is a subgame perfect
equilibrium for some values of δ. Calculate the appropriate bounds
on δ and the value of v (which may or may not depend on δ).

7.6.9. Describe the four state automaton that yields v0 as a strongly sym-
metric equilibrium payoff with the indicated cycle in Figure 7.3.1.

7.6.10. Consider the following (asymmetric) prisoner’s dilemma:

E S

E 1,2 −1,3

S 2,−4 0,0

Suppose the game is infinitely repeated with perfect monitoring.
Prove that for δ < 1

2 , the maximum (average discounted) payoff to
player 1 in any pure strategy subgame perfect equilibrium is 0, while
for δ = 1

2 , there are equilibria in which player 1 receives a payoff of

1. [Hint: First prove that, if δ ≤ 1
2 , in any pure strategy subgame

perfect equilibrium, in any period, if player 2 chooses E then player
1 chooses E in that period.]

7.6.11. Consider the stage game where player 1 is the row player and 2, the
column player (as usual):

L R

T 2,3 0,2

B 3,0 1,1
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(a) Suppose the game is infinitely repeated, with perfect monitor-
ing. Players 1 and 2 are both long-lived, and have the same
discount factor, δ ∈ (0,1). Construct a three state automaton
that for large δ is a subgame perfect equilibrium, and yields a
payoff to player 1 that is close to 21

2 . Prove that the automaton
has the desired properties. (Hint: One state is only used off the
path-of-play.)

(b) Now suppose that player 2 is short-lived (but maintain the as-
sumption of perfect monitoring, so that the short-lived player
in period t knows the entire history of actions up to t). Prove
that player 1’s payoff in any pure strategy subgame perfect
equilibrium is no greater than 2 (the restriction to pure strategy
is not needed—can you prove the result without that restric-
tion?). For which values of δ is there a pure strategy subgame
perfect equilibrium in which player 1 receives a payoff of pre-
cisely 2?

7.6.12. Fix a repeated finite game of imperfect public monitoring. Say that
a player has a profitable one-shot deviation from the public strategy
(W ,w0, f , τ) if there is some history ht ∈ Y t and some action ai ∈
Ai such that (where w = τ(w0, ht))

Vi(w) < (1−δ)ui(ai, f−i(w))+δ
∑
y
Vi(τ(w,y))ρ(y | (ai, f−i(w))).

(a) Prove that a public strategy profile is a perfect public equilib-
rium if and only if there are no profitable one-shot deviations.

(b) Prove Lemma 7.5.1.

7.6.13. Consider the prisoners’ dilemma game in Example 7.5.1.

(a) The grim trigger profile is described by the automaton (W ,w0, f , τ),
whereW = {wEE,wSS}, w0 = wEE , f(wa) = a, and

τ(w,y) =
{
wEE, if w = wEE and y = ȳ ,

wSS , otherwise.

For what parameter values is the grim-trigger profile an equi-
librium?
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(b) An example of a forgiving grim trigger profile is described by
the automaton (Ŵ , ŵ0, f̂ , τ̂), where Ŵ = {ŵEE, ŵ′EE, ŵSS}, ŵ0 =
ŵEE , f̂ (wa) = a, and

τ̂(w,y) =


ŵEE, if w = ŵEE or ŵ′EE , and y = ȳ ,

ŵ′EE, if w = ŵEE and y =
¯
y ,

ŵSS , otherwise.

For what parameter values is this forgiving grim-trigger profile
an equilibrium? Compare the payoffs of grim trigger and this
forgiving grim trigger when both are equilibria.

7.6.14. Player 1 (the row player) is a firm who can exert either high effort (H)
or low effort (L) in the production of its output. Player 2 (the column
player) is a consumer who can buy either a high-priced product, h,
or a low-priced product `. The actions are chosen simultaneously,
and payoffs are given by:

h `

H 4,3 0,2

L x,0 3,1

Player 1 is infinitely lived, discounts the future with discount factor
δ, and plays the above game in every period with a different con-
sumer (i.e., each consumer lives only one period). The game is one
of public monitoring: while the actions of the consumers are public,
the actions of the firm are not. Both the high-priced and low-priced
products are experience goods of random quality, with the distri-
bution over quality determined by the effort choice. The consumer
learns the quality of the product after purchase (consumption). De-
note by ȳ the event that the product purchased is high quality, and
by

¯
y the event that it is low quality (in other words, y ∈ {

¯
y, ȳ} is the

quality signal). Assume the distribution over quality is independent
of the price of the product:

Pr(ȳ | a) =
{
p, if a1 = H,

q, if a1 = L,

with 0 < q < p < 1.
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(a) Describe the ex post payoffs for the consumer. Why can the ex
post payoffs for the firm be taken to be the ex ante payoffs?

(b) Suppose x = 5. Describe a perfect public equilibrium in which
the patient firm chooses H infinitely often with probability one,
and verify that it is an equilibrium. [Hint: This can be done with
one-period memory.]

(c) Suppose now x ≥ 8. Is the one-period memory strategy profile
still an equilibrium? If not, can you think of an equilibrium in
which H is still chosen with positive probability?

7.6.15. A financial manager undertakes an infinite sequence of trades on
behalf of a client. Each trade takes one period. In each period, the
manager can invest in one of a large number of risky assets. By ex-
erting effort (a = E) in a period (at a cost of e > 0), the manager can
identify the most profitable risky asset for that period, which gen-
erates a high return of R = H with probability p and a low return
R = L with probability 1 − p. In the absence of effort (a = S), the
manager cannot distinguish between the different risky assets. For
simplicity, assume the manager then chooses the wrong asset, yield-
ing the low return R = L with probability 1; the cost of no effort is
0. In each period, the client chooses the level of the fee x ∈ [0, x̄] to
be paid to the financial manager for that period. Note that there is
an exogenous upper bound x̄ on the fee that can be paid in a period.
The client and financial manager are risk neutral, and so the client’s
payoff in a period is

uc(x,R) = R − x,
while the manager’s payoff in a period is

um(x,a) =
{
x − e, if a = E,
x, if a = S.

The client and manager have a common discount factor δ. The client
observes the return on the asset prior to paying the fee, but does not
observe the manager’s effort choice.

(a) Suppose the client cannot sign a binding contract committing
him to pay a fee (contingent or not on the return). Describe the
unique sequentially rational equilibrium when the client uses
the manager for a single transaction. Are there any other Nash
equilibria?
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(b) Continue to suppose there are no binding contracts, but now
consider the case of an infinite sequence of trades. For a range
of values for the parameters (δ, x̄, e, p, H, and L), there is a
perfect public equilibrium in which the manager exerts effort
on behalf of the client in every period. Describe it and the
restrictions on parameters necessary and sufficient for it to be
an equilibrium.

(c) Compare the fee paid in your answer to part 7.6.15(b) to the fee
that would be paid by a client for a single transaction,

i. when the client can sign a legally binding commitment to a
fee schedule as a function of the return of that period, and

ii. when the client can sign a legally binding commitment to a
fee schedule as a function of effort.

(d) Redo question 7.6.15(b) assuming that the client’s choice of fee
level and the manager’s choice of effort are simultaneous, so
that the fee paid in period t cannot depend on the return in
period t. Compare your answer with that to question 7.6.15(b).

7.6.16. In this question, we revisit the partnership game of Example 7.5.1.
Suppose 3p − 2q > 1. This question asks you to prove that for
sufficiently large δ, any payoff in the interval [0, v̄], is the payoff of
some strongly symmetric PPE equilibrium, where

v̄ = 2− (1− p)
(p − q),

and that no payoff larger than v̄ is the payoff of some strongly sym-
metric PPE equilibrium. Strong symmetry implies it is enough to
focus on player 1, and the player subscript will often be omitted.

(a) The action profile SS is trivially enforced by any constant con-
tinuation γ ∈ [0, γ̄] independent of y . Let W SS be the set of
values that can be obtained by SS and a constant continuation
γ ∈ [0, γ̄], i.e.,

W SS = {(1− δ)u1(SS)+ δγ : γ ∈ [0, γ̄]} .
Prove thatW SS = [0, δγ̄]. [This is almost immediate.]

(b) Recalling Definition 7.1.6, say that v is decomposed by EE on
[0, γ̄] if there exists γȳ , γ¯

y ∈ [0, γ̄] such that

v =(1− δ)u1(EE)+ δ{pγȳ + (1− p)γ¯
y} (7.6.1)
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≥(1− δ)u1(SE)+ δ{qγȳ + (1− q)γ¯
y}. (7.6.2)

(That is, EE is enforced by the continuation promises γȳ , γ¯
y

and implies the value v .) LetWEE be the set of values that can
be decomposed by EE on [0, γ̄]. It is clear thatWEE = [γ′, γ′′],
for some γ′ and γ′′. Calculate γ′ by using the smallest possible
choices of γȳ and γ¯

y in the interval [0, γ̄] to enforce EE. (This
will involve having the inequality (7.6.2) holding with equality.)

(c) Similarly, give an expression for γ′′ (that will involve γ̄) by us-
ing the largest possible choices of γȳ and γ¯

y in the interval
[0, γ̄] to enforce EE. Argue that δγ̄ < γ′′.

(d) As in Example 7.3.1, we would like all continuations in [0, γ̄] to
be themselves decomposable using continuations in [0, γ̄], i.e.,
we would like

[0, γ̄] ⊂W SS ∪WEE.

Since δγ̄ < γ′′, we then would like γ̄ ≤ γ′′. Moreover, since
we would like [0, γ̄] to be the largest such interval, we have
γ̄ = γ′′. What is the relationship between γ′′ and v̄?

(e) For what values of δ do we have [0, γ̄] =W SS ∪WEE?

(f) Let (W ,w0, f , τ) be the automaton given by W = [0, v̄], w0 ∈
[0, v̄],

f(w) =
{
EE, if w ∈WEE,
SS, otherwise,

and

τ(w,y) =
{
γy(w), if w ∈WEE ,

w/δ, otherwise,

where γy(w) solves (7.6.1)–(7.6.2) for w = v and y = ȳ,
¯
y . For

our purposes here, assume that V(w) = w, that is, the value
to a player of being in the automaton with initial state w is
precisely w. (From the argument of Lemma 7.3.2, this should
be intuitive.) Given this assumption, prove that the automaton
describes a PPE with value w0.
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Chapter 8

Topics in Dynamic Games1

8.1 Dynamic Games and Markov Perfect Equi-
libria

Set of players: {1, . . . , n}.
Action space for i is Ai.
Set of states S, with typical state s ∈ S.
Payoffs for each i:

ui : S ×A→ R,

with future flow payoffs discounted at rate δ ∈ (0,1).
State transitions:

q : S ×A→ S,
and initial state s0 ∈ S. (More generally, can have random transi-
tions from S ×A into ∆(S), but deterministic transitions suffice for
an introduction.)

Example 8.1.1 Suppose players 1 and 2 fish from a common area
(pool). In each period t, the pool contains a stock of fish of size
st ∈ R+. This is the state of the game.

In period t, player i attempts to extracts ati ≥ 0 units of fish. In
particular, if player i attempts to extract ati , then player i actually

1Copyright December 7, 2011 by George J. Mailath
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extracts

âti =
a

t
i, if at1 + at2 ≤ st,
ati

at1+at2 s
t, if at1 + at2 > st.

It will turn out that in equilibrium, at1+at2 < st, so we can ignore
the rationing rule (see Problem 8.4.1(a)) and assume that i derives
payoff

ui(s, a) = log(ai)

from (s, a) for all values of (s, a).
The transition rule is

q(s, a) = 2 max{0, s − a1 − a2},
that is, it is deterministic and doubles any leftover stock after ex-
traction. The initial stock is fixed at some value s0. «

State is public and perfect monitoring of actions, so history to
period t is

ht = (s0, a0, s1, a1, . . . , st−1, at−1, st) ∈ (S ×A)t × S.
Let Ht denote the set of all feasible t-period histories (so that sτ is
consistent with (sτ−1, aτ−1) for all 1 ≤ τ ≤ t). A pure strategy for i
is a mapping

σi : ∪tHt → Ai.
For any history ht, write the function that identifies the last state

st by s(ht). Let G(s) denote the dynamic game with initial state s.
As usual, we have:

Definition 8.1.1 The profile σ is a subgame perfect equilibrium if
for all ht, σ |ht := (σ1|ht , . . . , σn|ht)) is a Nash equilibrium of the
dynamic game G(s(ht)).

Different histories that lead to the same state are effectively
“payoff equivalent.” Loosely, a strategy is said to be Markov if at
different histories that are effectively payoff equivalent, the strat-
egy specifies identical behavior. See Maskin and Tirole (2001) for a
discussion of why this may be a reasonable restriction.
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Definition 8.1.2 A strategy σi : ∪tHt → Ai is Markov if for all histo-
ries ht and ĥt, if s(ht) = s(ĥt), , then

σi(ht) = σi(ĥt).
If the above holds for histories ht and ĥτ of possibly different length
(so that t ≠ τ is allowed), the strategy is stationary.

Restricting equilibrium behavior to Markov strategies:

Definition 8.1.3 A Markov perfect equilibrium is a strategy profile
σ that is a subgame perfect equilibrium, and for which each σi is
Markov.

Note that while there is a superficial similarity between
Markov states s and automata states used in the theory of
repeated games, they are very different.
In particular, a repeated game has a trivial set of Markov
states, and the only Markov perfect equilibria involve speci-
fying static Nash equilibria in each period.

Example 8.1.2 (Example 8.1.1 continued) Fix a symmetric MPE. Let
V(s) denote the common equilibrium value from the state s (in an
MPE, this must be independent of other aspects of the history).

The common eq strategy is a1(s) = a2(s).
One-shot deviation principle holds here, and so for each player

i, ai(s) solves, for any s ∈ S, the Bellman equation:

ai(s) ∈ arg max
ãi∈Ai

(1− δ) log(ãi)+ δV(2(s − ãi − aj(s))).

Assuming V is differentiable and imposing a1 = a2 after differ-
entiating, the implied first order condition is

(1− δ)
ai(s)

= 2δV ′(2(s − 2ai(s))).

To find an equilibrium, suppose

ai(s) = ks,
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for some k. Then we have

st+1 = 2(st − 2kst) = 2(1− 2k)st.

Given an initial stock s, in period t, ati = k[2(1− 2k)]ts, and so

V(s) =(1− δ)
∞∑
t=0

δt log{k[2(1− 2k)]ts}

=(1− δ)
∞∑
t=0

δt log{k[2(1− 2k)]t} + log s.

This implies V is indeed differentiable, with V ′(s) = 1/s.
Solving the first order condition, k = 1−δ

2−δ , and so

ai(s) = 1− δ
2− δs. «

Example 8.1.3 (Asynchronous move games) Consider the repeated
prisoners’ dilemma, but where player 1 moves in odd periods only
and player 2 moves in even periods only. The game starts with E1

exogenously and publicly specified for player 1. The stage game is
(x > 0):

E2 S2

E1 2,2 −x,3
S2 3,−x 0,0

This fits into the above formulation of a repeated game: S =
{E1, S1, E2, S2}, s0 = E1,

q(s, a) =
{
a1, if s ∈ {E2, S2},
a2, if s ∈ {E1, S1},

u1(s, a) =
{
g1(a1, s), if s ∈ {E2, S2},
g1(s, a2), if s ∈ {E1, S1},
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where gi describes the stage game payoffs from the PD, and

u2(s, a) =
{
g2(s, a2), if s ∈ {E1, S1},
g2(a1, s), if s ∈ {E2, S2}.

In particular, when the current state is player 1’s action (i.e., we
are in an even period), 1’s choice is irrelevant and can be ignored.

Grim Trigger:

σGTi (h
t) =

{
Ei, if ht = E1 or always E,
Si, otherwise.

Need to check two classes of information sets: when players are
supposed to play Ei, and when they are supposed to play Si:

1. Optimality of Ei after all E’s:

2 ≥3(1− δ)+ δ× 0

⇐⇒ δ ≥ 1
3
.

2. The optimality of Si after any S1 or S2 is trivially true for all δ:

0 ≥ (−x)(1− δ)+ δ× 0.

This equilibrium is not an MPE.
Supporting effort using Markov pure strategies requires a “tit-

for-tat” like behavior:

σ̂i(ht) =
{
Ei, if st = Ej,
Si, if st = Sj. (8.1.1)

For t ≥ 1, everything is symmetric. The value when the current
state is Ej is

Vi(Ej) = 2,

while the payoff from a one-shot deviation is

3(1− δ)+ δ× 0 = 3(1− δ),
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and so the deviation is not profitable if (as before) δ ≥ 1
3 .

The value when the current state is Sj is

Vi(Sj) = 0,

while the payoff from a one-shot deviation is (since under the Markov
strategy, a deviation to Ei triggers perpetual E1E2; the earlier devia-
tion is “forgiven”)

−x(1− δ)+ δ× 2 = (2+ x)δ− x.

The deviation is not profitable if

(2+ x)δ− x ≤0

⇐⇒ δ ≤ x
2+ x.

Note that
x

2+ x ≥
1
3
⇐⇒ x ≥ 1.

Thus, σ̂ is an MPE (inducing the outcome path (E1E2)∞) if x ≥ 1
and

1
3
≤ δ ≤ x

2+ x. (8.1.2)

«

8.2 Disappearance of Monopoly Power and
the Coase Conjecture

Uninformed seller selling to informed buyer—one sided offers,
seller makes all the offers.

Seller’s cost (value) is zero.
Buyer values good at v . Assume v is uniformly distributed on

[0,1], so that there are buyers with valuations arbitrarily close to
the seller’s valuation.
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8.2.1 One and Two Period Example

Buyer accepts a take-it-or-leave-it offer of p if v > p and rejects if
v < p.

Seller chooses p to maximize

p Pr{sale} = p(1− p),
i.e., chooses p = 1/2, for a payoff of 1/4. This is the optimal seller
mechanism (this can be easily shown using standard mechanism
design techniques).

Suppose now two periods, with common discount factor δ ∈
(0,1). If seller chose p0 = 1/2 in the first period, and buyers with
v > 1/2 buy in period 0, then buyers with value v ∈ [0,1/2] are
left, and then optimal for seller to price p1 = 1/4. But then buyer
v = 1/2 strictly prefers to wait till period 1 (and so by continuity
so do some buyers with v > 1/2.

Suppose seller makes offers pt in period t, t = 0,1, and buyers
v < κ don’t buy in period 0. Then, p1 = κ/2. If κ < 1, then κ
should be indifferent between purchasing in period 0 and period 1,
so that

κ − p0 = δ(κ − p1)
= δκ/2
=⇒ p0 = κ(1− δ/2) < κ.

The seller’s payoff (as a function of κ) is

κ(1− δ/2)(1− κ)+ δκ2/4.

The first order condition is

(1− δ/2)− 2(1− δ/2)κ + δκ/2 = 0

=⇒ κ = 2− δ
4− 3δ

(< 1)

=⇒ p0 = (2− δ)
2

8− 6δ
<

1
2
.

The resulting payoff is

(2− δ)2
4(4− 3δ)

<
1
4
.
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8.2.2 Infinite Horizon

Seller makes offers pt in period t = 0,1, . . . , T , T ≤ ∞.
After each offer, buyer Accepts or Rejects.
If agreement in period t at price pt, payoff to seller is

us = δtpt,

and payoff to buyer is

ub = δt
(
v − pt) .

Interested in equilibrium of following form:
If pt offered in period t, types v ≥ λpt accept and types v < λpt

reject, where λ > 1.
If at time t, seller’s posterior beliefs are uniform on [0, κ], seller

offers pt(κ) = γκ, where γ < 1.
Natural to treat κ as a state variable.
Under this profile, p0 = γ and seller’s posterior entering pe-

riod 1 is [0, γλ], so in order for profile to be well defined, γλ < 1.
Thus, p1 = γ (γλ) = γ2λ and seller’s posterior entering period 2 is
[0, γ2λ2]. Prices are thus falling exponentially, with pt = γt+1λt.

Let Us(κ) be the discounted expected value to the seller, when
his posterior beliefs are uniform on [0, κ]. Then

Us(κ) =max
p

{(
κ − λp)
κ

× p + δλp
κ
Us
(
λp
)}
,

or
Ws(κ) =max

p

(
κ − λp)p + δWs (λp) , (8.2.1)

where Ws(κ) = κUs(κ). If Ws is differentiable, then p(κ) solves the
first order condition,

κ − 2λp(κ)+ δλW ′
s(λp(κ)) = 0.

The envelope theorem applied to (8.2.1) gives

W ′
s(κ) = p(κ) = γκ,
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so that
W ′
s(λp(κ)) = p(λp(κ)) = γλp(κ) = λγ2κ.

Substituting,
κ − 2λγκ + δλ2γ2κ = 0,

or
1− 2λγ + δλ2γ2 = 0. (8.2.2)

Turning to the buyer’s optimality condition, a buyer with valuation
v = λp must be indifferent between accepting and rejecting, so

λp − p = δ (λp − γλp) ,
or

λ− 1 = δλ(1− γ) . (8.2.3)

Solving (8.2.2) for λγ yields

γλ = 2±√4− 4δ
2δ

= 1±√1− δ
δ

.

Since we know γλ < 1, take the negative root,

γλ = 1−√1− δ
δ

.

Substituting into (8.2.3),

λ = δλ+
√

1− δ,
or

λ = 1√
1− δ,

so that

γ =
√

1− δ×
(
1−√1− δ

)
δ

=
√

1− δ− (1− δ)
δ

.

Note that in this equilibrium, there is skimming: higher valua-
tion buyers buy before lower valuation buyers.

Equilibrium is not unique. It is the only stationary equilibrium.
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Let τ denote real time, ∆ the length of a period, and r the rate
of time discount, so that δ = e−r∆. If buyer with valuation v buys
at or after τ , his utility is no more than e−rτv . Buying in period 0,
he earns v − γ(δ), and so for δ close to 1, buyer v buys before τ .
Note that this is not a uniform statement (since for all τ and all δ
there exists v such that v purchases after τ).

The Coase conjecture is:
As time between offers shrinks, price charged in first period con-

verges to competitive price, and trade becomes efficient.

8.3 Reputations

Recall the stage game of the the chain store paradox from example
2.2.1, reproduced in Figure 8.3.1.

Entrant

Out

0
4

Incumbent

In

Fight

−1
1

Accommodate

1
2

Figure 8.3.1: The stage game for the chain store.

Two Nash equilibria: (In, Accommodate) and (Out, Fight). Latter
violates backward induction.

Chain store, play the game twice, against two different entrants
(E1 and E2), with the second entrant E2 observing outcome of first
interaction. Incumbent receives total payoffs.

“Chain store paradox” only backward induction (subgame per-
fect) outcome is that both entrants enter (play In), and incumbent
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ω0

[ρ]
A

I 3,−1

O 5,0

F
I4,−1

O6,0

ωn

[1− ρ]
A

I 4,1

O 6,0

F
I3,1

O5,0

E2E2

Figure 8.3.2: A signaling game representation of the subgame reached by
E1 entering.

always accommodates.
But, now suppose incumbent could be tough, ω0: such an in-

cumbent receives a payoff of 2 from fighting and only 1 from ac-
commodating. Other incumbent is normal,ωn. Both entrants’ prior
assigns prob ρ ∈ (0, 1/2) to the incumbent being ωt. In second
market, normal incumbent accommodates and tough fights. Con-
ditional on entry in the first market, result is the signaling game
illustrated in Figure 8.3.2.

Note first that there are no pure strategy equilibria.
There is a unique mixed strategy equilibrium: ωn plays α ◦ F +

(1−α)◦A,ω0 plays F for sure. E2 enters for sure after A, and plays
β ◦ E + (1− β) ◦ S after F .
E2 is willing to randomize only if his posterior after F that the

incumbent is ωt equals 1/2. Since that posterior is given by

Pr{ω0 | F} =Pr{F |ω0}Pr{ω0}
Pr{F}

= ρ
ρ + (1− ρ)α,

solving
ρ

ρ + (1− ρ)α =
1
2
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gives

α = ρ
1− ρ,

where α < 1 since ρ < 1/2.
Type ωn is willing to randomize if

4︸︷︷︸
Payoff from A

= β3+ 5(1− β)︸ ︷︷ ︸
Payoff from F

,

i.e.,

β = 1
2
.

Entrant E1 thus faces a probability of F given by

ρ + (1− ρ)α = 2ρ.

Hence, if ρ < 1/4, E1 faces F with sufficiently small probability
that he enters. However, if ρ ∈ (1/4, 1/2), E1 faces F with suffi-
ciently high probability that he stays out.

8.3.1 Infinite Horizon

Suppose now infinite horizon with incumbent discounting at rate
δ ∈ (0,1) and a new potential entrant in each period.

Remark 8.3.1 (Complete Information) Note first that in the com-
plete information game, the outcome in which all entrants enter
(play In) and the incumbent accommodates in every period is an
equilibrium. Moreover, the profile in which all entrants stay out,
any entry is met with F is a subgame perfect equilibrium, supported
by the “threat” that play switches to the always-enter/always-accom-
modate equilibrium if the incumbent ever responds with A. The
automaton representation is given in Figure 8.3.3.

Note that the relevant incentive constraint for the incumbent is
conditional on I in state wOF (since I does not make a decision
when the entrant chooses O), i.e.,

(1− δ)+ δ4 ≥ 2,
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wOFw0 wIA
IA

O, IF

Figure 8.3.3: Automaton representation of Nash reversion.

i.e.,

δ ≥ 1
3
.

	

We now consider the reputation game, where the incumbent may
be normal or tough.

The profile in which all entrants stay out, any entry is met with
F is a subgame perfect equilibrium, supported by the “threat” that
the entrants believe that the incumbent is normal and play switches
to the always-enter/always-accommodate equilibrium if the incum-
bent ever responds with A.

Theorem 8.3.1 Suppose the incumbent is either of type ωn or type
ω0, and that type ω0 has prior probability less than 1/2. Type ωn
must receive a payoff of at least (1− δ)× 1+ δ× 4 = 1+ 3δ in any
pure strategy Nash equilibrium in which ωt always plays F .

If type ω0 has prior probability greater than 1/2, trivially there
is never any entry and the normal has payoff 4.

Proof. In the pure strategy Nash equilibrium, either the incumbent
always plays F , (in which case, the entrants always stay out and the
incumbent’s payoff is 4), or there is a first period (say τ) in which
the normal type accommodates, revealing to future entrants that
he is the normal type (since the tough type plays F in every period).
In such an equilibrium, entrants stay out before τ (since both types
of incumbent are choosing F ), and there is entry in period τ . After
observing F in period τ , entrants conclude the firm is the t type,
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and there is no further entry. An easy lower bound on the normal
incumbent’s equilibrium payoff is then obtained by observing that
the normal incumbent’s payoff must be at least the payoff from
mimicking the t type in period τ . The payoff from such behavior is
at least as large as

(1− δ)
τ−1∑
τ′=0

δτ′4︸ ︷︷ ︸
payoff in τ′ < τ from pooling

with ω0 type

+ (1− δ)δτ × 1︸ ︷︷ ︸
payoff in τ from playing F when

A is myopically optimal

+ (1− δ)
∞∑

τ′=τ+1

δτ′4︸ ︷︷ ︸
payoff in τ′ > τ from being treated as the ω0 type

=(1− δτ)4+ (1− δ)δτ + δτ+14

=4− 3δτ(1− δ)
≥4− 3(1− δ) = 1+ 3δ.

For δ > 1/3, the outcome in which all entrants enter and the
incumbent accommodates in every period is thus eliminated.

In the reputation literature (see Mailath and Samuelson (2006)
for an extensive introduction), it is standard to model the tough
type as a behavioral type. In that case, the tough type is constrained
to necessarily choose F . Then, the result is that in any equilibrium,
1+ 3δ is the lower bound on the normal type’s payoff.

In fact, irrespective of the presence of other types, if the entrants
assign positive probability to the incumbent being a tough behav-
ioral type, for δ close to 1, player I’s payoff in any Nash equilibrium
is close to 4 (this is an example of a reputation effect):

Suppose there is a set of behavioral types Ω. One type isω0 ∈ Ω
is the Stackelberg, or tough, type, who always plays F . The normal
type is ωn. Other types may include ωk, who plays F in every
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period before k and A afterwards. Suppose the prior beliefs over Ω
are given by µ.

Lemma 8.3.1 Fix a Nash equilibrium. Let ht be a positive probability
period-t history in which every entry results in F . The number of
periods in ht in which an entrant entered is no larger than

k∗ := − logµ0

log 2
.

Proof. Denote by qτ the probability that the incumbent plays F in
period τ conditional on hτ if entrant τ plays I. Then, if in equilib-
rium, entrant τ does play I,

qτ ≤ 1
2
.

An upper bound on the number of periods in ht in which an entrant
entered is thus

k(t) := #{τ : qt ≤ 1
2
},

the number of periods in ht where qτ ≤ 1
2 .

Let µτ := Pr{ω0|hτ} be the posterior probability assigned to ω0

after hτ , where τ < t (so that hτ is an initial segment of ht). If
entrant τ does not enter, µτ+1 = µτ . If entrant τ does enter in ht,
then the incumbent fights and2

µτ+1 = Pr{ω0|hτ , F} = Pr{ω0, F|hτ}
Pr{F|hτ}

= Pr{F|ω0, hτ}Pr{ω0|hτ}
Pr{F|hτ}

= µτ
qτ
.

Defining

q̃τ =
{
qτ , if there is entry in period τ,
1, if there is no entry in period τ,

2Since the entrant’s action is a function of hτ only, it is uninformative about
the incumbent and so can be ignored in the conditioning.
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we have, for all τ ≤ t,
µτ = q̃τµτ+1,

Note that q̃τ < 1 =⇒ q̃τ = qτ ≤ 1
2 .

Then,

µ0 = q̃0µ1 = q̃0q̃1µ2

= µt
t−1∏
τ=0

q̃τ

= µt
∏

{τ :q̃t≤ 1
2}
q̃τ

≤
(

1
2

)k(t)
.

Taking logs, logµ0 ≤ k(t) log 1
2 , and so

k(t) ≤ − logµ0

log 2
.

The key intuition here is that since the entrants assign prior pos-
itive probability (albeit small) to the Stackelberg type, they cannot
be surprised too many times (in the sense of assigning low prior
probability to F and then seeing F ). Note that the upper bound is
independent of t and δ, though it is unbounded in µ0.

The normal type can guarantee histories of the form ht by al-
ways playing F when an entrant enters, so we immediately have the
lower bound on the normal types payoff of

k∗−1∑
τ=0

(1− δ)δτ1+
∞∑

τ=k∗
(1− δ)δτ4 = 1− δk∗ + 4δk∗ = 1+ 3δk∗,

which can be made arbitrarily close to 4 by choosing δ close to 1.

8.4 Problems

8.4.1. (a) Suppose (σ1, σ2) is an MPE of the fisheries game from Example
8.1.1 satisfying σ1(s)+σ(s) < s for all s. Prove that the profile
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remains an MPE of the dynamic game where payoffs are given
by

ui(s, a) =
logai, if a1 + a2 ≤ s,

log
{

ai
a1+a2

s
}
, if a1 + a2 > s.

(b) Prove that

ai(s) = 1− δ
2− δs, i = 1,2,

does indeed describe an MPE of the fisheries game described in
Example 8.1.1.

8.4.2. What is the symmetric MPE for the fisheries game of Example 8.1.2
when there are n players, and the transition function is given by

q(s, a) = αmax
{
0, s −∑i ai} ,

where α > 1?

8.4.3. (a) In the MPE calculated in Example 8.1.2, for what values of the
discount factor does the stock of fish grow without bound, and
for which values does the stock decline to extinction?

(b) This MPE is inefficient, involving excess extraction. To see this,
calculate the largest symmetric payoff profile that can by achieved
when the firms choose identical Markov strategies, and prove
that the efficient solution extracts less than does the MPE.

(c) Describe an efficient subgame perfect equilibrium for this game
(it is necessarily non-Markov).

8.4.4. Consider the asynchronous move prisoners’ dilemma from Section
8.1.

(a) Suppose x = −1
2 . For some values of δ, there is a Markov per-

fect equilibrium in which players randomize at E between E and
S, and play S for sure at S. Identify the bounds on δ and the
probability of randomization for which the described behavior
is an MPE.

(b) Suppose that the initial action of player 1 is not exogenously
fixed. The game now has three states, the initial null state and
E and S. At the initial state, both players choose an action, and
then thereafter player 1 chooses an action in odd periods and
player 2 in even periods. Suppose x > 1 and δ satisfies (8.1.2).
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coalition 1’s payoff 2’s payoff 3’s payoff

{1,2} 9 3 0

{2,3} 0 9 3

{1,3} 3 0 9

Figure 8.4.1: Payoffs to players in each pairwise coalition for Problem
8.4.5. The excluded player receives a payoff of 0.

Prove that there is no pure strategy MPE in which the players
choose E.

8.4.5. (A simplification of Livshits (2002).) There are three players. In the
initial period, a player i is selected randomly and uniformly to pro-
pose a coalition with one other player j, who can accept or reject.
If j accepts, the game is over with payoffs given in Figure 8.4.1. If
j rejects, play proceeds to the next period, with a new proposer
randomly and uniformly selected. The game continues with a new
proposer randomly and uniformly selected in each period until a
proposal is accepted. Thus, the game is potentially of infinite hori-
zon, and if no coalition is formed (i.e., there is perpetual rejection),
all players receive a payoff of 0.

(a) Suppose δ < 3/4. Describe a stationary pure strategy Markov
perfect equilibrium. [Hint: in this equilibrium, every proposal
is immediately accepted.]

(b) Suppose δ > 3/4. Prove there is no Markov perfect equilibrium
in stationary pure strategies. There is a stationary Markov per-
fect equilibrium in behavior strategies. What is it? [Hint: The
randomization is on the part of the responder.]

(c) Suppose 3/4 < δ <
√

3/4. There are two nonstationary pure
strategy Markov equilibria. What are they? [Hint: if δ <

√
3/4,

then δ2 < 3/4.]

(d) Suppose 3/4 < δ <
√

3/4. Construct a non-Markov perfect
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equilibrium in which in the first period, if 1 is selected, then
1 chooses 3.

8.4.6. Consider the model of Section 8.2, but assume the buyer’s valuation
v can only take on two values, 2 and 3. Moreover, the seller’s beliefs
assign probability α to the value 2. The seller’s cost (value) is zero,
and the buyer and seller have a common discount factor δ ∈ (0,1).

(a) What is the unique perfect Bayesian equilibrium of the one pe-
riod model (in this model, the seller makes a take-it-or-leave-it
offer to the buyer)?

(b) Suppose α = 1
2 . The two period model has a unique perfect

Bayesian equilibrium. What is it? [You may assume that any
rejection in the first period results in a posterior that assigns
at least probability 1

2 to v = 2.]

8.4.7. As in the model of Section 8.2, there is an uninformed seller with
cost zero facing a buyer with value uniformly distributed on [0,1].
Suppose the seller has a rate of continuous time discounting of rS
(so the seller’s discount factor is δS = e−rS∆, where ∆ > 0 is the time
between offers), while the buyer has a rate of continuous time dis-
counting of rB (so the buyer’s discount factor is δB = e−rB∆. Solve
for an equilibrium of the infinite horizon game in which the unin-
formed sellers makes all the offers. What happens to the initial offer
as ∆→ 0?

8.4.8. Reconsider the two period reputation example (illustrated in Figure
8.3.2) with ρ > 1

2 . Describe all of the equilibria. Which equilibria
survive the intuitive criterion?

8.4.9. Describe the equilibria of the three period version of the reputation
example.

8.4.10. Consider the following stage game where player 1 is the row player
and 2, the column player (as usual). Player 1 is one of two types ωn
and ω0. Payoffs are:

L R

T 2,3 0,2

B 3,0 1,1

ωn

L R

T 3,3 1,2

B 2,0 0,1

ω0
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The stage game is played twice, and player 2 is short-lived: a differ-
ent player 2 plays in different periods, with the second period player
2 observing the action profile chosen in the first period. Describe all
the equilibria of the game. Does the intuitive criterion eliminate any
of them?

8.4.11. This is a continuation of Problem 7.6.11. Suppose now that the game
with the long-lived player 1 and short-lived player 2’s is a game of
incomplete information. With prior probability ρ ∈ (0,1), player 1
is a behavioral type who chooses T in every period, and with prob-
ability 1 − ρ, he is a strategic or normal type as described above.
Suppose ρ > 1

2 . Describe an equilibrium in which the normal type of
player 1 has a payoff strictly greater than 2 for large δ.
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Chapter 9

Bargaining1

9.1 Axiomatic Nash Bargaining

A bargaining problem is a pair < S,d >, S ⊂ R2 compact and con-
vex, d ∈ S and ∃s ∈ S such that si > di for i = 1,2. Let B denote
the collection of bargaining problems. While d is often interpreted
as a disagreement point, this is not the role it plays in the axiomatic
treatment. It only plays a role in INV (where its role has the flavor
of a normalization constraint) and in SYM. The appropriate inter-
pretation is closely linked to noncooperative bargaining. It is not
the value of an outside option!

Definition 9.1.1 A bargaining solution is a function f : B → R2 such
that f(S,d) ∈ S.

9.1.1 The Axioms

1. INV (Invariance to Equivalent Utility Representations)

Given < S,d >, let < S′, d′ > be the bargaining problem given
by, for some (αi, βi)2i=1, αi > 0,

S′ = {(α1s1 + β1, α2s2 + β2) : (s1, s2) ∈ S}
and

d′i = αidi + βi, i = 1,2.
1Copyright December 7, 2011 by George J. Mailath
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Then
fi(S′, d′) = αifi(S, d)+ βi, i = 1,2.

2. SYM (Symmetry)

If d1 = d2 and (s1, s2) ∈ S =⇒ (s2, s1) ∈ S, then

f1(S, d) = f2(S, d).

3. IIA (Independence of Irrelevant Alternatives)

If S ⊂ T and f(T ,d) ∈ S, then

f(S,d) = f(T ,d).

4. PAR (Pareto Efficiency)

If s ∈ S, t ∈ S, ti > si, i = 1,2, then

f(S,d) ≠ s.

9.1.2 Nash’s Theorem

Theorem 9.1.1 (Nash) If f : B → R2 satisfies INV, SYM, IIA, and
PAR, then

f(S,d) = arg max
(d1,d2)≤(s1,s2)∈S

(s1 − d1)(s2 − d2) ≡ fN(S, d).

If s1 + s2 ≤ 1, then player I’s Nash share is

s∗1 =
1+ d1 − d2

2

(which is (9.4.1)).

Proof. Leave as an exercise that fN satisfies the four axioms.
Suppose that f satisfies the four axioms. Fix < S,d >.
Step 1: Let z = fN(S, d). Then zi > di, i = 1,2. Apply the

following affine transformations to move d to the origin and z to
(1/2,1/2):

αi = 1
2(zi − di) ; βi =

−di
2(zi − di).
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x ·y = 1
4

x +y = 1

(1
2 ,

1
2)

(s′1, s′2)

t

Figure 9.1.1: Illustration of step 2.

Denote the transformed problem < S′,0 >.
INV implies

fi(S′,0) = αifi(S, d)+ βi
and

fNi (S
′,0) = αifNi (S, d)+ βi =

1
2
.

Note that fi(S, d) = fNi (S, d) if and only if fi(S′,0) = 1/2.
Step 2: Claim -  (s′1, s′2) ∈ S′ such that s′1 + s′2 > 1.
Suppose not. Then convexity of S′ implies t = (1−ε)(1/2,1/2)+

εs′ ∈ S′. Moreover, for ε small, t1t2 > 1/4, contradicting fN(S′,0) =
(1/2,1/2) (see Figure 9.1.1).

Step 3: Let T = {(s1, s2) ∈ R2 : s1 + s2 ≤ 1, |si| ≤max
{∣∣s′1∣∣ ,∣∣s′2∣∣ : s′ ∈ S′}}

(see Figure 9.1.2). Then, SYM and PAR, f(T ,0) = (1/2,1/2).
Step 4: Since S′ ⊂ T , IIA implies f(S′,0) = (1/2,1/2).
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S′

T

(
1
2 ,

1
2

)

−max{|s′1|, |s′2| : s′ ∈ S′}

Figure 9.1.2: The bargaining set T .
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9.2 Rubinstein (1982) Bargaining

Two agents bargain over [0,1]. Time is indexed by t, t = 1,2, . . .. A
proposal is a division of the pie (x,1 − x), x ≥ 0. The agents take
turns to make proposals. Player I makes proposals on odd t and II
on even t. If the proposal (x,1−x) is agreed to at time t, I’s payoff
is δt−1

1 x and II’s payoff is δt−1
2 (1−x). Perpetual disagreement yields

a payoff of (0,0). Impatience implies δi < 1.
Histories are ht ∈ [0,1]τ−1.
Strategies for player I, τ1

I : ∪t odd[0,1]t−1 → [0,1], τ2
I : ∪t even[0,1]t

→ {A,R}, and for player II, τ1
II : ∪t≥2 even[0,1]t−1 → [0,1] and τ2

II :
∪t odd[0,1]t → {A,R}.

Need to distinguish between histories in which all proposals
have been rejected, and those in which all but the last have been
rejected and the current one is being considered.

9.2.1 The Stationary Equilibrium

All the subgames after different even length histories of rejected
proposals are strategically identical. A similar comment applies
to different odd length histories of rejected proposals. Finally, all
the subgames that follow different even length histories of rejected
proposals followed by the same proposal on the table are strate-
gically identical. Similarly, all the subgames that follow different
odd length histories of rejected proposals followed by the same
proposal on the table are strategically identical.

Consider first equilibria in history independent (or stationary)
strategies. Recall that a strategy for player I is a pair of mappings,
(τ1
I , τ2

I ). The strategy τ1
I is stationary if, for all ht ∈ [0,1]t−1 and

ĥt̂ ∈ [0,1]t̂−1, τ1
I (ht) = τ1

I (ĥt̂) (and similarly for the other strate-
gies). Thus, if a strategy profile is a stationary equilibrium (with
agreement), there is a pair (x∗, z∗), such that I expects x∗ in any
subgame in which I moves first and expects z∗ in any subgame
in which II moves first. In order for this to be an equilibrium, I’s
claim should make II indifferent between accepting and rejecting:
1 − x∗ = δ2(1 − z∗), and similarly I is indifferent, so z∗ = δ1x∗.
[Consider the first indifference. Player I won’t make a claim that
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II strictly prefers to 1 − z∗ next period, so 1 − x∗ ≤ δ2(1 − z∗). If
II strictly prefers (1 − z∗) next period, she rejects and gets 1 − z∗
next period, leaving I with z∗. But I can offer II a share 1− z∗ this
period, avoiding the one period delay.] Solving yields

x∗ = (1− δ2)/(1− δ1δ2),

and
z∗ = δ1(1− δ2)/(1− δ1δ2).

The stationary subgame perfect equilibrium (note that backward
induction is not well defined for the infinite horizon game) is for I
to always claim x∗ and accept any offer ≥ z∗, and for II to always
offer z∗ and always accept any claim ≤ x∗.

9.2.2 All Equilibria

While in principal, there could be nonstationary equilibria, it turns
out that there is only one subgame perfect eq.

Denote by i/j the game in which i makes the initial proposal to
j. Define

Mi = sup
{
i’s discounted expected payoff

in any subgame perfect eq of i/j
}

and

mi = inf
{
i’s discounted expected payoff

in any subgame perfect eq of i/j
}
.

Claim 9.2.1 mj ≥ 1− δiMi.
Proof. Note first that i must, in equilibrium, accept any offer >
δiMi. Supposemj < 1−δiMi. Then there would exist an eq yielding
a payoff uj < 1 − δiMi to j. But this is impossible, since j has a
profitable deviation in such an eq: offer δiMi + ε, ε small. Player i
must accept, giving j a payoff of 1−δiMi−ε > uj, for ε sufficiently
small.
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Claim 9.2.2 Mj ≤ 1− δimi.

Proof. i only accepts an offer if it is at least δimi.
If i does reject, then i offers no more than δjMj. So,

Mj ≤ max

1− δimi︸ ︷︷ ︸
if i accepts

, δ2
jMj︸ ︷︷ ︸

if i rejects


=⇒ Mj ≤ 1− δimi.

The first claim implies

Mj ≤ 1− δi(1− δjMj)
=⇒ Mj ≤ (1− δi)

(1− δiδj), Mi ≤
(1− δj)
(1− δiδj).

This implies

mi ≥ 1− δj (1− δi)(1− δiδj) =
(1− δj)
(1− δiδj)

and so

mi = Mi = (1− δj)
(1− δiδj).

9.2.3 Impatience

In order to investigate the impact of reducing the bargaining fric-
tion intrinsic in impatience, we do the following:

Time is continuous, with each round of bargaining taking ∆
units of time. If player i has discount rate ri,

δi = e−ri∆.
Player 1’s share is then

x∗(∆) = 1− δ2

1− δ1δ2
= 1− e−r2∆

1− e−(r1+r2)∆
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and so

lim
∆→0
x∗(∆) = lim

∆→0

1− e−r2∆

1− e−(r1+r2)∆

= lim
∆→0

r2e−r2∆

(r1 + r2)e−(r1+r2)∆

= r2

r1 + r2
,

where l’Hopital’s rule was used to get to the second line.
Note that the first mover advantage has disappeared (as it should).

The bargaining is determined by relative impatience.

9.3 Outside Options

Player II has an outside option of value (0, b). Suppose player II can
only select outside option when rejecting I’s proposal, and receives
b in that period. See Figure 9.3.1 for the extensive form.

Claim 9.3.1 m2 ≥ 1− δ1M1.

Proof. Same argument as Claim 9.2.1.

Claim 9.3.2 M1 ≤ 1− b, M1 ≤ 1− δ2m2.

Proof. M1 ≤ 1 − b (since II can always opt out). M1 ≤ 1 − δ2m2

follows as in case without outside option (Claim 9.2.2).

Claim 9.3.3 m1 ≥ 1−max {b,δ2M2}, M2 ≤ 1− δ1m1.

Proof. If b ≤ δ2M2, then the argument from Claim 9.2.1 shows that
m1 ≥ δ2M2. If b > δ2M2, then II takes the outside option rather
than rejecting and making a counterproposal. Thus, II’s acceptance
rule is accept any proposal of a share > b, and take the outside
option for any proposal < b. Thus, I’s payoffs is 1− b.
M2 ≤ 1− δ1m1 follows as in case without outside option (Claim

9.2.2).
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II

I

x ∈ [0,1]

O

(0, b)

R

II

A

(x,1− x)

I

x′ ∈ [0,1]

R

I

A

(δ1x′, δ2(1− x′))
x′′ ∈ [0,1]

Figure 9.3.1: The first two periods when II can opt out only after rejecting
I’s proposal.
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Claim 9.3.4 b ≤ δ2(1−δ1)/ (1− δ1δ2) =⇒mi ≤ (1−δj)/ (1− δ1δ2) ≤
Mi.

Proof. Follows from the Rubinstein shares being equilibrium shares.

Claim 9.3.5 b ≤ δ2(1−δ1)/ (1− δ1δ2) =⇒mi = (1−δj)/ (1− δ1δ2) =
Mi

Proof. From Claim 9.3.2, 1 −M1 ≥ δ2m2, and so from claim 9.3.1,
1−M1 ≥ δ2 (1− δ1M1), and so M1 ≤ (1− δ2) / (1− δ1δ2) and so we
have equality.

From Claim 9.3.1,m2 ≥ 1−δ1 (1− δ2) / (1− δ1δ2) = (1− δ1) / (1− δ1δ2),
and so equality again.

From Claim 9.3.4, δ2M2 ≥ δ2(1 − δ1)/ (1− δ1δ2) ≥ b, and so
by Claim 9.3.3, m1 ≥ 1 − δ2M2 ≥ 1 − δ2 (1− δ1m1). Thus, m1 ≥
(1− δ2) / (1− δ1δ2), and so equality.

Finally, from Claim 9.3.3,

M2 ≤ 1−δ1m1 = 1−δ1 (1− δ2) / (1− δ1δ2) = (1− δ1) / (1− δ1δ2) .

Thus, if b ≤ δ2(1−δ1)/ (1− δ1δ2), equilibrium payoffs are uniquely
determined. If b < δ2(1 − δ1)/ (1− δ1δ2), then the subgame per-
fect equilibrium profile is also uniquely determined (player II never
takes the outside option). If b = δ2(1 − δ1)/ (1− δ1δ2), then there
are multiple subgame perfect equilibrium profiles, which differ in
whether player II takes the outside option or not after an unaccept-
able offer.

Claim 9.3.6 b > δ2(1− δ1)/ (1− δ1δ2) =⇒m1 ≤ 1− b ≤ M1, m2 ≤
1− δ1 (1− b) ≤ M2.

Proof. Follows from the following being an equilibrium: I always
proposes 1−b, and accepts any offer of at least δ1 (1− b); II always
proposes δ1 (1− b) and accepts any claim of no more than 1 − b,
opting out if the claim is more than 1− b.
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Claim 9.3.7 b > δ2(1− δ1)/ (1− δ1δ2) =⇒m1 = 1− b = M1, m2 =
1− δ1 (1− b) = M2.

Proof. From Claim 9.3.2, 1−M1 ≥ b, i.e., M1 ≤ 1−b, and so we have
equality.

From Claim 9.3.1, m2 ≥ 1− δ1 (1− b),and so we have equality.
From Claim 9.3.6, 1−b ≥m1 and so (1− δ2)) / (1− δ1δ2) > m1.
We now argue that δ2M2 ≤ b. If δ2M2 > b, thenm1 ≥ 1−δ2M2 ≥

1−δ2 (1− δ1m1) and som1 ≥ (1− δ2) / (1− δ1δ2), a contradiction.
Thus, δ2M2 ≤ b.

From Claim 9.3.6 and 9.3.3, 1 − b ≥ m1 ≥ 1 −max{b,δ2M2} =
1− b and so m1 = 1− b.

Finally, this implies M2 ≤ 1 − δ1m1 = 1 − δ1 (1− b), and so
equality.

Thus, if b > δ2(1−δ1)/ (1− δ1δ2), equilibrium payoffs are uniquely
determined. Moreover, the subgame perfect equilibrium profile is
also uniquely determined (player II always takes the outside option
after rejection):

b > δ2 (1− δ1) / (1− δ1δ2)⇐⇒ b > δ2 [1− δ1 (1− b)] .
Remark 9.3.1 If II can only select outside option after I rejects (re-
ceiving b in that period), then there are multiple equilibria. The
equilibrium construction is a little delicate in this case. In fact,
there is no pure strategy Markov perfect equilibrium. There is, how-
ever, a behavior strategy Markov perfect equilibrium.

	

9.4 Exogenous Risk of Breakdown

Suppose that after any rejection, there is a probability 1 − θ of
breakdown and the outcome (d1, d2) is implemented. With prob-
ability θ, bargaining continues to the next round. No discounting.
Note that since always rejecting is a feasible strategy, di ≤mi ≤ Mi.
Claim 9.4.1 mj ≥ 1− θMi − (1− θ)di.
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Proof. Note first that i must, in equilibrium, accept any offer >
θMi + (1− θ)di. Suppose mj < 1 − θMi − (1− θ)di. Then there
would exists an eq yielding a payoff uj < 1 − θMi − (1− θ)di to
j. But j can deviate in such an eq, and offer θMi + (1− θ)di + ε, ε
small, which i accepts. This gives j a payoff of 1−θMi−(1− θ)di−
ε > uj, for ε sufficiently small.

Claim 9.4.2 Mj ≤ 1− θmi − (1− θ)di.
Proof. In eq, i rejects any offer < θmi+ (1− θ)di and then i offers
no more than θMj + (1− θ)dj. So,

Mj ≤ max
{
1− θmi − (1− θ)di, θ

[
θMj + (1− θ)dj

]+ (1− θ)dj}
=⇒ Mj ≤ 1− θmi − (1− θ)di,

since Mj < θ2Mj +
(
1− θ2

)
dj ⇐⇒ Mj < dj

The first claim implies

Mj ≤ 1− θ (1− θMj − (1− θ)dj)− (1− θ)di
=⇒ Mj ≤

(
1+ θdj − di

)
(1+ θ) , Mi ≤

(
1+ θdi − dj

)
(1+ θ) .

This implies

mi ≥ 1− θ
(
1+ θdj − di

)
(1+ θ) − (1− θ)dj = 1+ θdi − dj

(1+ θ) = Mi

and so

mi = Mi = 1+ θdi − dj
(1+ θ) .

Now, we are interested in the payoffs as θ → 1, and

mi → 1+ di − dj
2

,

so that I’s share is

x∗ = 1+ d1 − d2

2
. (9.4.1)

For much more on bargaining, see Osborne and Rubinstein (1990).
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9.5 Problems

9.5.1. Two agents bargain over [0,1]. Time is indexed by t, t = 1,2, . . . , T ,
T finite. A proposal is a division of the pie (x,1 − x), x ≥ 0. The
agents take turns to make proposals. Player I makes proposals on
odd t and II on even t. If the proposal (x,1 − x) is agreed to at
time t, I’s payoff is δt−1

1 x and II’s payoff is δt−1
2 (1 − x). Perpetual

disagreement yields a payoff of (0,0). Impatience implies δi < 1.

The game ends in period T if all previous proposals have been re-
jected, with each receiving a payoff of zero.

(a) Suppose T odd, so that I is the last player to make a proposal.
If T = 1, the player I makes a take-it-or-leave-it offer, and so in
equilibrium demands the entire pie and II accepts. Prove that
in the unique backward induction equilibrium, if there are k
periods remaining, where k is odd and k ≥ 3, I’s proposal is
given by

xk = (1− δ2)
τ−1∑
r=0

(δ1δ2)r + (δ1δ2)τ , τ = (k− 1)/2.

[Hint: First calculate x1 (the offer in the last period), x2, and
x3. Then write out the recursion, and finally verify that the
provided expression satisfies the appropriate conditions.]

(b) What is the limit of xT as T →∞?

(c) Suppose now that T is even, so that II is the last player to make
a proposal. Prove that in the unique backward induction equi-
librium, if there are k periods remaining, where k is even and
k ≥ 2, I’s proposal is given by

yk = (1− δ2)
τ−1∑
r=0

(δ1δ2)r , τ = k/2.

(d) What is the limit of yT as T →∞?

9.5.2. (a) Give the details of the proof of Claim 9.3.4. (A few sentences
explaining why it works is sufficient.)

(b) Give the details of the proof of Claim 9.3.6. (A few sentences
explaining why it works is sufficient.)

197



198 CHAPTER 9. BARGAINING

9.5.3. We will use the finite horizon bargaining result from question 9.5.1
to give an alternative proof of uniqueness in the Rubinstein model.

(a) Prove that in any subgame perfect equilibrium of the game in
which I offers first, I’s payoff is no more than xk, for all k odd.
[Hint: Prove by induction (the result is clearly true for k = 1).]

(b) Prove that in any subgame perfect equilibrium of the game in
which I offers first, I’s payoff is no less than yk, for all k even.

(c) Complete the argument.

9.5.4. There is a single seller who has a single object to sell (the seller’s
reservation utility is zero). There are two potential buyers, and they
each value the object at 1. If the seller and buyer i agree to a trade at
price p in period t, then the seller receives a payoff of δt−1p, buyer
i a payoff of δt−1

(
1− p), and buyer j ≠ i a payoff of zero. Con-

sider alternating offer bargaining, with the seller choosing a buyer
to make an offer to (name a price to). If the buyer accepts, the
game is over. If the buyer rejects, then play proceeds to the next pe-
riod, when the buyer who received the offer in the preceding period
makes a counter-offer. If the offer is accepted, it is implemented.
If the offer is rejected, then the seller makes a new proposal to ei-
ther the same buyer or to the other buyer. Thus, the seller is free
to switch the identity of the buyer he is negotiating with after every
rejected offer from the buyer.

(a) Suppose that the seller can only make proposals in odd-numbered
periods. Prove that the seller’s subgame perfect equilibrium
payoff is unique, and describe it. Describe the subgame perfect
equilibria. The payoffs to the buyers are not uniquely deter-
mined. Why not?

(b) Now consider the following alternative. Suppose that if the
seller rejects an offer from the buyer, he can either wait one
period to make a counteroffer to this buyer, or he can immedi-
ately make an offer to the other buyer. Prove that the seller’s
subgame perfect equilibrium payoff is unique, and describe it.
Describe the subgame perfect equilibria. [Cf. Shaked and Sut-
ton (1984).]
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Appendices1

10.1 Section 2.5.1: Trembling Hand Perfec-
tion

Definition 10.1.1 An equilibrium b ≡ (b1, . . . , bn) of a finite exten-
sive from game Γ is extensive form trembling hand perfect if there
exists a sequence

{
bk
}
k of completely mixed behavior strategy pro-

files converging to b such that for all players i and information sets
h ∈ Hi, conditional on reaching h, for all k, bi(h) maximizes player
i’s expected payoff, given bk−i and bki (h′) for h′ ≠ h.

Theorem 10.1.1 If b is an extensive form trembling hand perfect
equilibrium of the finite extensive from game Γ , then it is subgame
perfect.

Remark 10.1.1 When each player only has one information set (such
as in Selten’s horse), trembling hand perfect in the normal and ex-
tensive form coincide. In general, they differ. Moreover, trembling
hand perfect in the normal form need not imply subgame perfec-
tion (see problem 10.2.1).

	

1Copyright December 7, 2011 by George J. Mailath
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Remark 10.1.2 Note that trembling hand perfect in the extensive
form requires players to be sensitive not only to the possibility of
trembles by the other players, but also their own trembles (at other
information sets). The notion of quasi-perfect drops the latter re-
quirement:

Definition 10.1.2 (van Damme (1984)) A behavior strategy profile
b is quasi-perfect if it is the limit of a sequence of completely mixed
behavior profiles bn, and if for each player i and information set h
owned by that player, conditional on reaching h, bi is a best response
to bn−i for all n.

	

Theorem 10.1.2 Suppose b is a extensive form trembling hand per-
fect equilibrium of a finite extensive from game Γ . Then, bis sequen-
tially rational given some consistent system of beliefs µ, and so is
sequential.

Proof. Suppose b is trembling hand perfect in the extensive form.
Let {bk}k be the trembles, i.e., the sequence of completely mixed be-
havior strategy profiles converging to b. Let µk be the system of be-
liefs implied by Bayes’ rule by bk (since bk is completely mixed, µk is
well-defined). Since the collection of systems of beliefs,

∏
h∈∪iHi ∆(h),

is compact, the sequence {µk} has a convergent subsequence with
limit µ, and so µ is consistent. Moreover, a few minutes of reflec-
tion reveals that for each i, (bi, bk−i) is sequentially rational at every
information set owned by i, i.e., for all h ∈ Hi, given µk. Since best
replies are hemicontinuous, for each i, b is sequentially rational at
every information set owned by i, i.e., for all h ∈ Hi, given µ. That
is, b is sequentially rational given µ.

10.1.1 Existence and Characterization

This subsection outlines Selten’s (1975) original definition and proves
the equivalence between the different definitions.
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Let η : ∪Si → (0,1) be a function satisfying
∑
si∈Si η(si) < 1 for

all i. The associated perturbed game, denoted (G,η), is the normal
form game {(Rη1 , v1), . . . , (R

η
n, vn)} where

Rηi = {σi ∈ ∆ (Si) : σi(si) ≥ η(si), ∀si ∈ Si}
and vi is expected payoffs. Note that σ is a Nash equilibrium of
(G,η) if and only if for all i, si, s′i ∈ Si,

vi (si, σ−i) < vi
(
s′i , σ−i

)
=⇒ σi(si) = η(si) .

Definition 10.1.3 (Selten (1975)) An equilibrium σ of a normal form
game G is (normal form) trembling hand perfect if there exists a se-
quence {ηk}k such that ηk(si) → 0 ∀si as k → ∞ and an associated
sequence of mixed strategy profiles

{
σ k
}
k with σ k a Nash equilib-

rium of (G,ηk) such that σ k → σ as k→∞ .

Theorem 10.1.3 Every finite normal form game has a trembling
hand perfect equilibrium.

Proof. Clearly (G,η) has a Nash equilibrium for all η. Suppose {ηm}
is a sequence such that ηm(si) → 0 ∀si as m → ∞. Let σm be an
equilibrium of (G,ηm). Since {σm} is a sequence in the compact set∏
i∆ (Si), it has a convergent subsequence. Its limit is a trembling

hand perfect equilibrium of G.

Remark 10.1.3 If σ is not trembling hand perfect, then there exists
ε > 0 such that for all sequences {ηk}k satisfying ηk → 0, eventually
all Nash equilibria of the associated perturbed games are bounded
away from σ by at least ε (i.e., ∃K so that ∀k ≥ K and ∀σ k equilib-
rium of (G,ηk),

∣∣σ k − σ∣∣ ≥ ε).
	

Definition 10.1.4 (Myerson (1978)) The mixed strategy profile σ is
an ε-perfect equilibrium of G if it is completely mixed (σi(si) >
0 ∀si ∈ Si) and satisfies

si ∉ BRi(σ−i) =⇒ σi(si) ≤ ε.
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Theorem 10.1.4 Suppose σ is a strategy profile of the normal form
game G. The following are equivalent:

1. σ is a trembling hand perfect equilibrium of G;

2. there exists a sequence {εk : εk → 0} and an associated sequence
of εk-perfect equilibria converging to σ ; and

3. there exists a sequence
{
σ k
}

of completely mixed strategy pro-
files converging to σ such that σi is a best reply to σ k−i, for all
k.

Proof. (1)⇒ (2). Take εk =maxsi∈Si, i ηk(si).
(2) ⇒ (3). Let

{
σ k
}

be the sequence of εk-perfect equilibria.
Suppose si receives positive probability under σi. Need to show
that si is a best reply to σ k−i. Since εk → 0 and σ ki (si) → σi(si) > 0,
there exists k∗(si) such that k > k∗(si) implies σ ki (si) > σi(si)/2 >
εk. But σ k is εk-perfect, so si ∈ BRi

(
σ k−i

)
. The desired sequence is{

σ k : k > k̄
}
, where k̄ ≡max {k∗(si) : σi(si) > 0, i}.

(3)⇒ (1). Define ηk as

ηk(si) =
 σ

k
i (si), if σi(si) = 0,

1/k, if σi(si) > 0.

Since σ k → σ , there exists k′ such that k > k′ implies
∑
si∈Si ηk(si) <

1 for all i.
Let m = min {σi(si) : σi(si) > 0, i}. There exists k′′ such that,

for all k > k′′,
∣∣∣σ ki (si)− σi(si)∣∣∣ <m/2. Suppose k >max {k′, k′′,2/m}.

Then σ ki (si) ≥ ηk(si). [If σi(si) = 0, then immediate. If σi(si) > 0,
then σ ki (si) > σi(si)−m/2 >m/2 > 1/k.]

Since σi is a best reply to σ k−i, if si is not a best reply to σ k−i,
then σi(si) = 0. But this implies that σ k is an equilibrium of (G,ηk)
(since si is played with minimum probability).
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10.2 Problems

10.2.1. By explicitly presenting the completely mixed trembles, show that
the profile L` is normal form trembling hand perfect in the following
game (this is the normal form from Example 2.3.4):

` r

L 2,0 2,0

T −1,1 4,0

B 0,0 5,1

Show that there is no extensive form trembling hand perfect equi-
librium with that outcome in the first extensive form presented in
Example 2.3.4.
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