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TOWARD A THEORY OF DISCOUNTED REPEATED GAMES 
WITH IMPERFECT MONITORING 

BY DILIP ABREU, DAVID PEARCE, AND ENNIO STACCHETTI1 

This paper investigates pure strategy sequential equilibria of repeated games with 
imperfect monitoring. The approach emphasizes the equilibrium value set and the static 
optimization problems embedded in extremal equilibria. A succession of propositions, 
central among which is "self-generation," allow properties of constrained efficient su- 
pergame equilibria to be deduced from the solutions of the static problems. We show that 
the latter include solutions having a "bang-bang" property; this affords a significant 
simplification of the equilibria that need be considered. These results apply to a broad 
class of asymmetric games, thereby generalizing our earlier work on optimal cartel 
equilibria. The bang-bang theorem is strengthened to a necessity result: under certain 
conditions, efficient sequential equilibria have the property that after every history, the 
value to players of the remainder of the equilibrium must be an extreme point of the 
equilibrium value set. General implications of the self-generation and bang-bang proposi- 
tions include a proof of the monotonicity of the equilibrium average value set in the 
discount factor, and an iterative procedure for computing the value set. 

KEYWORDS: Asymmetric repeated games, extremal equilibria, self-generation, bang- 
bang reward functions, algorithm. 

1. INTRODUCTION 

A RECENT PAPER of ours (Abreu, Pearce, and Stacchetti (1986), hereafter APS) 
demonstrates the existence of equilibria of the Green-Porter model (Green and 
Porter (1984), Porter (1983)) that are optimal in terms of the degree of implicit 
collusion they sustain, and yet have an unexpectedly simple intertemporal 
structure. Here we exploit the same analytic approach to develop a theory for a 
broad class of asymmetric discounted repeated games with imperfect monitor- 
ing. The results characterize efficient sequential equilibria, facilitate their com- 
putation, and establish a strong relationship between the equilibrium value set 
and the discount factor. More generally, they demonstrate the advantages of a 
perspective which views these repeated games in terms of a particular intertem- 
poral decomposition. 

Our analysis is in the spirit of dynamic programming, whose impact on game 
theory has, of course, been substantial (see, for example, Shapley (1953), Abreu 
(1988), and Radner, Myerson, and Maskin (1986)). It proceeds via a succession 
of propositions, central among which is "self-generation" (see Section 3), which 
reduce the study of the equilibria in question to the solution of a class of static 

1 It is a pleasure to acknowledge useful conversations with Ed Green and Herb Scarf. We would 
particularly like to thank Andreu Mas-Colell, Paul Milgrom, and Hans Weinberger for their 
invaluable assistance at various stages of the paper's development. Russell Lyons was extraordinarily 
generous with his time and technical expertise; the discussion of measurability in the Appendix owes 
much to his input. We are grateful to a co-editor and the anonymous referees for their helpful 
comments. This research was supported in part by the National Science Foundation. 
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problems. The remainder of this section is devoted to an informal exposition of 
our results. This overview abstracts from the measure-theoretic issues that are 
dealt with in the analysis. 

The supergames studied here involve the indefinite repetition of a simultane- 
ous, N-person stage game: see Section 2 for formal definitions. In each period t, 
players independently select actions from their respective pure strategy sets in 
the stage game. The vector of strategies selected determines the probability 
distribution of a payoff-relevant random variable P, whose realization2 is 
publicly observed at the end of period t. At no time does any player i observe 
the actions chosen earlier by other players. Nor can i infer this information 
from the signal realizations: the support of P is independent of the action 
profile. A player's expected payoff at the end of t depends on his own action 
directly, and on the profile of actions insofar as the latter affects the distribution 
of the signal. Payoffs are discounted (to the beginning of period 1) according to 
the common discount factor a E (0, 1). 

We study sequential equilibria (adapted from Kreps and Wilson (1982)) in 
pure strategies (hereafter abbreviated as S.E.). With each S.E. of the supergame 
is associated a profile of discounted payoffs, one for each player; the set of S.E. 
payoff vectors is denoted V. Without loss of generality (as we show in Section 3), 
we restrict attention to S.E.'s in which each player makes his actions depend 
only upon past signal realizations (not on his own previous actions). After any 
first period history, an S.E. induces a "continuation profile" on the remaining 
subtree. Because the first period signal realization is publicly observed, this 
profile is common knowledge, and is itself a sequential equilibrium. The value 
of the continuation profile is therefore always in V. 

In order to obtain some powerful characterizations of the equilibrium value 
set, it is useful to regard an S.E. as specifying a profile of actions q for players 
in the first period, and a continuation reward function that "promises" some 
expected payoff u(p) e V for the remainder of the game (the value of the 
"continuation equilibrium"), depending on the value p of the first period signal. 
The value of the S.E. can also be viewed as being the value of the pair (q, u). 
Equilibrium requires that certain incentive constraints be satisfied: for each 
player i, the choice qi must maximize the sum of his first period payoff and the 
expected value of the reward function. (Note that the choice of action affects 
the distribution of the signal and hence the expectation of the continuation 
value.) Think now of an arbitrary pair (q, u), with q an action profile of the 
stage game, and u a measurable function from the signal space into RN, but not 
necessarily associated with any equilibrium. We say that (q, u) is admissible with 
respect to V if it satisfies the incentive constraints explained above, and if for all 
p, u(p) E V. Let B(V) CRN be the set of all values of pairs admissible with 
respect to V. For any S.E., it is clear that the associated pair (the period 1 
action profile and continuation reward function) is admissible with respect to V, 

2We follow the standard practice of using upper and lower cases, respectively, to distinguish 

between a random variable and a particular realization. 
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therefore V c B(V). Conversely, from any pair (q, u) admissible with respect to 
V, construct an S.E. as follows: the first period action profile specified by the 
S.E. is q, and the continuation equilibrium induced after any first period signal 
p is some S.E. o-(p) having value u(p) (by the definition of V, u(p) E V implies 
the existence of an S.E. o-(p) with value u(p)). It is straightforward to check 
that the profile constructed is indeed an S.E., therefore B(V) c V. We conclude 
that V= B(V), which is the content of Theorem 2 of Section 3. This result is 
referred to as "factorization" because it follows from the factorization or 
decomposition (in dynamic programming fashion) of an equilibrium into an 
admissible pair. 

Although factorization proves to have a number of applications, much more 
can be said about V by studying admissible pairs in a broader context. For an 
arbitrary set W c RN, a pair (q, u) is admissible with respect to W if it satisfies the 
relevant incentive constraints as above, and for all signal values p, u(p) E W. 
The set of all values of pairs admissible with respect to W is called B(W). 
Notice that the elements of B(W) are "generated" by reward functions that 
draw values from W, just as elements of V are generated by continuation 
reward functions that draw values from V itself. Any set W such that W c B(W) 
is called self-generating (as all elements of W can be generated using rewards 
from W). Theorem 1 of Section 3 establishes that if W is a bounded, self-gener- 
ating set, then B(W) c V. This result, which implies that all the values in any 
bounded self-generating set are sequential equilibrium values, is called self-gen- 
eration. An informal treatment of the argument is deferred until Section 3. 

Factorization and self-generation generalize theorems established in APS for 
symmetric equilibria of symmetric games. Some of their theoretical applications 
are illustrated in what follows; for instance, self-generation permits a general 
proof that the value set, expressed in average terms, is increasing in the discount 
factor (see Section 6). But self-generation is also of practical use in studying 
specific examples. It is sometimes relatively simple to choose a set of points in 
RN and show that they constitute a self-generating set for the supergame under 
investigation. Then one has established that each of the points is the payoff of 
some sequential equilibrium of the infinite horizon game. 

Theorem 3 asserts that for any pair (q, ) admissible with respect to a 
compact set W, there exists u such that (q, u) has the same value as the original 
pair, and is admissible with respect to ext W (the extreme points of the convex 
hull of W). As Section 4 explains, this allows a major simplification of su- 
pergame equilibria: without loss of generality, one can restrict attention to 
S.E.'s whose continuation values, after any history, are extreme points of V. If V 
is a rectangle, for example, after the first period at most four continuation 
values and four associated action profiles arise in equilibrium. A corresponding 
"bang-bang" result for symmetric equilibria is found in APS. If one generalized 
the argument of APS to asymmetric equilibria, the result would be weaker. 
Namely, continuation equilibria may be taken to be boundary points of V, but 
not necessarily extreme points of V. The distinction is at times critical: in the 
2-person rectangular example just mentioned, V has a continuum of boundary 
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points, but only four extreme points. Our proof of the stronger result is a 
straightforward application of a technical theorem of Aumann (1965). 

The result that it is sufficient to consider reward functions of the bang-bang 
form is open to objections concerning the appropriateness of the restriction. If 
the "natural" solution were a smooth function, which could be replaced by one 
with the bang-bang property at the cost of creating a complex pattern of rapid 
alternations among extremal values, one kind of simplicity would be traded 
against another. Reassurance is provided by a much stronger characterization, 
new to this paper, in Section 7. Under certain conditions, the reward functions 
faced by players in Pareto-efficient equilibria must be bang-bang: efficiency 
demands that nonextremal points of the payoff set are never used. 

The dynamic programming technique of value iteration (Howard (1960)) has 
an analogue in repeated games which is discussed in Section 5. It is an iterative 
procedure for computing the set of equilibrium values. The novelty here is the 
presence of sequential incentive constraints and the fact that the map that is 
iterated is set-valued. Apart from its importance for the numerical computation 
of equilibria of specific supergames, the algorithm is an alternative characteriza- 
tion of the equilibrium value set, and as such will have a variety of theoretical 
applications. Suppose that for any WCRN, one is able to compute B(W) (this 
may be a substantial task). The algorithm works as follows. Begin with a 
compact set W0 sufficiently large that it is known a priori to satisfy V c B(WO) c 
W0. Apply the operator B repeatedly to obtain the decreasing sequence of sets 

{Wnln}==0, where for each n, Wn+1 = B(Wn). Theorem 5 shows that this sequence 
converges to the supergame value set V. The relationship to some earlier results 
by Fudenberg and Levine (1983) linking infinite and finite horizon games is 
explained briefly in Section 5. 

The ways in which this paper furthers the research reported in APS may be 
summarized as follows. First, it relaxes the restriction of symmetry, showing the 
theory capable of embracing both asymmetric equilibria of symmetric games and 
arbitrary asymmetric games. Secondly, the sufficiency of using bang-bang reward 
functions in efficiently collusive equilibria is strengthened to a necessity theo- 
rem. Finally, we provide an algorithm useful in computing the sequential 
equilibrium value set. 

Except for Section 6, this paper takes the discount factor a to be fixed, and 
studies the value set and the nature of constrained efficient equilibria for that 
degree of patience. In this way it complements the literature initiated by 
Radner (1985) and Radner, Myerson, and Maskin (1986)3 which focuses on the 
limiting behavior of the value set of supergames with imperfect monitoring as 8 
approaches 1. A dynamic programming approach again proves useful for folk 
theorems with discounting: this is powerfully demonstrated by Fudenberg and 
Maskin (1986) and Fudenberg, Levine, and Maskin (1988). There is also a 
growing body of work on the related topic of repeated agency theory: see, for 

3This line of work is ultimately inspired by the early papers on folk theorems without discount- 
ing, especially Aumann and Shapley (1976), Rubinstein (1979a), and Rubinstein (1979b). 
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example, Fudenberg, Holmstr6m, and Milgrom (1988), Rogerson (1985), and 
Spear and Srivastava (1987). 

2. THE MODEL 

The model outlined below features unobservable actions, stochastic out- 
comes, and a publicly observable random variable correlated with players' 
private choices. It lends itself naturally to the study of a number of economic 
questions. Important examples are oligopoly (Green and Porter (1984), Porter 
(1983)) and partnership problems (Radner (1986)) of various kinds. 

The Stage Game 

The N-person stage game is denoted G. Each player i has a finite strategy set 
Si and a payoff function Hi S -3 R, where S:= S, x ... X SN. For q E S, Hi(q) 
is an expected value. Payoffs actually received 7-i(p, qi), are stochastic and 
depend on realizations of a random variable P which takes values in 12 c R . 
The distribution of P is parameterized by the vector of actions q E S, and is 
denoted '(I; q). Realized payoffs 7i depend on q-i.= (q , . * qi- 1, qi+ 
. .. ,qN) only through the effect of the latter on the distribution of P. Finally, 

Hn(q) = JQ vi(p, qi) I!(dp; q). 

The Repeated Game 

We denote by G'(8) the infinitely repeated game with component game G 
and discount factor 8 E (0, 1). Players can observe (and therefore condition 
upon) only their own past actions and past realizations of the random variable 
P. Hence, a strategy (i for player i in G'(8) is a sequence of Lebesgue 
measurable functions {oi((t)}= 1, where (i(1) e Si, and for t > 1, oi(t): Qt- 1 x 
Si-1 S.. Let pt = (p(l) ... , p(t)) and qt = (q(l),.. ., q(t)) denote t-period 
signal and action histories, respectively. As is standard ar:pt,qt denotes the 
strategy profile induced by o- after the t-period history (pt, qt). In each period, 
p is drawn independently according to the distribution W(; q). Associated with 
any strategy profile o- of G'(8) is a stochastic stream of payoff vectors. The 
expected present discounted value of this stream is denoted v(r) = 

(v1(V ), .. ., vN(&r)). Note for later use that period t payoffs are received at the 
end of period t and discounted to the beginning of period 1. We assume that: 
(Al) Si isfinite, i = ,...,N. 

(A2) For each q c S, f( ; q) is absolutely continuous. Letg( ; q) be the 
corresponding probability density. 

(A3) {p E 2I g(p; q) > 0) is independent of q E S. 

(A4) 1i (p, qi) is continuous in p. 

(AS) G has a Nash equilibrium in pure strategies. 

Without loss of generality we take n to equal {p I g(p; q) > 0). 
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Assumptions (Al) and (A4) guarantee that v(oS) is well defined. Theorems 3 
and 7 depend upon (A2). The solution concept used is the natural generaliza- 
tion of sequential equilibrium4 (see Kreps and Wilson (1982)) to the repeated 
games under consideration. Hereafter, we use S.E. to denote a sequential 
equilibrium in pure strategies, and denote by V:= {v(o-) I o is an S.E.1 the set of 
S.E. payoffs. Assumption (A5) implies that V is nonempty; the strategy profile 
specifying that in every period independently of the history each player uses his 
one-period Nash equilibrium action, is an S.E. Further discussion of the 
assumptions is deferred until Section 3. 

3. FACTORIZATION AND SELF-GENERATION 

Consider the maximization problem faced by a player in the first period of an 
equilibrium a-. Recall that his choice of action qi has two consequences: it 
affects payoffs in period 1, and also influences the distribution of the first-period 
signal p(l). The player is in effect maximizing the sum of current payoffs and 
the expectation of the future reward (a function of p(l)) implicitly "promised" 
by v. The reward function must be drawn from V: an S.E. can offer only S.E. 
rewards. Furthermore, vi(1) must yield at least as high a value of the sum as any 
other action available to i. The same remarks apply to player i's choice after 
any t-period history. 

We proceed rather abstractly by studying structures suggested by the above 
observations but no longer in the context of any particular equilibrium. 

Let L(f2; RN) denote the set of equivalence classes of essentially bounded 
Lebesgue measurable functions u from 12 into RN. For any pair (q, u) E S x 
L"(f2; RN), E(q; u) 8= {H(q) + fI u(p)g(p; q) dp}. Clearly E(q; u) is continu- 
ous in u when L(f2; RN) is endowed with the weak-* topology. For any set 
WcRN, L{(f2; W) will denote the set of functions u E LW(2; RN) such that 
u(p)e W a.e. pEf 2. 

DEFINITION: For any set WC RN, a pair (q, u) E S x L (f2; RN) is called 
admissible with respect to W if 

(i) u(p) E W a.e. p e f2, and 

(ii) Ej(q;u) >Ei(yi,q_;u) for all yi E Si and i= 1,...,N. 

A profile q e S is supportable by W if there exists u e L0(n2; RN) such that 
(q, u) is admissible with respect to W. 

4The original definition applies to finite extensive games. In our usage, a sequential equilibrium 
will be a pure strategy profile o, such that for each player i, each t-period history q/ of actions by i, 
every supergame strategy 5ic for i, almost every t-period signal history pt, and the t-period history of 
action profiles qt i for players other than i induced by or and pt, 

Vi ( (lq', p') > Vi (i C a-10 I q'-,,p') - 

Note that the issue of consistency does not arise, because the constant support assumption (A3) 
makes the calculation of conditional beliefs at any information set unambiguous. See also the 
remark following Theorem 1. 
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These conditions mimic the two requirements noted above on pairs of the 
form (recommended action, reward function) arising in an S.E. 

DEFINITION: For each set WCRN, B(W) {= E(q; u)I(q, u) is admissible w.r.t. 
w}. 

By the definition of B(W), for each w e B(W) there exists a pair admissible 
with respect to W with value w. Hence (by the Axiom of Choice) there exist 
functions Q: B(W) -* S and U: B(W) -* L'(n, W) such that (Q(w), U(w)) is 
admissible with respect to W and E(Q(w); U(w)) = w for all w c B(W). Fur- 
thermore, for any bounded Borel set W, the domain of Q and U can be 
extended to RN, and the functions Q and (p, w) -3 U(wXp) from 12 x RN into 
RN can be taken to be universally measurable. The last remark needs some 
justification; we provide a proof in Lemma C of the Appendix. The functions Q 
and U are used extensively below. The extension of Q and U to RN, the 
requirement that W is Borel, and various measure-theoretic qualifications are 
unnecessary if 12 is countable (or finite). 

That admissibility successfully captures the information essential for studying 
V is evidenced in Theorems 1 (self-generation) and 2 (factorization). These 
combine to say that V is the largest bounded fixed point of the set-valued map 
B. This is a powerful result insofar as the definition of B is quite simple and 
makes no reference to the complex strategic structure of an infinite horizon 
game. 

The proofs of the theorems below are very similar to those presented for the 
symmetric case in APS. We have included them to provide a self-contained 
treatment. 

DEFINITION: WCRN is said to be self-generating if WcB(W). 

THEOREM 1 (Self-Generation): For any bounded Borel set WCRN if W is 
self-generating, then B(W) c V. 

Before giving a proof, we provide an intuitive discussion of self-generation; 
for simplicity, qualifications such as "almost everywhere" are ignored. If a 
bounded set W is self-generating, any value in W is also in its image B(W). This 
permits us to choose any element of B(W) and "transform" it period-by-period 
into an S.E., say o-, having the same value. Begin by choosing a pair (q, u) 
admissible with respect to W, with value w. Set ov(1) = q. For any p E 2, we 
would like to ensure a continuation value of u(p) in equilibrium. As a first step, 
select a pair (q', u') admissible with respect to W, and having value u(p) (this is 
possible because u(p) E WcB(W)). Set the action profile in period 2 (given 
that p arose in the first period) equal to q', and for each p' E Q2 choose a new 
admissible pair (q", u") with value u'(p'). In this way strategies for the first t 
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periods (for any t) are generated. A recursive step allows this process to 
determine a complete supergame profile ov. The profile has the desired value w, 
because each time an admissible pair was substituted for a continuation value, 
the value was preserved. Moreover the action and reward function after each 
history comprise an admissible pair by construction, so no player has a prof- 
itable "one-shot" deviation. Backward induction then implies that no deviations 
at a finite number of information sets can benefit a player. Finally, the fact that 
period t payoffs are bounded and are discounted heavily if t is large, implies 
that cheating infinitely often is unprofitable (otherwise, some deviation at a 
finite number of information sets would also be profitable). 

PROOF: The proof is constructive. For all w E B(W) we specify sequential 
equilibria v^(w) such that v(6f(w)) = w. For each w E B(W), consider the 
function U(w) E LO(Q, W) as defined earlier. Recursively define the functions 
Ut(w): Qt -+ RN as follows: U'(w) = U(w), Ut(w)(pt) = U(Ut '(w)xpt- ')Apt), 
t = 2,3.... Since U(w)(p) E W a.e. p E Q2, for each t 1, 2,... , Ut(w)(pt) E W 

a.e. pt E Qt, so that Ut(w) E Lc(Qt, W). The required strategy profiles v^(w) are 
a^(w)(1) = Q(w), 6^(w)(t + 1)(pt, qt) = Q(Ut(w)(pt)), t = 1, 2, .... Observe that 
the 6^(w)'s are independent of past actions. We will write 6^(w)I,t for 6a(W)Ipt,qt. 
Note also that the 6^(wXt)'s are Lebesgue measurable functions, being the 
composition of universally measurable functions (see the Appendix). 

It may be checked that v(6f(w)) = w for all w E B(W). By construction, given 
&i(w), the strategy 6i(w) is "unimprovable" (after almost all histories, no 
one-shot deviation improves a player's payoff), and hence optimal for player i 
(see, for instance, Whittle (1983), Theorem 2.1, Chapter 24, and, for the genesis 
of this idea, Howard (1960)). Thus, 6 (w) is a best response to &_(w) for all i, 
and v^(w) is a Nash equilibrium. 

It now remains only to show that v^(w) is an S.E. Consider any history 
(pt, qt). Since players' strategies do not depend on past actions, and expected 
payoffs in any period depend only on actions in that period, beliefs about past 
actions are irrelevant, and we need only check that U^(w)lIt is a Nash equilib- 
rium for almost all pt E Qt, t = 1,2.... But a.e. pt e- t, (w)Ipt = 6^(x) for 
some x E W and we have just shown that v1(x) is a Nash equilibrium for all 
x E B(W) D W. Q.E.D. 

REMARK: The assumption of constant support (A3) implies that all possible 
price histories occur in equilibrium. As a consequence, there is no material 
difference between Nash and sequential equilibria. For each Nash equilibrium 
there is a payoff-equivalent sequential equilibrium which (modulo events of 
measure zero) differs from the former only after histories corresponding to a 
player's own deviations. Both strategy profiles hence generate the same equilib- 
rium behavior. 

The next result can be viewed as a strategic, set-valued expression of Bellman's 
equation. 
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THEOREM 2 (Factorization): V= B(V). 

PROOF: By Theorem 1, it suffices to establish that V is a bounded Borel set 
and that V c B(V). We first show that V is self-generating. Consider w E V and 
an S.E. oa such that v(() = w. Let (q, u) be a pair such that q =c(1) and 
u(p) = v(o,lp, (l)) for all p E Q2. We must prove that (q, u) is admissible with 
respect to V, and that E(q; u) = w. Observe that u is Lebesgue measurable, 
since it may be written as the discounted sum of Lebesgue measurable func- 
tions.5 Clearly, 

w = 4H(.-(i)) + fv(o-IP, (l))g(p; -(1)) dp] =E(q; u). 

By (A3), the information sets (p, oj(l)) are reached in equilibrium for all p E D2. 
Hence player i can use Bayes' rule to predict what player i's future behavior 
will be. Since players are using pure strategies, player i's conditional beliefs 
about player i's behavior are concentrated at ajlp , ,o(), which is a strategy in 
G"(8). Hence Uip,,(l) is an S.E. of G'(5). In other words, under our assump- 
tions, the repeated game has a recursive structure. It follows from the preceding 
discussion that u(p) E V, for almost all p E Q2. 

For any i and yi E Si, consider (Ji such that Jij(l) = yi and Ip, y, = OiIp,q for 
all p eQ. Then (5ai, 01_i)lp,(,y1,q ) = Oip,q. Since a- is an S.E., vi((J) > vi(J;, a-i), 
which implies Ei(q; u) > Ei(yi, q-i; u). This establishes the admissibility of (q, u). 

Note that V c [8/(1 - S)]co{HI(q)I q E S} (co := convex hull). Since S is finite, 
this implies that V is bounded. We defer proving that V is a Borel set; this will 
be an immediate corollary of Theorem 4. Q.E.D. 

Take the self-generating set W in the statement of Theorem 1 to be V. It is 
worth noting that for any w E V, the profile (T(w) constructed in the proof of 
Theorem 1 is a sequential equilibrium in which no player conditions his choice 
of action in any period on actions he has previously taken. 

In establishing that V c B(V), the proof of Theorem 2 constructs pairs 
admissible with respect to V that mimic the first-period incentive structure of an 
S.E. That this is possible depends on the fact that equilibrium continuation 
values after the first period are elements of V. This accounts for some limita- 
tions in the scope of our inquiry. First, mixed strategies are excluded from 
consideration. If players randomize in the first period, player 1 cannot infer 
(from the signal and the equilibrium hypothesis) what other players' continua- 
tion strategies are: player 2's continuation strategy may depend on his first-period 
action, which is unobservable to 1, and is no longer specified deterministically by 
the S.E. The same problem arises in models in which players observe private 

SThat is, u(p) = El>3 t-'Eta(7(p(0, q(t)) IP(l)= p), where E?'(7r(p(t),q(t))jp(l) =p) is the 
conditional expectation of players' payoffs in period t, when they follow the strategy profile r, given 
that the first period signal realization is p(l) = p. 
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signals: because they are conditioning their actions on information that is not 
publicly observed, players cannot compute one another's continuation strate- 
gies. Continuation profiles need not be equilibria; the link between sequential 
equilibria and admissibility with respect to V is broken. (By assuming that 
player i's payoff is determined by his own action and the publicly observed 
signal, we ensure that payoffs do not serve as privately observed signals.) Finally, 
we assume in Section 2 that the support of the signal is independent of the 
action profile. Suppose, instead, that there are three players who, in the first 
period of an S.E. o-, are supposed to play the profile q, and that some value p is 
outside the support of the signal, given q. If player 3 cheats and p arises, player 
1 concludes that either player 2 or player 3 deviated; suppose that his posterior 
gives equal weight to both alternatives. Similarly, suppose player 2 gives equal 
weight to the possibilities that 1 or 3 deviated. The continuation profile need 
not be an equilibrium; moreover, the continuation value for player 3 might now 
be worse than his least-preferred S.E. value. Consequently a pair admissible 
with respect to V is unable to match the severity with which o- punishes the 
deviation by player 3. In this case VX B(V). 

4. BANG-BANG REWARD FUNCTIONS AND THE STRUCTURE OF EQUILIBRIA 

This section proves that any reward function can be replaced by one yielding 
each player the same expected value (without affecting incentive compatibility) 
and taking on values only in the set of extreme points of V. Apart from the 
obvious practical advantages this offers in working with particular games, it has 
theoretical applications: examples are provided in the proofs of Theorems 5 and 
6 and Lemma 1. 

For W c RN, let co W denote the convex hull of W and ext W the set of 
extreme points of co W. 

DEFINITION: U E L (Q; W) has the bang-bang property if u(p) E ext W a.e. 
p E Q. 

Theorem 3 below implies that the function U of Section 3 can be chosen so 
that for each w, U(w) has the bang-bang property. Now consider the nature of 
an equilibrium with value w, and summarized by (Q, U) with U chosen as above. 
For almost all signals p(l) arising in the first period, an extremal reward 
U(w)(p(1)) is "delivered" by the pair (Q(U(w)(p(1))), U(U(w)(p(1)))). When 
p(2) is observed, a new reward function comes into effect, and so on. Since after 
any t-period history, players' future payoffs are in ext V, a play of the game can 
be viewed as an alternation among extreme points of V, where the particular 
pattern of extreme points is determined by the sequence of realized outcomes of 
the random signal. For the special case in which V is one-dimensional (as it is, 
for example, when attention is restricted to symmetric equilibria of symmetric 
games), this means that only two extreme points, and hence two action profiles, 
ever arise after the first period of the game. 
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THEOREM 3: Let WC RN be compact and (q, ui) be an admissible pair with 
respect to co W. Then there exists a function ii EuL'(Q; ext W) such that (q, -u) is 
admissible with respect to W and E(q; -u) = E(q; O). 

PROOF: Let 

F ={u eL(f2, co W)I (q, u) is admissible w.r.t. co W 

and E(q; u) = E(q; d)} . 

By assumption F is nonempty (d2 E F), and it may easily be checked that F is 
convex. By Alaoglu's theorem, F is compact when L'(Q; co W) is endowed with 
the weak-* topology. Hence, by the Krein-Milman theorem, F has an extreme 
point. 

By (Al), the set of integral constraints defining F is finite and Proposition 6.2 
of Aumann (1965) applies directly. It implies that any extreme point -u of F 
satisfies ii(p)e ext W a.e. p. Since ext W c W, (q, -u) is also admissible with 
respect to W, and the proof is complete. Q.E.D. 

COROLLARY: Let W c RN be compact. Then B(W) = B(co W). 

The proofs of Lemma 1 and Theorem 4 below are analogous to those of 
Proposition 4 and Corollary 2, respectively, of APS. It is often useful to know 
that the operator B preserves compactness; for example, this guarantees that 
when applying the algorithm of Section 5, each element of the sequence of sets 
generated is compact (so that the bang-bang result can be invoked to simplify 
the calculations at each stage). Similarly, it is critical to much of the analysis to 
follow that the bang-bang result be applicable to pairs admissible with respect 
to V; this depends on the compactness of V. 

LEMMA 1: The operator B is monotone and preserves compactness: (i) if W c W' 
CRN B(W) CB(W'); (ii) if WCRN is compact, B(W) is compact. 

PROOF: Part (i) follows immediately from the definition of admissibility. 
By the Corollary to Theorem 3, B(W) = B(co W). For each q E S, let 

l(q) {= {u E L(fQ; co W)l (q; u) is admissible w.r.t. co W}. 

Alaoglu's theorem implies that l(q) is weak-* compact. Since E(q; u) is continu- 
ous in u, and S is finite, 

B(co W) = U E({q} x l(q)) 
qeS 

is compact as a finite union of compact sets. Q.E.D. 

THEOREM 4: V is compact. 

PROOF: Recall from the proof of Theorem 2 that V is bounded and self- 
generating. Let cl(V) denote the closure of V. Since V is bounded, cl(V) is 
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compact. By monotonicity, V = B(V) c B(cl(V)), and by Lemma 1, B(cl(V)) is 
compact. Hence, cl(V) c B(cl(V)), and self-generation implies cl(V) c V. Thus, 
V is closed and compact. Q.E.D. 

Since V is compact, V is a Borel set, as claimed in Theorem 2. 

5. COMPUTATION 

For many purposes it is important to have an algorithm capable of finding the 
set V in particular supergames. To do so, it is necessary to find the largest 
bounded fixed point of the set-valued map B. It turns out that V may be 
computed by a procedure analogous to Howard's "value-iteration" (Howard 
(1960)) for dynamic programs. The algorithm starts with a set W0 c RN such that 
V c B(WO) c W0. It then proceeds by computing the monotonically decreasing 
sequence of sets Wn =B(Wn-1)- n = 1,2,.... The limit of this process is 
V= limnoW Nn=lWn- 

The next two lemmas follow directly from factorization and the monotonicity 
of B; their proofs are left to the reader. For Lemma 2, recall that V c 
[a/(1 - 8)]co H(S) = W. Furthermore, if (q, u) is admissible with respect to W, 
E(q; u) = {IH(q) + [a/(1 - 8)]x} = [a/(1 - 8)]{(1 - )II(q) + =x}= w for some 
x E co H(S), which implies w E W. 

LEMMA 2: Let W:= [8/(1 -8)]co{HI(q)Iq ES}. Then VcB(W) c W. 

LEMMA 3: If W C RN satisfies V c B(W) c W, then V c B(B(W)) c B(W). 

LEMMA 4: Let {Wn} be a decreasing sequence of compact sets in RN. Then 
co n Wn = nco Wn. 

PROOF: See Appendix. 

THEOREM 5 (Algorithm): Let W C RN be compact and satisfy V c B(W) c W. 
Define WO = W and for n = 1, 2,... let Wn := B(Wn -1). Then {Wn} is a decreasing 
sequence and V = limn -Wn. 

PROOF: By Lemmas 1 and 3, {Wn} is a decreasing sequence of compact sets, 
so W.:= limn , Wn = n Wn and W.J' is compact. Again by Lemma 3, Vc W_. To 
complete the proof we need to show that W. c V. By self-generation and the 
corollary to Theorem 3, it is sufficient to show that W. c B(co WO). Consider any 
w EC W.. By definition, for each n = 1, 2,.. ., there exists (qn, un) admissible with 
respect to Wn such that E(qn, Un) = w. Since qfn E S, where S is finite, and 
L'(f2; Wn) c L'(f2; co W), where L'(f2; co W) is a weak-* compact set, we may 
without loss of generality assume qn = q and u u for some q E S and 
u e L'(; co W). We argue that (q, u) is an admissible pair with respect to 
coJW., and w=E(q;u). Since for all n = 1,2,...,um(f2)_coWm ccoWn for all 



DISCOUNTED REPEATED GAMES 1053 

m > n (modulo sets of measure 0), we have u(Q) c co Wn for all n. Hence, by 
Lemma 4, u(Q) c n co Wn = co n Wn = co W.. Since E(q; * ): L(Q; co W) RN 
is continuous when L'(Q; co W) is endowed with the weak-* topology, 

E(q, u) = lim E(q; un) = w. 
nf - 0 

Finally Ei(q; ) > E(yi, qi; Un) for each n = 1,2,... imply Ei(q; u)> 
Ei (yi, q-i; u) for all y1i E Si and each i = 1,..., N. Hence (q, u) is admissible 
with respect to co W., as required. Q.E.D. 

Fudenberg and Levine (1983) showed that for a substantial class of dynamic 
games including discounted repeated games, supergame perfect equilibria are 
limits of c-perfect equilibria of T-period truncations of the supergame, as c -? 0 
and T -m oo. Although their result is not presentecf in terms of value iteration, 
our algorithm is closely related to their limit theorem. Instead of increasing the 
equilibria of the T-period game GT(8) by computing c-equilibria, augment the 
equilibrium value set by supplementing period T payoffs with reward functions 
drawn from any set W0 of the kind specified in Theorem 5. If T = 1, for 
example, the resulting value set is B(WO). Hence, for T = 2, the set of supple- 
mented values is W2 = B(B(Wo)), and for arbitrary T one has the supplemented 
value set WT. Thus, as T -X oo, this procedure approximates the value set V of 
G'(8), since limnT -WT = V. 

6. COMPARATIVE STATICS: MONOTONICITY IN 8 

Intuition suggests that the equilibrium set should in some sense increase with 
the discount factor. Plausibly "cooperation" becomes easier as players become 
more patient and thereby increasingly willing to forego immediate gains for a 
possible future reward. One is led to conjecture a monotonic relationship 
between equilibrium outcomes and the number 8, where outcomes are thought 
of as average discounted payoffs. Despite the complexity and generality of the 
model, this conjecture can be proved correct without invoking any assumptions 
beyond those of Theorem 3. When the discount factor increases from 81 to 82, 
and payoffs are appropriately normalized, the original set of equilibrium values 
is contained in the new set of values associated with 82. The proof is short and 
simple and illustrates the power of self-generation as an analytical tool. 

We now write V(a), B(WI 8), and E(q; u I8) to make explicit the dependence 
on the particular value of the discount factor. 

THEOREM 6 (Monotonicity in Discount Factor): Let 81 and 82 be two discount 
factors such that 0 < 81 < 82 < 1. Then [(1 - 81)/811]V(81) C [(1 - 82)/821V(82) 

PROOF: As may be easily checked, we need to show (1 + k)V(81)c K32), 
where k:= (82 - 81)/(81(1 - 82)). For any w E V(81) let (q, u) be an admissible 
pair with respect to V(81) such that w = E(q; u I81). Define the function u + on 
Q2 by u+(p) = u(p) + kw. Then it may be verified that (q, u+) is an admissible 
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pair with respect to {kw} + V(81), and E(q; u+ 182) = (1 + k)w. Hence, (1 + k)w 
E B({kw} + V(81)1 82) for all w E V(81). Let A := 1/(1 + k); clearly A E (0, 1). 
Since for any z E RN, z + kw = A(1 + k)z + (I-A)(1 + k)w, we have {kw} + 
VKa ) c co(1 + k)VO 1). Therefore, (1 + k)V(G1) cB(co(1 + k)VG31)152). Finally, 
by the corollary of Theorem 3 and self-generation, (1 + k)V(51) c VG32). Q.E.D. 

7. OPTIMIZATION AND THE NECESSITY OF BANG-BANG REWARD FUNCTIONS 

This section explores the idea that efficient incentive schemes must necessar- 
ily have a bang-bang structure. Consider WCRN compact and some qe S 

which is the first element of an admissible pair yielding an extremal payoff in 
the set B(W). An implication of Theorem 3 is that among the reward functions 
which support q and maximize a linear function of player payoffs, at least one 
has the bang-bang property. We show here that under certain conditions all 
optimal solutions must be bang-bang. The proof takes a dual approach to the 
optimization problem which highlights the way in which considerations of 
efficiency lead to the use of rewards that are extreme points of V (or, more 
generally, of the compact set W from which rewards are to be drawn). 

Establishing the necessity of bang-bang solutions requires several conditions 
not needed for the sufficiency result. Precise statements of the conditions 
involve the following definitions. The four conditions invoked in the statement 
of Theorem 7 are discussed immediately following the proof. 

For any W C RN, let 1(W) denote the set of all player indices i for which the 
projection of W onto the ith coordinate space is not a singleton. That is, 

J( W) := { i I wi # w/ for some w, w' E W}. 

A pair (q, u) is admissible w.r.t. W only if for each i 0 1(W), HIi(q) > HIi(y, q_i) 
for all yy E Si, since Ei(q; u) - Ei(y, q-i; u) = Hi(q) - H1i(y, qi) for all yy E Si. 

DEFINITION: q E S satisfies the Slater constraint qualification with respect to 
W if there exists u such that (q, u) is admissible w.r.t. co W and 

Ei(q; u) > Ei(y, q_i; u) for all yE Si \{q } and i eJ(W). 

Let AcRN. Denote "(a,,x-y>=0 for all x,yeA" by a lA, and "not 
a iA" by a LA. We refer to a IA as "a is perpendicular to A." 

DEFINITION: For all l3 E R N, /3 0, and W c RN compact, let F(/3, W):= 
argmin{<,l3, w> Iw E W} and F(W) := {F(/3, W)I/E3 ERN, ,3 # 0 and F(/3, W) ? 
ext W}. 

If W were convex, F(/3, W) would be a face of W; F(W) is comprised of all 
those "pseudo-faces" of W that contain nonextreme points of W. Notice that 
every pseudo-face is a subset of the boundary of W. 

A rough intuitive explanation of Theorem 7 is as follows. Variations in 
continuation payoffs are needed to create incentives for players to choose the 
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implicitly agreed upon actions. Some regions of the signal space f2 are particu- 
larly useful for the provision of these incentives. In a Green-Porter model, very 
low prices might be much less likely to occur if all players conform than if one 
deviates; this favorable likelihood ratio identifies a good region in which to 
"throw away surplus." In a less symmetric model, some subset of Q might have 
higher probability if player 1 were to cheat than if 2 deviated. Here, perhaps 
one should transfer surplus from 1 to 2. Moreover, because of the linearity of 
the relevant optimization problems, there are no "decreasing returns" in using 
such areas intensively (making large transfers, or large movements in a particu- 
lar direction). Only the size of the continuation value set W limits the intensity 
of the exploitation of very informative regions of Q. Optimization consequently 
tends to push the continuation rewards to the extreme points of W. One of the 
cases in which it need not do so is discussed before the statement of Lemma 5. 

THEOREM 7: Let W c RN be compact, and consider 

(q, i) E argmin{ (ca, E(q; u) > I (q, u) is admissible w.r.t. W) 

for some aE c RN, a # 0. Suppose that (i) g(p; q) is analytic in p, (ii) q- satisfies 
the Slater constraint qualification with respect to W, (iii) F(W) is a countable 
collection of sets,6 and (iv) a L Ffor all FcE F(W). Then u satisfies the bang-bang 
property. 

PROOF: Let a, q, and ui be as above. Then, u is a solution to: 

(P1) min(a, u(p)g(p; i)dP) subject to uEc L(f2; co W), 

Ei(y, -i;u) <Ei(iy;u) for each yeS iand iEJ(W), 

where we have used Theorem 3 to replace W by co W. The remark following 
the definition of 1(W) makes it clear that we may ignore incentive constraints 
for i - 1(W). We show that any solution to (P1) that has range W must have the 
bang-bang property. The Lagrangean associated with (P1) is 

+o00 if u - L(Q; co W), 

J (u(p), ((p, A) > dp + b(A) if u E L(f2; co W) 
L(u,A)= Q andA>0, 

- oo if u EL(2; co W) 
and A -0, 

6 Not all sets have this property. Consider a cylinder in R3. There are an uncountable number of 
one-dimensional faces parallel to the axis of the cylinder. However, every convex set in R2 has at 
most a countable number of faces of positive dimension. Otherwise, either its upper or lower 
boundary would include uncountably many faces. Projecting these onto the horizontal axis would 
give an uncountable number of disjoint, nondegenerate intervals, a contradiction. 
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where A is the vector of Lagrange multipliers {A ia I y E Si, i E J(W)}, 

{i(p,A) (aic- E Ai,)g(p;4) + E Ai,g(p;y,4-i) 
yesi yes, 

and 

b(A) = E EAiy[ii(Y, -i) - ii(q)] 
iel(W) yeSi 

Note for later use that the index function ji(p, A) is analytic in p, and 

|f(p,A) dp=a. 

Also, by (ii), optimal Lagrange multipliers A > 0 exist (see Rockafellar (1974)) 
and any solution to (P1) also solves 

(P2) min L(u, A) subject to u E L(2; co W). 

It is clear that any optimal solution u of (P2) which has range W must be such 
that u(p) E arg min{( (p, A), w > I w E W} = F( (p, A), W) a.e. p E Q2. That is, 
a.e. p, u(p) lies in a "pseudo-face" of W and to complete the proof it suffices to 
show that there does not exist a subset of signals of positive measure for which 
u(p) lies in pseudo faces which are not composed entirely of extreme points of 
W. Suppose there does exist QD cQ such that .u(f2I) > 0 (,u denotes the 
Lebesgue measure) and F(f(p, A), W) e F(W) for all p eQ f2. By assumption 
(iii), F(W) is a countable collection. Hence, there exist no cQ fI and E eRN 
such that .u(fo) > 0 and F(f(p, A), W) = F(77, W) E F(W) for all p E Do, 
By assumption, (f(p, A), x -y > = 0 for all p E f20 and any x, y E F(-q, W). 
Since ( (p, A), x-y> is analytic in p and jL(fo) > 0, (f(p, A), x-y>= O 
for all pef2. Therefore, for each x,yeF(-q,W), 0= Jf((p,A),x-y>dp= 
( J e(p, A) dp, x - y> = (a, x - y>, where the last equality was established 
above. Hence, a I F(-q, W), contradicting (iv). Q.E.D. 

Condition (i) of Theorem 7 is a technical assumption that facilitates the dual 
line of proof we pursue. It is used to guarantee that the function ( (p, A), x -y> 
appearing near the end of the proof is analytic. This immediately implies that 
the function either has isolated zeroes, or is zero everywhere. Conditions (ii), 
(iii), and (iv) are stated in terms of restrictions on endogenous entities. Although 
ideally one would like to make assumptions on primitives (see the Corollary 
following Lemma 6), we think the theorem is broadly applicable because the 
conditions will arguably "often" be satisfied. When the set W is taken to be the 
equilibrium value set V, the Slater constraint qualification (condition (ii)) and 
condition (iv) hold generically in senses made precise by Lemmas 5 and 6. We 
do not have an analogous result for condition (iii), but as footnote 5 explains, 
(iii) is satisfied in all two-person games, or for any value set that is of no more 
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than two dimensions. We remark that Theorem 7 does not apply to games with 
finite signal spaces. 

Condition (iv) serves to exclude exceptional cases such as the following. 
Suppose that for signals in some set DO of positive measure, a reward function 
u supporting q optimally with respect to a takes on values in some face F of W. 
(For simplicity, the reader might think of the extreme case where W consists of 
a single face.) Consider another function u' supporting q, which on f2D also 
takes on values in F, and coincides with u elsewhere. Such a u' will typically 
exist, as there will be many ways to satisfy the incentive constraints. If a 
happens to be perpendicular to F, u' yields the same value of the objective 
function as does u, and hence is a distinct solution to the optimization problem. 
Any nondegenerate convex combination u of u and u' is also an optimal 
solution. Of course, u fails to have the bang-bang property. 

To understand the precise sense in which the Slater constraint qualification is 
satisfied generically, consider the following notation. For each q E S, let 8(q):= 
inf{8 q is supportable by V(8)} (if q cannot be supported by V(8) for any 
a Ec(0, 1), let 8(q):= 1). The independence condition used in Lemma 5 is 
analogous to those introduced by Fudenberg, Levine, and Maskin (1988). 

LEMMA 5: Let q E S. Assume that the collection {g( ; q)} U {g( ; y, q- )Iy E 

Si\ {qJ}, i = 1, . . ., N} is linearly independent. Then q satisfies the Slater constraint 
qualification with respect to V(a) for any 8 E (8(q), 1). 

PROOF: See the Appendix. 

Condition (iv) is unrestrictive in the following sense: the set of directions for 
which it is violated has measure 0 in RN. 

LEMMA 6: Let WcR N be compact, and assume F(W) is a countable collec- 
tion. Then the set A {,13 E RNI 3 1 F for some F E F(W)) is of first category and 
has measure 0. 

PROOF: See the Appendix. 

Suppose that players are cooperating as efficiently as possible, given the 
incentive constraints they face. Then for some welfare weights a E RN, they are 
playing an S.E. o that minimizes (a, v(y)> over all S.E.'s y. Correspondingly, 
the pair (q, u), where q = o(1) and u(p) = v(alp) for all p e U, solves the 
minimization problem appearing in the statement of Theorem 7 (with V= W). 
Lemma 6 indicates that, assuming that V satisfies (iii), a will generically satisfy 
(iv) of Theorem 7; then by Theorem 7, v(orlp) is an extreme point of V for 
almost all p E Q. In order to extend this result on the necessity of bang-bang 
continuation reward functions beyond the first period, one needs to know that 
the continuation value v(ol) at the end of period 1 is an extreme point that can 
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be supported by some welfare weights /E E RN satisfying (iv), relative to V. But 
for almost all p, {(p, A) is such a vector of weights (see the proof of Theorem 
7). Thus, with probability 1 the continuation values of or at the end of periods 1 
and 2 (and, by induction, any period t) must be extreme points of V. 

One sees in the proof of Theorem 7 that the reward function that supports a 
given q E S optimally for some welfare weights is essentially unique. Another 
implication of the necessity result is that in the analysis of strongly symmetric 
equilibria of symmetric repeated games, the maximum of the value set will be 
strictly lowered if punishment severity is reduced. In a finite action Green-Porter 
model, for example, losses will result from restricting attention to punishments 
no worse than "Cournot-Nash reversion." Even if this restriction is imposed 
(perhaps for considerations of simplicity), it is best to use punishments involving 
permanent reversion, rather than temporary reversion followed by resumed 
cooperation (take the set W in Theorem 7 to be the correspondingly restricted 
equilibrium value set). If in a particular example one requires the criterion for 
punishment to be a "tail test" when this is in fact inappropriate, a moderate 
punishment value may be constrained optimal; this explains the interior solu- 
tions for reversion time reported for certain cases in Porter (1983). Notice that 
in models having value sets of higher dimension, payoffs can be extremal 
without being in any sense severe. 

Finally, observe that an immediate implication of Theorem 7, footnote 5, and 
Lemmas 5 and 6 is the following result expressed in terms of primitives. 

COROLLARY: In a two player game, let q E S and suppose 8 0 8(q), g(; q) is 
analytic, and that {g(; q)} U {gQ-; y, q_j)Iy E Si\{qi}, i = 1, 2} is linearly indepen- 
dent. Then for almost all aE ERN, if u E argmin{(a, E(q, u)> I(q, u) is admissible 
w.r.t. V(6)}, then u has the bang-bang property. 

8. CONCLUSION 

Our purpose in this paper has been to contribute to the foundations of a 
systematic theory of repeated discounted games with imperfect monitoring. The 
results suggest that ultimately a fairly tractable and satisfying theory will 
emerge. Already available for a broad class of these games are powerful 
characterizations of the equilibrium value set, a variety of results on the nature 
of implicit reward functions generated by extremal equilibria, and comparative 
static and computational theorems. In addition, the limiting case as a ap- 
proaches 1 is particularly well understood as a result of the folk theorem 
literature mentioned in the Introduction. While some of our theorems, notably 
the bang-bang principle, specifically address the problems caused by imperfect 
monitoring, those in Section 3 (and, with appropriate qualifications, Sections 5 
and 6) apply also to games with perfect monitoring. Not yet covered are hybrid 
cases falling between models with perfect monitoring and those having a 
publicly observed random signal with constant support. Also awaiting study are 



DISCOUNTED REPEATED GAMES 1059 

mixed strategy equilibria of repeated discounted games. These problems de- 
serve much attention. 
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APPENDIX 

Measurability of the Strategies 5" 

Lemma C below states that the functions Q and U can be chosen to satisfy certain measurability 
properties. These imply that the strategies 5", constructed in the proof of the self-generation 
theorem, are indeed measurable functions. It is not sufficient to demonstrate the Lebesgue 
measurability of Q and U, because 5" is comprised of compositions of these functions, and Lebesgue 
measurability is not preserved under composition. We work instead with universal measurability, 
which has the required composition property. 

Let q denote the Borel o-algebra of RK, and for each Borel probability measure A, let q(A) be 
the completion of q with respect to A. q(A) is a o-algebra which contains q. The universal 
o-algebra i is n (,u), where the intersection is over all Borel probability measures on RK. We 
remark that q is contained in @<, which in turn is contained in the o-algebra of Lebesgue 
measurable sets. 

Function f: RK-3 RL is universally measurable if for every Borel set Y c RL, f 1(y) E l<. Every 
universally measurable function is Lebesgue measurable. The reader may find it helpful to consult 
the excellent treatment of this material in Bertsekas and Shreve (1978). 

Define h: 2 -32 R by h(p) = maxq E s g(p; q) for each p E 12, and for any Lebesgue measurable 
function u: 2 -l2 RN, let 

HUIIIh f 1Iu(p)j1h(p) dp. 

We denote by L1(f2; RN; h) (L1 for short) the set of equivalence classes of Lebesgue measurable 
functions u: l2 -3 RN such that IIuIIh < + oo, and endow it with the norm topology induced by I I Ih- 
L1 is a separable Banach space, and for any bounded set WcRN LE(f2; W) can be viewed as a 
subset of L1. 

For each u E L1, p Ec12, and n E N, let 

a 

R(p, n):= 2 n X [Pk - 1/n, Pk + 1/n] (recall n2 c Ra), 
k=1 

Un( p) = (2n )a u(t) dt, 
R(p, n) 

and u*(p):= lim u'(p) if the limit exists, and u*(p) = 0 otherwise. If v(E) = IQ E U(P) dp, u* is 
almost everywhere the derivative of v with respect to the Lebesgue measure and coincides with u 
almost everywhere. 

For a given bounded Borel measurable set WC RN and for any q E S, let 

Wq:= {E(q; u)l (q, u) is admissible w.r.t. W}, 
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and for each p E n and w E Wq, let 

2q(P, w) {u*(p)l (q, u) is admissible w.r.t. W and E(q; u) = 

Lemmas A and B below prove that Wq and graph(4 ) are analytic sets. The set of continuous real 
functions on RN, vanishing at infinity, is denoted by C7O(RN). In the proof of Lemma A we use the 
following result: the smallest class of real functions on RN containing CO(RN) and closed under 
bounded pointwise limits7 is the class of bounded Borel functions. 

LEMMA A: For any Borel set W5RN F:= {u eLlIu(p) E W a.e. p e1f} is a Borel set of 
L1PM; RN; h). 

PROOF: The function z -< (z, h) = z(p)h(p) dp from Ll(f2; R; h) into R is continuous. 
Below we show that for each bounded Borel function f: RN -3 R, the function u -tf o u from 
L1('; RN; h) into L1('; R; h) is Borel measurable. Therefore, the function 6: L1(f; RN; h) -3 R 
defined by 0(u):= (f o u, h) is Borel measurable for any bounded Borel function f. In particular, let 
f= lw; then 

F=0-1 f h(p)dp 

and F is a Borel set as the preimage of a closed set. 
Clearly, if f E CO(RN), the function u f o u from L1C(2; RN; h) into L1(f2; R; h) is continuous 

(and hence Borel measurable). Suppose that {ffn is a sequence of bounded Borel functions such that 
u -3fn o u is Borel measurable, supn ,Ifn(x)I < +0, and f(x) = limn fn(x) exists for each x. Then 
f o u = lim,(fn o u), and u -)f o u is Borel as the limit of Borel measurable functions. Therefore, 
u f o u is Borel measurable for any bounded Borel function f. Q.E.D. 

LEMMA B: For any bounded Borel set WcRN, and for any q e S, Wq is an analytic set in R and 
graph(@q) is an analytic set in n x RN x RN. 

PROOF: Let 

G ={(p, w, w, u) E n x RN x RN x L' I (q, u) is admissible w.r.t. W, wP = E(q; u), 

and w = u*(p)}. 

We will show that G is a Borel set. Since W and graph(Oq) are the projections of G into RN and 
n x RN x RN, respectively, they are analytic sets. 

To show that G is a Borel set, we note that G = G1 nl G2 nl G3, where 

Gl:= {(p, w', w, u)lw' = E(q; u) and for each i and yi E Si, wi' > Ei(yi, q-i; u)}, 

G2:= {(p, W,w, u)ju(p) E W almost everywhere p E Q}, 

G3 = {(p, w, w, u)1 w =u*(p)} 

Since for each y E S, E(,y; ): L' RN is continuous, G1 is a closed set. Lemma A implies that G2 
is a Borel set. Finally, let G4 = {(p, w, w, u) I lim un(p) exists}. Then 

[(p, w, w, u) E G3 G4] iff [Vmr eN 3r E N Vn > r, Iw-uUn(p)l < 1/m]. 

Since the set of (p, w', w, u) satisfying Iw - un(p)l <1/M is open, G3 n G4 is a Borel set, being 
formed by countable unions and intersections of Borel sets. Also, (p, w, w, u) E G4 if {un(p)} is a 
Cauchy sequence, and a similar argument shows that G4 (and consequently G4) is Borel; therefore, 
G3 is a Borel set. Q.E.D. 

Since graph(Pq) is an analytic set, the von Neumann selection, theorem implies that the 
multifunction 4Pq admits a universally measurable selection O)q: Q2 X Wq -* RN (see Bertsekas and 

7By this we mean that if {fn} is a sequence in the class such that supn, Ifn(x)I < +oo and 
f(x) = lim fn(x) exists for each x, then f is also in the class. 
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Shreve (1978)). Suppose S = {q(1),.. ., q(r)}, and let Wq(l) = Wq(1) and 

k-1 

Wq(k) = Wq(k)\ U Wq(l), k = 2,. r. 
1=1 

Each Wq is a universally measurable set and {Wq} is a partition of E(W). Fix q* ES. Define Q: 
RN *S and 4: QXRN *RN by 

f q for each w' E Wq and q E S, 
Q( ):= q* for each w'B(W), 

Oq(P,w) foreachpef2,4E'eWqandqES, 

( ) \ 0 for each p E Q, if w' e B(W). 

Finally, for each p E Q and w E RN let U(w'Xp):= 4(p, w'); for evely w' E RN, U(w') ELl. These 
observations are summarized in the next Lemma. 

LEMMA C: For any bounded Borel set W c RN, B(W) is a bounded universally measurable set of 
RN, and there exists a pair of functions Q: RN * S and U: RN -* L' such that (i) for each 
w E B(w), (Q(W'), U(W')) is admissible w.r.t. W and E(Q(W'); UW')) = W'; and (ii) the functions Q and 
X, where 4: Q x RN - RN is defined by 0(p, w') = U(wX p), are universally measurable. 

The composition of universally measurable functions is universally measurable. Therefore, for 
example, for each w' Ee g(W), the function 6(w')(3)(p1, P2) = Q(U(U( w)(p1))(p2)) = 

Q(K(P2, 4O(Pl, W'))) is universally measurable in (P1, P2). Similarly, each 6(W'Xt), t > 2, is universally 
measurable and (a fortiori) Lebesgue measurable. Consequently, each v(w) defined in the proof of 
self-generation is indeed a strategy profile. 

Proof of Lemma 4 

LEMMA 4: Let {Wn} be a decreasing sequence of compact sets in RN. Then co n Wn = n co Wn. 

PROOF: Clearly nl W c nl co W, and since nl co Wn is convex, co nl WJ c nl co WJ. Conversely, we 
argue that co n W_Dnco Wn. Let x E n co Wn. By Caratheodory's Theorem, for each n there exist 
An E RN+ 1 and (wjz. . ) E WN+ such that An >0, Eij An = 1, and x = EiN,j Aqw[n. Since 
{An} is bounded, {(w .,wN+ d)} cW1N+, and W1 is compact, we can assume without loss of 
generality that An -* A and (Wnz. W+1) . (W.. WN+ 1), where A > 0 and EiN+1 Ai = 1. Since 

(Wm,...Wj+1) E= WN+l for each m > n, and Wn is compact, (w1,. wN+ i) E WN+l for all n. 
Thus (w1,..., wN+ 1) E [ n W]N+ and by continuity E= 1 A,wi =x. Therefore xE con JWn. Q.E.D. 

Genericity Results for Section 7 

We show that under the following assumption on the density functions g, each q E S satisfies the 
Slater constraint qualification with respect to V(a) for all a > 3(q). 

(LI) The collection {g(; q)} U {g(; y, q_-)Ily E Si \{qi}, i = 1.., N} is linearly independent.8 
For each q E S, a E (0, 1), and partition {Ik}/= 1 of 12, let S,* = Si \ {qi}, and 

gk = g(p; q) dp, k =1. K; 

gzk f g(p; y, q) dp, k= 1. K;-,y eS?';i eJ(V(6)); y 
k 

k= k =1. K; y E S?'; i E J(V(8)). 

8 This assumption will not be satisfied in a symmetric model at a symmetric q c S. The results 
below may be easily modified to deal with this case. 
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Then define the matrices A':= [a',k]Y,yk for i cJ(V(A)), and 

-Al 

A:= where J(V(8)) = {i.... j}. 

LEMMA D: For each q e S and 8 e (0, 1), there exists a partition {Ik}kL 1 of n such that Ik is 
measurable for each k = 1. K, and the corresponding matrix A (as defined above) is full (column) 
rank. 

This technical result follows directly from (LI), and we omit its proof. 

LEMMA 5: Each q e S satisfies the Slater constraint qualification with respect to V(a) for any 
8 E (a(q), 1). 

PROOF: Let q e S be such that 8(q) < 1, and let 8 e (8(q), 1). Choose e?, ell ... d e V(8) such 
that min, el 0 max, el for all i cJ(V(A)), and define xl :=el - eo, = 1. d. Let 8' e (a(q), 8). By 
Theorem 6 (Monotonicity), q is supportable by V(W'), and 

G(1 -8) V(8') C co V(a). 
8'(1 -8) 

Let Z be the subspace spanned by {x%}= 1 and let Bz denote the unit ball in Z. It follows that there 
exist t e RN and E > 0 such that 

(*) {t) + V(8') + EBz 5 co V(a). 

Let {Ik}kLl and {A'}i jJ(v(r)) be as defined in Lemma D. Suppose that J(V(8)){ =(.j}, and 
consider the system of linear equations 

[ xIA' x7A' ... fA' A'l [i 

'XAJ x}2Ai ... X dA} j kd1 

with unknowns Al e RK, 1 1, . . ., d. Since by construction, for each i e J(V(8)) there is 1 such that 
x# 0, the previous lemma implies that the matrix above is full rank, and so the system has a 
solution A. Let u' be such that (q, u') is admissible with respect to V(W'). Define 

d 

u(p):=t+u'(p)+r -E kx when pEIk,kl. K. 
1=1 

By (*), for small enough q > 0, u(p) e co V(a) for all p e Q2. Furthermore, since for each y E Si* 
and i cJ(V()), 

Ei(q; u 18) - E(y, qq-i; U 1) = [E(q; u'1') - Ei(y, q-i; u'18')] 

K d 

+ a 
' 
,k EAk Xi' 

k =1 1=1 

>8 7 >0, 

and for each y e S,* and i e J(V(A)), 

Ei(q; u 8) -Ei(y, q -i;u) = a [Ei(q; u'13') - Ei(y, q j; u'l 8)] > 0, 

we are done. Q.E.D. 

LEMMA 6: Let W c RN be compact, and assume F(W) is a countable collection. Then the set 
A = {,l3 E RN ,l3 1 F for some F E F(W)} is of first category and has measure 0. 
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PROOF: For each F e F(W), define F1 {f e RN 1/3 1 F}. Since F' is a subspace of RN of 
dimension at most N - 1, F ' is nowhere dense and has measure 0. Since F(W) is countable, it 
follows that A = U F E F(w)F 1 is of first category and has measure 0. Q.E.D. 
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