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GAMES WITH INCOMPLETE INFORMATION PLAYED
BY "BAYESIAN" PLAYERS, I-III

Part I. The Basic Model *f

JOHN C HARSANYI

University of California, Berkeley

The paper develops a new theory for the analysis of games with incomplete
information where the players are uncertain about some important parameters
of the game situation, such as the payoff functions, the strategies available to
various players, the information other players have about the game, etc How-
ever, each player has a subjective probability distribution over the alternative
possibibties

In most of the paper it is assumed that these probability distributions enter-
tained by the different players are mutually "consistent", in the sense that they
can be regarded as conditional probability distributions derived from a certain
"basic probability distribution" over the parameters unknown to the various
players But later the theory is extended also to cases where the different
players' subjective probability distributions fail to satisfy this consistency
assumption

In cases where the consistencj assumption holds, the original game can be
replaced by a game where nature first conducts a lottery in accordance with
the basic probablity distribution, and the outcome of this lottery will decide
Tvhich particular subgame will be played, l e , what the actual values of the rele-
vant parameters will be in the game Yet, each player will receive only partial
information about the outcome of tbe lottery, and about the values of these
parameters However, every player will know the "basic probability distribu-
tion" govermng the lottery Thus, technically, the resulting game will be a
game with complete information It is called the Bayes-equivalent of the
original game Part I of the paper describes the basic model and discusses vari-
ous intuitive interpretations for the latter Part II shows that the Nash equi-
librium points of the Bayes-equivalent game yield "Bayesian equilibrium
points" for the original game Finally, Part III considers the main properties of
the "basic probablity distribution"
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Glossary of Mathematical Notation
/-game A game with incomplete information
C-game A game with complete information
G The 7-game originally given to us
G* The Bayesian game equivalent to G (G* is a C-game )
G** The Selten game equivalent to G and to G* (G** is hkewise a C-game )
3fl(G), 3l(G*), 3l(G**) The normal form of G, G* and G** respectively
S(G), S(G*) The semi-normal form of G and G* respectively
s. Some strategy (pure or mixed) of player i, with t = 1, , n
Si = (s,} Player t's strategy space
c, Player I's attribute vector (or mformation vector)
C, = (c,j The range space of vector c,
c = ici , ,Cn) The vector obtamed by combimng the n vectors Ci, , c»

into one vector
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C = jc) The range space of vector c
c' = (ci, , c,_] , c,+i, , Cn) The vector obtamed froTi vector c by

omitting subvector c,
C = {c'} The range space of vector c'
x, Player I's payoff (expressed in utihty units)
X, = U,isi, , Sn) = V,isi, , Sn , Cl, , Cn) Player I's payoff func-

tion
P,(ci, , c,_i, c,+i, , Cn) = Pric') = R,ic' I c,) The subjective prob-

ability distribution entertained bj' player i
R* = R ici, , Cn) = R ic) The basic probability distribution of the

game
7?, = R ici, , c,_i, c+i , , Cn\ Ci) = R*ic' \ c,) The conditional

probability distribution obtained from R* for a given value of vector c,
k. The number of different values that player I's attribute vector c, can take

m the game (in cases where this number is finite)
K = 2Zr=i kt The number of players m the Selten game G** (when this

number is finite)
s* A normalized strategy of player i (It is a function from the range space

C, of player I's attribute vector c,, to his strategj' space ;S. )

S* = {s,*j The set of all normalised strategies s,* available to player i
6 The expected-value operator
S(x.) = Wiisx*, , Sn*) Player i's normalized payoff function, stating his

unconditional payoff expectation
£(a;. I c.) = Z,(si*, , s»* | c.) Player I's semi-normalized payoff function,

stating his conditional payoff expectation for a given value of his attribute
vector c.

D A cylmder set, defined by the condition D = Di X X D^ , v. here
Dl £ Cl » ,DnBCn

GiD) For a given decomposable game G or G*, GiD) denotes the component
game played in all cases where the vector c lies m cylinder D D is called the
definmg cylinder of the component game

Special Notation in Certain Sections

In section 3 iPart I)

(hr denotes a vector consisting of those parameters of player I's payoff function
U, which (m player j ' s opinion) are unknown to all n players

fflt, denotes a vector consisting of those parameters of the function U, which (in
fs opinion) are unknown to some of the players but are known to player k

«o = (ooi, , aan) i& a vector summarizing all information that (m;'s opinion)
none of the players have about the functions U\ , , Un

fli = (a*!, , Oin) IS a vector summarizmg all information that (m j ' s opinion)
player k has about the functions JJi, , Un , except for the information that
(m_7's opmion) all n players have about these functions

6. IS a vector consisting of all those parameters of player t's subjective probabihty
distribution P , -which (in player fs opmion) are unknown to some or all of
the players k 9^ i
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In terms of these notations, player I's information vector (or attribute vector)
c, can be defined as

c. = (o, , b,)
V,* denotes player I's payoff function before vector oo has been integrated out

After elimination of vector ao the symbol F , is used to denote player I's payoff
function

In sections 9-10 iPart II)

a' and a' denote the two possible values of player I's attribute vector ci
?/ and b^ denote the two possible values of player 2's attnbute vector o,
ri-r, = R*ici = a'' and C2 = 6") denotes the probabihty mass function correspond-

ing to the basic probability distribution R*
-\- r,n) and q,^ = r,Jir^^ -f r^m) denote the correspondmg

conditional probability mass functions
y^ and y^ denote player I's two pure strategies
z^ and z^ denote player 2'fe two pure strategies
2/"' = iy"> y) denotes a normabzed pure strategy for player 1, requirng the use

of strategy y" li Ci = o\ and requiring the use of strategy j / ' if Ci = a'
z"' = (z", z") denotes a normahzed pure strategy for player 2, requiring the use

of strategy z" if C2 = 6\ and requinng the use of strategy z" if C2 = b'

In section 11 iPait II)

a^ and ô  denote the two possible values that either player's attnbute vector c,
can take

r,,n = R*ici = a"- and d = a")
Pirn and q,m have the same meaning as in sections 9-10
y* denotes player t's payoff demand
y, denotes player I's gross payoff
X, denotes player t's net payoff
X* denotes player I's net payoff in the case (ci = a , C2 = o )
xt* denotes player ?'s net payoff in the case (ci = a^, oi = a)

In section IS iPart III)

a, P, y, S denote specific values of vector c
a. , |S., 7 . , 5, denote specific values of vector c,
«', i8'i y\ ^' denote specific values of vector c', etc
'".(T' I 7.) = fi.(c' = 7* I c. = 7i) denotes the probabJity mass function cor-

respondmg to player I's subjective probabihty distnbution R, (when E, is a
discrete distribution)

r*iy) = R*ic = y) denotes the probabihty mass function correspondmg to the
basic piobability distribution R* (when R* is a discrete distribution)

(R = (r*j denotes the set of all admissible probabihty mass functions r
E denotes a similanty class, l e , a set of nonnuU pomts c = a, c = fi, similar

to one another (m the sense defined in Section 13)
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In section 16 iPart III)

iS'"' denotes the basic probabihty distribution R* as assessed by player lii = 1,
,n)

R*' denotes a given player's (player j ' s ) revised estimate of the basic probabihty
distribution R*

c', = (c,, di) denotes player fs revised defimtion of player I's attnbute vector
c, (It IS m general a larger vector than the vector c, ongmally assumed by
player J )

R'I denotes player j ' s revised estimate of player i's subjective probabihty distribu-
tion Ri

1.

FoUowmg von Neumann and IMorgenstern [7, p 30], we distinguish between
games with complete mformation, to be sometimes briefly called C-games m this
paper, and games with incomplete information, to be called /-games The latter
differ from the fonner in the fact that some or all of the players lack full informa-
tion about the "rules" of the game, or equivalently about its normal form (or
about its extensive form) For example, they may lack full mformation about
other players' or even their own payoff functions, about the physical facihties
and strategies available to other players or even to themselves, about the amount
of information the other players have about various aspects of the game Situa-
tion, etc

In our own view it has been a major analytical deficiency of existing game
theory that it has been almost completely restricted to C-games, in spite of the
fact that in many real-hfe economic, pohtical, mihtary, and other social situa-
tions the participants often lack full information about some important aspects
of the "game" they are playmg ^

It seems to me that the basic reason why the theory of games with mcomplete
information has made so httle progress so far hes in the fact that these games
give rise, or at least appear to give nse, to an infinite regress m reciprocal expec-
tations on the part of the players, [3, pp 30-32] For example, let us consider any
two-person game m which the players do not know each other's payoff functions
(To simplify our discussion I shall assume that each player knows his own payoff
function If we made the opposite assumption, then we would have to introduce
even more comphcated sequences of reciprocal expectations )

In such a game player I's strategy choice will depend on what he expects (or
beheves) to be player 2's payoff function U2, as the natuie of the latter will be
an important detemunant of player 2's behavior m the game This expectation

' The distinction between games with complete and incomplete information (between C-
games and /-games) must not be confused with that between games with perfect and imper-
fect information By common terminological convention, the first distinction always refers
to the amount of information the players have about the rules of the game, while the second
refers to the amount of information they have about the other players' and their own previ-
ous mcves (and about previous chance moves) Unlike games with incomplete information,
those with imperfect information have been extensively discussed in the literature
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about U2 may be called player I's first-order expectation But his strategy choice
will also depend on what he expects to be player 2's first-order expectation about
his own (player I's) payoff fimction Ui This may be called player I's second-
order expectation, as it is an expectation concemmg a first-order expectation
Indeed, player I's strategy choice wiU also depend on what he expects to be
player 2's second-order expectation—that is, on what player 1 thinks that player
2 thinks that player 1 thmks about player 2's payoff function U2 This we may
call player I's third-order expectation—and so on ad infinitum Likewise, player
2's strategy choice will depend on an mfimte sequence consistmg of his first-
order, second-order, third-order, etc , expectations concernmg the payoff func-
tions f/i and U2 We shall call any model of this kmd a sequential-expectations
model for games with incomplete information

If we follow the Bayesian approach and represent the players' expectations or
beliefs by subjective probablity distributions, then player I's first-order expecta-
tion wiU have the nature of a subjective probabhty distribution P/( U2) over all
alternative payoff functions U^ that player 2 may possibly have Likewase, player
2's first-order expectation will be a subjective probabhty distribution P2^iUi)
over all alternative payoff functions Ui that player 1 may possibly have On the
other hand, player I's second-order expectation will be a subjective probability
distribution PiiP2^) over all alternative first-order subjective probabLhty distri-
butions P2' that player 2 may possibly choose, etc More generally, the fcth-order
expectation (fc > 1) of either player i will be a subjective probabihty distribution
P.'(Pj~') over all alternative (A; — l)th-order subjective probability distribu-
tions Pj~' that the other player j may possibly entertam '

In the case of n-person /-games the situation is, of course, even more compli-
cated Even if we take the simpler case m which the players know at least their
own payoff functions, each player m general wiU have to form expectations about
the payoff functions of the other (71 — 1) players, which means formmg (n — 1)
different first-order expectations He will also have to form expectations about
the (n — 1) first-order expectations entertamed by each of the other (n — 1)
players, which means forming (n — 1)̂  second-order expectations, etc

The purjwse of this paper is to suggest an alternative approach to the analysis
of games with mcomplete mformation This approach will be based on constnict-
mg, for any given /-game G, some C-game G* (or possibly several different C-
games G*) game-theoretically equivalent to G By this means we shall reduce the
analysis of /-games to the analysis of certam C-games G*, so that the problem of

• Probability distributions over some space of payoff functions or of probabihty distribu-
tions, and more generally probability distributions over function spaces, involve certain
technical mathematical difficulties [5, pp 355-357] However, as Aumann has shown [1] and
[2], these difficulties can be overcome But even if we succeed in defining the relevant higher-
order probabihty distributions in a mathematically admissible way, the fact remains that
the Tesulting model—like all models baaed on the sequential-expectations approach—will be
extremely complicated and cumbersome The main purpose of this paper is to describe an
alternative approach to the analysis of games with incomplete information, which com-
pletely avoids the difficulties associated with sequences of higher and higher-order recipro-
cal expectations
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such sequences of higher and higher-order reciprocal expectations will simply not
arise

As we have seen, if we use the Bayesian approach, then the sequential-expecta-
tions model for any given /-game G will have to be analyzed in terms of uifinite
sequences of higher and higher-order subjective probability distributions, l e ,
subjective probabihty distributions over subjective probablity distributions In
contrast, imder our own model, it will be possible to analyze any given /-game G
m terms of one unique probabihty distribution R* (as well as certain conditional
probabhty distributions derived from R*)

For example, consider a two-person non-zero-sum game G representing price
competition between two duopohst competitiors where neither player has precise
mformation about the cost functions and the financial resources of the other
player This, of course, means that neither player i will know the true payoff
function U, of the other player j , because he will be unable to predict the profit
(or the loss) that the other player will make with any given choice of strategies
(l e , price and output pohces) si and S2 by the two players

To make this example more reahstic, we may also assume that each player has
some information about the other player's cost functions and financial resources
(which may be represented, e g , by a subjective probability distribution over the
relevant variables), but that each player i lacks exact information about how
much the other player j actually knows about player I'B cost structure and finan-
cial position

Under these assumptions this game G will be obviously an /-game, and it is
easy to visuahze the complicated sequences of reciprocal expectations (or of sub-
jective probabhty distributions) we would have to postulate if we tried to analyze
this game in terms of the sequential-expectations approach

In contrast, the new approach we shall describe m this paper will enable us to
reduce this /-game G to an equivalent C-game G* mvolving four random events
(l e , chance moves) ei, e2, / i , and fi, assumed to occur before the two players
choose their strategies Si and S2 The random event e,(? = 1, 2) will determme
player z's cost functions and the size of his financial resources, and so will com-
pletely determine his payoff function Ui m the game On the other hand, the
random event / , wall determme the amoimt of mformation that player i w ill ob-
taui about the cost functions and the financial resources of the other player
lij = 1,2 and 9^ i), and will thereby determine the actual amount of information*
that player i will have about player j ' s payoff function U,

Both players will be assumed to know the joint probabihty distnbution
^*(ei, ez, / i , /2) of these four random events ^ But, e g , player 1 will know the
actual outcomes of these random events only m the case of ex and / i , whereas

' In terms of the ternunology we shall later introduce, the variables determined by the
random events e, and/ , will constitute the random vector c, (t = 1, 2), which will be called
player t's information vector or attnbute vector, and which will be assumed to determine
player t's "type" in the game (cf the third paragraph below)

' For justification of this assumption, see sections 4 and 5 below, as well as Part III of
this paper
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player 2 will know the actual outcomes only m the case of e2 and f^ (In our model
this last assumption will represent the facts that each player wall know only his
own cost functions and financial resources but wiU not know those of his op-
ponent, and that he will, of course, know how much information he himself has
about the opponent but wiU not know exactly how much mformation the op-
ponent will have about him )

As m this new game G* the players are assumed to know the probability distri-
bution Ttie-x ,ei ,fx,f2), this game G* will be a C-game To be sure, player 1 will
have no information about the outcomes of the chance moves e^ and /2, whereas
player 2 will have no mformation about the outcomes of the chance moves ei
and /i But these facts wiU not make G* a game with "mcomplete" information
but will make it only a game with "imperfect" information (cf Footnote 2
above) Thus, our approach wall basically amount to replacmg a game G mvolvmg
incomplete information, by a new game G* which mvolves complete but imperfect
mformation, yet which is, as we shall argue, essentially eqmvalent to G from a
game-theoretical point of view (see section 5 below)

As we shall see, this C-game G* which we shall use m the analysis of a given
/-game G will also admit of an alternative mtuitive mterpretation Instead of
assummg that certam important attributes of the players are determmed by some
hypothetical random events at the begmnmg of the game, we may rather assume
that the players themselves are drawn at random from certam hypothetical popu-
lations contammg a mixture of mdividuals of different "types", characterized by
different attnbute vectors (l e, by different combmations of the relevant at-
tributes) For mstance, m our duopoly example we may assume that each player
i(t = 1, 2) IS drawn from some hypothetical population II, containmg individuals
of different "types," each possible "type" of player t being characterized by a
different attribute vector Ci, l e , by a different combination of production costs,
financial resources, and states of information Each player i will know his own
type or attnbute vector c, but will be, m general, ignorant of his opponent's
On the other hand, both players will agam be assumed to know the jomt prob-
abihty distribution fi*(c, , c^) govemmg the selection of players 1 and 2 of differ-
ent possible types ci and d from the two hypothetical populations IIi and 112

It may be noted, however, that m analyzmg a given /-game G, construction
of an equivalent C-game G* is only a partial answer to our analjrtical problem,
because we are stiU left with the task of definmg a suitable solution concept for
this C-game G* itself, which may be a matter of some difficulty This is so because
m many cases the C-game G* we shall obtain m this way will be a C-game of
unfamiliar form, for which no solution concept has been suggested yet m the
game-theoretical hterature ^ Yet, smce G* will always be a game with complete
information, its analysis and the problem of definmg a suitable solution concept
for it, will be at least amenable to the standard methods of modem game theory
We shall show m some examples how one actually can define appropnate solution
concepts for such C-games G*

• More particularly, this game G* will have the nature of a game with delayed commitment
(see section 11 in Part II of this paper)
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Our analysis of /-games wall be based on the assumption that, in dealing w lth
mcomplete mformation, every player i will use the Bayesian approach That is
he will assign a subjective jomt probabihty distribution P , to all vanables unknf)wn
to him-—or at least to all unknown independent variables, l e , to all variables not
dependmg on the players' owm strategy choices Once this has been done he w ill
try to maximize the mathematical expectation of his owai pci3'off a;, m terms of
this probability distribution P , ^ This assumption will be called the Bayesian
hypothesis

If mcomplete information is mterpreted as lack of full mformation by the
playeis about the normal form of the game, then such incomplete information
can anse m three main ways

1 The players may not know the physical outcome function Y of the game,
which specifies the physical outcome y = r ( s i , , s )̂ produced b> each
strategy «-tup]e s = ( i i , , s^) available to the players

2 The players may not know their own or some other plaj'ers' utility functions
X,, which specify the utihty payoff x, = XJy) that a given player i denves
from every possible physical outcome y

3 The players may not know their own or some other players' strategy spaces
S., I e , the set of all strategies s, (both pure and mixed) available to various
players i

All other cases of mcomplete information can be reduced to these three basic
cases-—mdeed sometimes this can be done m two or more different (but essen-
tially equivalent) ways For example, mcomplete information may arise by some
players' ignorance about the amount or the quahty of physical resources (eqmp-
ment, raw materials, etc ) available to some other players (or to themselves)
This situation can be equally mterpreted either as ignorance about the physical
outcome function of the game (case 1), or as ignorance about the strategies avail-
able to vanous players (case 3) Which of the two interpretations we have to
use will depend on how we choose to define the "strategies" of the players in
question For mstance, suppose that in a military engagement our OWTI side does
not know the number of fire arms of a given quahty available to the other bide

' A subjective probability distribution P , entertained by a given player i is defined in
terms of his own choice behavior, cf [6] In contrast, an objective probability distribution
P* IS defined in terms of the long-run frequencies of the relevant events (presumably as
established by an independent observer, say, the umpire of the game) It is often convenient
to regard the subjective probabilities used by a given player i as being his personal estimates
of the corresponding objective probabilities or frequencies unknown to him

' If the physical outcome y is siny)ly a vector of money payoffs j/i , , Vn to the n plaj ers
then we can usually assume that any player I's utility payoff x, = X,(y,) is a (strictly
mcreasing) function of his money payoff 2/, and that all players will know this However,
the other players; may not know the specific mathematical form of player t'B utility func-
tion for money, X, In other words, even though they may know player t's ordinal utility
function, they may not know his cardinal utility function That is to say, they may not know
how much nsk he would be willing to take in order to increase his money payoff y, b> given
amounts
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This can be mterpreted as mabihty on our part to predict the physical outcome
iie, the amount of destruction) resultmg from alternative strategies of the
opponent, where any given "strategy" of his is defined as firmg a given percentage
of his fire arms (case 1) But it can also be mterpreted as mabihty to decide
whether certam strategies are available to the opponent at all, where now any
given "strategy" of his is defined as firmg a specified number of fire arms (case 3)

Incomplete mformation can also take the form that a given player i does not
know whether another player j does or does not have mformation about the
occurrence or non-occurrence of some specified event e Such a situation will al-
ways come under case 3 This is so because m a situation of this kmd, from a game-
theoretical pomt of view, the crucial fact is player i's mabihty to decide whether
player j is m a position to use any strategy s / involving one course of action m
case event e does occur, and another course of action m case event e does not
occur That is, the situation will essentially amount to ignorance by player i about
the availabihty of certam strategies s,° to player j

Gomg back to the three mam cases hsted above, cases 1 and 2 are both special
cases of ignorance by the players about their own or some other players' payoff
functions f/, = ^ . ( F ) specifymg the utihty payoff a;, = f7,(si, , Sn) a given
player i obtams if the n players use alternative strategy n-tuples s = (si, ,
Sn)

Indeed, case 3 can also be reduced to this general case This is so because the
assumption that a given strategy s, = s," is not available to player i is equivalent,
from a game-theoretical point of view, to the assumption that player i will never
actually itse strategy s," (even though it would be physically available to him)
because by usmg s,° he would always obtam some extremely low (z e, highly
negative) payoffs x, = U^isx, , s,", , Sn), whatever strategies Si, ,
Sv_i, s,+i , , Sn the other players 1, , i — \,i + \, , n may be using

Accordmgly, let S['^ ij = 1 or j 7^ 1) denote the largest set of strategies s,
which m player ^'s opmion may be conceivably mcluded m player I's strategy
space )S. Let Si"^ denote player I's "true" strategy space Then, for the purposes
of our analysis, we shall define player t's strategy space S, as

(21) S. = U:_oSi*'

We lose no generahty by assummg that this set S, as defined by (2 1) is known
to aU players because any lack of mformation on the part of some player j about
this set S, can be represented withm our model as lack of information about the
numerical values that player I's payoff function a;, = f7,(si, , s,, , Sn)
takes for some specific choices of s,, and in particular whether these values are
so low as completely to discourage player i from usmg these strategies s.

Accordmgly, we define an /-game G as a game where every player j knows
the strategy spaces S, of all players 1=1, ,j, ,n but where, in general,
he does not know the payoff functions U, of these players z = 1, ,J, ,n

' Likewise, instead of assuming that player j assigns subjective probabilities to events of
the form E = |s,» ^ S, | , we can always assume that he assigns these probabilities to events
of theformi; = ({7.(si , , s, , , «„ )< i.» whenever s. = s,°|, etc
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3.

In terms of this definition, let us consider a given /-game G from the point of
view of a particular player^ He can write the payoff function C/, of each player i
(including his own payoff function U,iox i = j) m a, more explicit form as

(31) I , = C/,(si, ,Sn)=V*{si, ,s», ao. , a i . , , o.,, , o»,),

where V*, unlike [/,, is a function whose mathematical form is (in player j's
opmion) known to all n players, whereas ao, is a vector consisting of those parame-
ters of function [7, whieh (in j ' s opmion) are unknown to all players, and where
each a*. for fc = 1, , w is a vector consisting of those pajameters of ftinction
[7, which (m J'S opmion) are unknovm to some of the players but are known to
player A; If a given parameter a is known hoth to players k and m (without bemg
known to aU players), then this fact can be represented by lntroducmg two
variables at, and a^, with a*, = «„, = a, and then making at, A component of
vector at, while making a^, a component of vector a^.

For each vector a*, {k = 0, 1, , n), we shall assume that its range space
Au = {at,}, I e , the set of all possible values it ean take, is the whole Euclidian
space of the required number of dimensions Then T',* will be a function from the
Cartesiaji product Si X X iS, X ^o, X X ^n. to player I's utihty line
S,, which IS itself a copy of the real Ime R

Let us define at as the vector combinmg the components of all n vectors at i ,
, atn Thus we write

(3 2) OA = (ail, , a*n),

for A: = 0, 1, , i, ,71 Clearly, vector ao summarizes the information that
(in player J'S opmion) none of the players has about the n functions f/i, , C/n ,
whereas vector at(fc = 1, , n) summarizes the mformation that (m. fa
opmion) player k has about these functions, except for the information that (m
J'S opmion) all n players share about them For each vector ak, its range space
will be the set A^ = {at} = Aki X X A^n

In equation (3 1) we are free to replace each vector at^(k = 0, ,n) by the
larger vector at = (ati , , atx, , dkn), even though this will mean that in
each case the (n — 1) sub-vectors at i , , at(,-i), atc-t-i) , , akn will occur
vacuously m the resulting new equation Thus, we can write

(3 3) X, = V*(si, , Sn , ao, ai, , a,, , an)

For any given player t the n vectors ao, a i , , a,_i, a,+i, , an m general
will represent unknown variables, and the same will be true for the (re — 1)
vectors 6,, , h^i, b,+i, , &„ to be defined below Therefore, under the
Bayesian hypothesis, player i will assign a subjective joint probability distribu-
tion

(3 4) P . = P.(oo ,ai, ,a^i, a,+i, , a, , 6i, , 6,_i, b,+i, , K)

to all these unknown vectors
For convemence we mtroduce the shorter notations a = (ai , , an) and
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b = (bi, ,bn) The vectors obtamed from a and b by omittmg the sub-vector
o, and 6,, respectively, wdl be denoted by a' and b' The corresponditig range
spaces can be wntten as A = Ai X X An , B == Bi X X Bn , A' =
Al X X A,_i X A,+i X X An , B' = Bi X X B._i X B.+, X
XBn

No^v we can wnte equations (3 3) and (3 4) as

(3 5) X. = F,*(si , ,Sn,ao,a)

(3 6) P . = P,(ao, a', b')

where P, is a probabihty distribution over the vector space Ao X A^ X B'
The other (n — 1) players in general will not know the subjective probability

distnbution P, used by player i But player j (from ^vhose point of view we are
analyzing the game) will be able to write P, for each player i (both i = j and
I 7^ j) m the form

(3 7) P . ( a o , a ' , 6 ' ) = R,(ao, a',b'\K),

where R^, unhke P , , is a function whose mathematical form is (m player j's
opinion) known to all n players, whereas 6, is a vector consisting of those parame-
ters of function P, which (m j ' s opmion) are unknown to some or all of the players
k 9^ I Oi course, player j will realize that player z himself wiU know vector b,
since 6, consists of parameters of player I's own subjective probabihty distnbu-
tion P,

The vectors bi, , 6._i, fe.+i, , ?)„ occurrmg in equation (3 4), which so
far have been left tmdefined, are the parameter vectors of the subjective prob-
ability distnbutions P i , , P,_i, P,+i, , Pn , unknown to player i The
vector 6' occurring in equations (3 6) and (3 7) is a combination of all these
vectors fei, , b,_i , b,+i , , bn , and sum.marizes the inform.ation that (m
player j ' s opmion) player i lacks about the other (n — 1) players' subjective
probabihty distributions P i , , P,_i, P.+i, , Pn

Clearly, function R,, is a function yielding, for each specific value of vector &,,
a probability distribution over the vector space A' X B'

We now propose to ehmmate the vector oo, unknown to all players, from equa-
tions (3 5) and (3 7) In the case of equation (3 5) this can be done by taking
e.rpected values with respect to aa m terms of player z's own subjective probabihty
distribution P.(ao, o', 6') = i2.(ao, a', b' | b,) We define

( 3 8 ) V,(si, ,Sn,a\b,) = V,isi, , S n , o , 6 . )

f *(
J A.. ' '

Then we

(3 9) X, = y , ( s i , ,Sn,a, b,),

where x, now denotes the expected value of player I's payoff m terms of his own
subjective probabihty distnbution
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In the case of equation (3 7) we can elunmate ao by taking the appropriate
marginal probability distributions We define

(310) P.(a*,6') = f

and

(311) R.(a\b'\b,) == f d(..,fl,(ao,a',6*|6,)

Then we wnte

(3 12) P.(a\ 6') = fl,(a', b' | 6,)

We now rewrite equation (3 9) as

(3 13) I , = F,(s j , , s, , a, 6,, 6') = F,(si , , s, , a, 6),

where vector b' occurs only vacuously Likewise we rewrite equatton (3 12) as

(314) P,(a*, 6') = i? , (a ' , 6 ' | a . , b . ) ,

where on the right-hand side vector a, occurs only vacuously
Finally, we mtroduce the defimtions c, = (a, ,b,),c = (a, b), and c' = (a', &')

Moreover, we wnte C, = A, X B, , C == A X B, and C = A' X B' Clearly,
\ector c, represents the total information available to player i in the game (if we
disregard the information available to all n players) Thus, we may call c, player
I's mformation vector

From another pomt of view, we can regard vector c, as representing certain
physical, social, and psychological attributes of player i himself, m that it sum-
marizes some crucial parameters of player I's own payoff ftinction U, as well as
the mam parameters of his behefs about his social and physical environment
(The relevant parameters of player i's payoff function f/, again partly represent
parameters of his subjective utility function X^ and partly represent parameters
of his environment, e g , the amounts of various physical or human resources
available to him, etc ) From this pomt of view, vector c, may be called player
z's attribute vector

Thus, under this model, the players' incomplete lnformatton about the true
nature ot the game situation is represented by the assumption that m general
the actual value of the attribute vector (or information vector) c, of any given
player i will be knowTi only to player i himself, but will be unknown to the
other {n — I) players That is, as far as these other players are concerned,
c, could have any one of a ntimber—possibly even of an infinite number—of
alternative values (which together form the range space C, = {c,} of vector c,)
We may also express this assumption by saying that m an /-game G, in general,
the rules of the game as such allow any given player z to belong to any one of
a number of possible "types", correspondmg to the alternative values his attri-
bute vector c, could take (and so representing the alternative payoff function's
r , and the alternative subjective probability distributions P , that playei i
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might have in the game) Each player is always assumed to know his own actual
type but to be in general ignorant about the other players' actual types

Equations (3 13) and (3 14) now can be written as

(3 15) a;, = V,(si, , Sn , c) = F , ( s i , , s™ , Ci, , c„)

(3 16) P.(c') = R,(c'\ c.)

or

(3 17) P,(Cl , , C_l , C.+1 , ,Cn)=R,{Cl, , C,_l , C.+1 , , Cn| C.)

We shall regard equations (3 15) and (3 17) [or (3 16)] as the standard forms
of the equations defining an /-game G, considered from the pomt of view of some
particular player j

Formally we define the standard form of a given 7-game G for some particular
player j as an ordered set G such that

(3 18) G = {Si , , Sn , Cl , , Cn , Vl , , Vn , Rl , , Rn]

where for i = 1, , n we ^\Tite S, = {s,\, C, = {c.}, moreover, where V, is
a function from the set Si X X Sn X Ci X X (7™ to player I's utility
hne E. (which is itself a copy of the real line R), and where, for any specific value
of the vector c,, the function fl, = R,(c'\ c,) is a probabihty distribution over
the set C = CiX X C._i X C.+i X X Cn

4.

Among C-games the natural analogue of this /-game G wiU be a C-game G*
with the same payoff functions F , and the same strategy spaces S, However,
in G* the vectors c, wiU have to be reinterpreted as bemg random vectors (chance
moves) with an objective jomt probabihty distnbution

(41) R* = R*(ci, ,Cn) = R*{c)

known to aU n players'" (If some players did not know i2*, then G* would not
be a C-game ) To make G* as similar to G as possible, we shall assume that
each vector c, will take its values from the same range space C, m either game
Moreover, we shall assume that m game G* , just as m game G, when player i
chooses his strategy s,, he will know only the value of his awn random vector
c, but wiU not know the random vectors Ci , , c,_i, c,+i, , Cn of the other
(n — 1) players Accordmgly we may agam call c, the information vector of
player i

Alternatively, we may agam mterpret this random vector c, as representing
certain physical, social, and psychological attnbutes of player i himself (But,
of course, now we have to assume that for all n players these attnbutes are de-
termmed by some sort of random process, governed by the probabihty distribu-
tion R* ) Under this mterpretation we may agam call c, the attribute vector of
player i

" Asauming that a joint probabihty distribution R* of tbe lequued mathematical form
exists (see section 5 below, as wetl as Part III of this paper)
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We shall say that a given C-game G* is m standard form if
1 the payoff functions F , of G* have the form indicated by equation (3 15),
2 the vectors Ci, , Cn occurring in equation (3 15) are random vectors

with a jomt probabihty distribution R [equation (4 1)] known to all players,
3 each player i is assumed to know only his own vector c, , and does not

know the vectors Ci, , c,_i, c,+i, , c^oi the other players when he chooses
his strategy s.

Sometimes we shall agam express these assumptions by saying that the rules
of the game allow each player i to belong to any one of a number of alternative
types (correspondmg to alternative specific values that the random vector c.
can take), and that each player wiU always know his own actual type, but in
general will not know those of the other players

Formally we define a C-game G* m standard form as an ordered set G* such
that

(4 2) G* = {Sx, ,Sn,Cx, ,Cn,Vx, ,Vn,R*]

Thus, the ordered set G* differs from the ordered set G [defined by equation
(3 18)] only m the fact that the n-tuple Ri, , Rn occurring m G is replaced
m G* by the singleton R*

If we consider the normal form of a game as a special hmiting case of a standard
form (viz as the case where the random vectors Ci, , c™ are empty vectors
without components), then, of course, every C-game has a standard form
But only a C-game G* containing random variables (chance moves) will have
a standard form non-tnvially different from its normal form

Indeed, if G* contains more than one random vanable, then it will have
several different standard forms This is so because we can always obtain new
standard forms G**-—intermediate between the original standard form G*
and the normal form G***-—if we suppress some of the random variables occur-
nng m G*, without suppressing all of them (as we would do if we wanted to
obtam the normal form G*** itself) This procedure can be called partial nor-
malization as distinguished from the full normalization, which would yield the
normal form G*** "

5.

Suppose that G is an /-game (considered from player j ' s pomt of view) while
G* IS a C-game, both games being given m standard form To obtain complete
similarity between the two games, it is not enough if the strategy spaces *Si,

, (Sn , the range spaces Ci, , Cn , and the payoff functions Vi, , Vn

" Partial normalization involves essentially the same operations as full normalization
(see section 7 below) It involves taking the expected values of the payoff functions V, with
respect to the random vanables to be suppressed, and redefining the players' strategies
where necessary However, in the case of partial normalization we also have to replace the
probability distribution R* of the original standard form G*, by a marginal probability
distribution not containing the random variables to be suppressed (In the case of full
normalization no such marginal distribution has to be computed because the normal form
G*** will not contain random vanables at all)
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of the two games are the same It is necessary also that each player t m either
game should alwaj^s assign the same numerical proabability p to any given
specific event E Yet m game G player i will assess all probabilities m terms of
his subjective probability distribution R,(c'\ c,), whereas m game G*—smce
vector c, is known to him—he wiU assess all probabilities in terms of the ob-
jective conditional probabihtj'' distribution R*(c'\ c.) generated by the basic
probability distribution R (c) of the game G Therefore, if the two games are
to be equivalent, then numencaUy the distributions i2,(c'| c,) and fi*(c'| c.)
must be identically equal

This leads to the followmg defimtion Let G be an 7-game (as considered by
player j), and let G* be a C-game, both games bemg given m standard form
We shall say that G and G* are Bayes-equwaient for player j if the following
conditions are fulfilled

1 The two games must have the same strategy spaces Si, , Sn and the
same range spaces Ci, , C™

2 They must have the same payoff functions Vi, , Vn
3 The subjective probabihty distnbution 72, of each player tiaG must satisfy

the relationship

(51) RXc\c,) = R*{c'\c,),

where R*ic) = R*(c,, c') is the basic probabihty distribution of game G* and
where

(5 2) R*(c\c,) =R*{c,,c

In view of equations (5 1) and (5 2) we can wnte

(53) ii;*(c) = K*(c.,c*) = E.(c' |c.) f d^c',R*ic,,c')

In contrast to equation (5 2), which ceases to have a clear mathematical mean-
ing when the denommator on its nght-hand side becomes zero, equation (5 3)
always retains a clear mathematical meanmg

We propose the following postulate
Postulate 1 Bayes-equivalence Suppose that some 7-game G and some C-game

G* are Bayes-equivalent for player j Then the two games will be completely
equivalent for player j from a game-theoretical standpomt, and, m particular,
player j ' s strategy choice will be governed by the same decision rule (the same
solution concept) m either game

This postulate follows from the Bayesian hypothesis, which implies that
every player will use his subjective probabJities exactly m the same way as he
would use known objective probabihties numencaUy equal to the former Game
G (as assessed by player j) and game G* agree m all definmg characteristics,
including the numencal probability distnbutions used by the players The only
difference is that m G the probabilities used by each player are subjective prob-
abihties -whereas m G* these probabihties are objective (conditional) probabili-
ties But by the Baj'̂ esian hjrpothesis this difference is lmmatenal



GAMES WITH INCOMPLETE INFORMATION 175

Of course, under the assumptions of the postulate, all we can say is that
for player j himself the two games are completely equivalent for game-theoretical
purposes We cannot conclude on the basis of the information assumed that the
two games are hkewise equivalent also for some other players k 9^ j In order
to reach this latter conclusion we would have to know that G and G* would
preserve their Bayes-equivalence even if G were analyzed m terms of the func-
tions F l , , Vn and Ri, , Rn postulated by these other players k, instead
of being analyzed m terms of the functions T^i, , Vn and Ri, , Rn postu-
lated by player j himself But so long as we are interested only m the decision
rules that player j hunself will follow m game G, all we have to know are the
functions Vi, Vn and Rx, Rn that player j wiU be usmg

Postulate 1 naturally gives nse to the followong questions Given any /-game
G, IS it always possible to construct a C-game G* Bayes-equivalent to G? And,
in cases where this is possible, is this C-game G* always unique? These questions
are tantamount to askmg whether for any arbitranly chosen n-tuple of subjective
probability distributions i2i(c'| Cj), , /2n(c"| Cn), there always exists a prob-
ability distnbution R ici, , Cn) satisfymg the functional equation (5 3),
and whether this distnbution R* is always unique m cases where it does exist
As these questions require an extended discussion, we shall answer them in
Part III of this paper (see Theorem III and the subsequent heuristic discussion)
We shall see that a given /-game G wiU have a C-game analogue G* only if G
itself satisfies certain consistency requirements On the other hand, if such a
C-game analogue G* exists for G then it will be "essentially" umque (in the sense
that, m cases where two different C-games Gi*, and G2* are both Bayes-equiva-
lent to a given /-game G, it wiU make no difference whether we use Gi* or G2*
for the analysis of G) In the rest of the present Part / of this paper, we shall
restnct our analysis to /-games G for which a Bayes-eqmvalent C-game analogue
G* does exist

As we shall make considerable use of Bayes-equivalence relationships between
certam /-games G and certam C-games G* given m standard form, it wiU be
convement to have a short designation for the latter Therefore, we shall mtro-
duce the term Bayesian games as a shorter name for C-games G* given m stand-
ard form Dependmg on the nature of the /-game G we shall be dealmg with in
particular cases, we shall also speak of Bayesian two-person zero-sum games,
Bayesian bargammg games, etc

6.

In view of the important role that Bayesian games will play m our analysis,
we shall now consider two alternative (but essentially equivalent) models for
these games, which for some purposes will usefully supplement the model we
have defined m Sections 4 and 5

So far we have defined a Bayesian game G* as a game where each player's
payoff a;, = F, (s i , , «„ , ci, , Cn) depends, not only on the strategies
Si, , Sn chosen by the n players, but also on some random vectors (informa-
tion vectors or attnbute vectors) Cx, , Cn It has also been assumed that all
players will know the joint probabihty distnbution R*ici, , Cn) of these
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random vectors, but that m general the actual value of any given vector c.
wiU be known only to player i himself whose information vector (or attribute
vector) it represents This model will be called the random-vector model for
Bayesian games

An alternative model for Bayesian games can be descnbed as follows The
actual mdividuals who wiU play the roles of players 1, , n m game G* on
any given occasion, wiU be selected by lot from certam populations IIi , , n»
of potential players Each population II, from which a given player i is to be
selected will contam mdividuals with a variety of different attributes, so that
every possible combmation of attnbutes (l e , every possible "type" of player i),
correspondmg to any specific value c, = c," that the attribute vector c, can take
m the game, will be represented m this population II, If m population n , a
given mdividual's attribute vector c, has the specific value c, = c,°, then we shall
say that he belongs to the attribute dass c,° Thus, each population II, will be
partitioned into that many attribute classes as the number of different values
that player I's attribute vector c, can take m the game

As to the random process selectmg n players from the n populations IIi ,
, En , we shall assume that the probabihty of players 1, ,n bemg selected

from any specific n-tuple of attnbute classes ci°, , Cn" will be governed'^
by the probabihty distribution R*{ci, , c^) We shall also retam the assump-
tions that this probabihty distribution R* will be known to all n players, and
that each player t wiU also know his own attnbute class c, = c,° but, m general,
wiU not know the other players' attribute classes Ci = ci , , c,_i = c°_i,
c,+i = c°+i, , Cn = Cn" As m this model the lottery by which the players
are selected occurs prior to any other move m the game, it wiU be called the
pnw-lottery model for Bayesian games.

Let G be a real-hfe game situation where the players have mcomplete infor-
mation, and let G* be a Bayesian game Bayes-equivalent to G (as assessed by a
given player 7) Then this Bayesian game G*, mterpreted m terms of the prior-
lottery model, can be regarded as a possible representation (of course a highly
schematic representation) of the real-hfe random sociai process which has ac-
tually created this game situation G More particularly, the pnor-lottery model
pictures this social process as it would be seen by an outside observer havmg
mformation about some aspects of the situation but lackmg information about
some other aspects He could not have enough information to predict the attri-
bute vectors Ci = Ci, , Cn = Cn" of the n mdividuals to be selected by this
sociai process to play the roles of players 1, , w m game situation G But he
would have to have enough mformation to predict the jomt probability distn-
bution iti* of the attnbute vectors Ci, , Cn of these n mdividuals, and, of

" Under our assumptions m general the selection of players 1, ,n from the respective
populations IIi , , IIB will not be statistically independent events because the probabihty
distnbution R*{ci , , CB) in general will not permit of factorization into n independent
probability distributions Ri*{ci), , Rn*(cn) Therefore, stnctly speaking, our model
postulates simultaneous random selection of a whole player n-tuple from a population n
of all possible player n-tuples, where n is the Cartesian product n = Hi X X Un
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course, also to predict the mathematical form of the payofF functions Vi,
, Vn (But he could not have enough information to predict the payoff

functions Ui, , Un because this would require knowledge of the attribute
vectors of all n players )

In other words, the hypothetical observer must have exactly all the informa-
tion common to the n players, but must not have access to any additional infor-
mation private to any one player (or to any sectional group of players—and,
of course, he must not have access to any information maccessible to all of the
n players) We shall call such an observer a properly informed observer Thus,
the prior-lottery model for Bayesian games can be regarded as a schematic
representation of the relevant real-life social process as seen by a properly m-
formed outside observer

As an example, let us agam consider the price-competition game G with m-
complete mformation, and the correspondmg Bayesian game G*, discussed m
Section 1 above Here each player's attribute vector c, will consist of the varia-
bles definmg his cost functions, his financial resources, and his facilities to coUect
information about the other player " Thus, the prior-lottery model of G* wiU
be a model where each player is chosen at random from some population of
possible players with different cost functions, dififerent financial resources, and
different mformation-gathermg facihties We have argued that such a model can
be regarded as a schematic representation of the real-hfe social process which
has actually produced the assumed competitive situation, and has actually
determmed the cost functions, financial resources, and mformation-gathermg
facihties, of the two players

Dr Selten has suggested" a third model for Bayesian games, which we shall
call the SeUen model or the posterior-lottery model Its basic difference from the
prior-lotteiy model consists m the assumption that the lottery selectmg the
active participants of the game wiU take place only after each potential player
has chosen the strategy he would use m case he were m fact selected for active
participation m the game

More particularly, suppose that the attribute vector c, of player i {i = 1,
, n) can take fc, different values m the game (We shall assume that all

fc.'s are fimte but the model can be easily extended also to the infinite case )
Then, instead of havmg one randomly selected player i m the game, we shall
assume that the role of player i will be played at the same tune by fc, different
players, each of them representmg a different value of the attnbute vector c,
The set of all fc, mdividuals playmg the role of player i m the game wiU be called
the role class i Different mdividuals m the same role class t will be distinguished
hy subscripts as players zi, i^, Under these assumptions, obviously the
total number of players m the game will not be n but rather wiU be the larger
(usually much larger) number

(61) K= Z."-ifc.

" Cf Footnote 4 above
" In pnvate conunumcation (cf Footnote 1 above)
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It Will be assumed that each player i^ from a given role class i will choose
some strategy s, from player I'a strategy space S, Different members of the same
role class i may (but need not) choose different strategies s, from this strategy
space S,

After all K players have chosen their strategies, one player z^ from each role
class t wiU be randomly selected as an active player Suppose that the attnbute
vectors of the n active players so selected will be Ci = Ci, , Cn = Cn", and
that these players, prior to their selection, have chosen the strategies Si = Si,

, Sn = Sn° Then each active player i^ , selected from role class i, will obtain
a payoff

(6 2) X, = V,iSl\ , Sn\ Cl", , Cn")

All other (K — n) players not selected as active players will obtam zero payoffs
It will be assumed that, when the n active players are randomly selected from

the n role classes, the probabihty of selectmg mdividuals with any specific
combmation of attribute vectors ci = ci, , Cn = c" will be governed by the
probabihty distnbution R*(ci, , Cn) ' '

I t IS easy to see that m all three models we have discussed—in the random-
vector model, the pnor-lottery model, and the posterior-lottery model—the
players' payoff ftmctions, the mformation available to them, and the probabihtj
of any specific event m the game, are all essentially the same " Consequently,

" In actual fact, we could just as well assume that each player would choose his strategy
only after the lottery, and after being informed whether this lottery has selected him as an
active player or not (Of course if we made this assumption then players not selected as
active players could simply forget about choosing a strategy at all) From a game-theoreti-
cal point of view this assumption would make no real difference so long as each active player
would have to choose his strategy without being told the names of the other players selected
as active players, and in particular without bemg told the attribute classes to which these
other active players would belong

Thus the fundamental theoretical difference between our second and third models is not
so much in the actual timing of the postulated lottery as such It is not so much in the fact
that in one case the lottery precedes, and in the other case it follows, the players' strategy
choices The fundamental difference rather hes m the fact that our second model (like our
first) conceives of the game as an n-person game, in which only the n active players are
formally "players of the game", whereas our third model conceives of the game as a K-per-
son game, in which both the active and the inactive players are formally regarded as "play-
ers" Yet, to make it easier to avoid confusion between the two models, it is convenient to
assume also a difference in the actual timing of the assumed lottery

" Technically speaking, the players' effective payoff functions under the posterior-
lottery model are not quite identical with their payoff functions under the other two models,
but this difference is lmmatenal for our purposes Under the posterior-lottery model, let
r = r.ic") be the probability (margmal probability) that a given player »„ with attnbute
vector c, = c," will be selected as the active player from role class i Then player im will
have the probability r of obtaining a payoff corresponding to the payoff function V, and
will have the probability (1 — r) of obtaimng a zero payoff whereas under the other two
models each plajrer i will always obtain a payoff corresponding to the payoff function V,
Consequently, under the posterior-lottery model player im's expected payoff will be only r
times (0 < r g 1) the expected payoff he could anticipate under the other two models How-
e\ er, under most game-theoretical solution concepts (and in particular under all solution
concepts we would ourselves choose for analyzing game situations), the solution of the game
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all three models can be considered to be essentially equivalent But, of course,
formally they represent quite different game-theoretical models, as the random-
vector model corresponds to an n-person game G* with complete mformation,
whereas the posterior-lottery model corresponds to a K-person game G** with
complete information In what follows, unless the contrary i=; mdicated, by the
term "Bayesian game" we shall always mean the n-person game G corresponding
to the random-vector model, whereas the iiT-person game G** corresponding to
the postenor-lottery model wall be called the Selten game

In contrast to the other two models, the prior-lottery model formally does
not quahfy as a true "game" at all because it assumes that the n players are
selected by a chance move representing the first move of the game, whereas
under the formal game-theoretical definition of a game the identity of the players
must always be known from the very begmnmg, before any chance move or
personal move has occurred m the game

Thus, we may characterize the situation as follow s The real-hfe social process
underlying the /-game G we are considering is best represented by the prior-
lottery model But the latter does not correspond to a true "game" m a game-
theoretical sense The other two models are two alternative ways of converting
the prior-lottery model mto a true "game" In both cases this conversion entails
a price m the form of introducing some unreahstic assumptions In the case of
the postenor-lottery model correspondmg to the Selten game G , the pnce
consists m introducing iK — n) fictitious players m addition to the n real
players participating m the game ^'

In the case of the random-vector model corresponding to the Bayesian game
G*, there are no fictitious plaj^ers, but we have to pay the price of making the
unreahstic assumption that the attnbute vector c, of each player i is determmed
by a chance move after the begmnmg of the game—which seems to imply that
player i will be m existence for some period of time, however short, durmg which
he will not know yet the specific value c, = c,° his attribute vector c, will take
So long as the Bayesian game G* corresponding to the random-vector model is
bemg considered m its standard form, this unrealistic assumption makes very
little difference But, as we shall see, when we convert G* mto its normal form
this unreahstic assumption lmphed by our model does cause certam technical
difficulties, because it seems to commit us to the assumption that each player
ean choose his normalized strategy (l e , his strategy for the normal-form version
of G*) before he learns the value of his owm attnbute vector c. An important
advantage of the Selten game G** hes m the fact that it does not require this
particular unreahstic assumption we are free to assume that every player i^

will remain invariant if the players' payoff functions are multiplied by positive constants r
(even if different constants r are used for different players)

In any case, the postenor-lottery model can be made completely eqmvalent to the other
two models if we assume that each active player %„ will obtain a payoff corresponding to the
payoff function F./r.Cc,"), instead of obtaimng a payoff corresponding to the payoff func-
tioa F, as such [as prescnbed by equation (6 2)]

" This will be true even if we change the timing of the assumed lottery in Selten's model
(see Footnote 15 above)
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wiU know his own attnbute vector c, from the very begmnmg of the game,
and will always choose his own strategy m hght of this information '*

Thus, as analytical tools used in the analysis of a given 7-game G, both the
Bayesian game G* and the Selten game G** have their own advantages and
disadvantages "

7.

Let G be an 7-game given m standard form, and let G* be a Bayesian game
Bayes-equivalent to G Then we define the normal form 3l(G) of this 7-game
G as bemg the normal form 5)1 (G*) of the Bayesian game G*

To obtam this normal form we first have to replace the strategies s, of each
player i by normalized strategies s* A normalized strategy s* can be regarded
as a conditional statement specifymg the strategy s, = s, (c,) that player i
would use if his mformation vector (or attribute vector) c, took any given
specific value Mathematically, a normalized strategy s, is a function from the
range space C, = {c,} of vector c, to player t's strategy space S, = |s,) The
set of aU possible such functions s,* is called player I's normahzed-strategy
space (S,* = {s*\ In contrast to these normalized strategies s,*, the strategies
s, available to player i m the standard form of the game will be called his ordinary
strategies

If m a given game the mformation vector c, of a certam player i can take only
fc different values (with fc finite) so that we can write

(7 1) c, = c,\ , c,*,

then any normalized strategy s,* of this player can be defined simply as a fc-
tuple of ordmaiy strategies

(7 2) s,* = (s,\ ,s.'),

where s," = s,*(c,'"), with m = 1, , fc, denotes the strategy that player i
would use m the standard form of the game if his information vector c, took
the specific value c, = c," In this case player t's normalized strategy space
S* = {s,*j will be the set of all such fc-tuples s,*, that is, it will be the fc-times
repeated Cartesian product of player I's ordmary strategy space S, by itself
Thus we can write S* = S'x XS! with S,' = = 5.* = S,

Under either of these definitions, the normalized strategies s, will not have
the nature of mixed strategies but rather that of behavioral strategies Never-

" Moreover, as Selten has pointed out, his model also has the advantage that it can be
extended to the case where the subjective probability distributions Ri , , R^ of a given
7-game G fail to satisfy the required consistency conditions, so that no probability distribu-
tion R* satisfying equation (5 3) will exist, and therefore no Bayesian game G* Bayes-
equivaJent to G can be constructed at all In other words, for any /-game G we can always
define an equivalent Selten game (?**, even in cases where we cannot define an equivalent
Bayesian game 6* (See Section 15, Part I I I )

" We have given intuitive reasons why a Bayesian game G* and the corresponding Selten
game G** are essentially equivalent For a more detailed and more ngorous game-theoreti-
cal proof the reader is referred to a forthconung paper by Reinhard Selten
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theless, these definitions are admissible because any game G* m standard form
IS a game of perfect recall, and so it will make no difference whether the players
are assumed to use behavioral strategies or mixed strategies [4]

Equation (3 15) can now be written as

(7 3) X,= V,iSx*iCx), ,Sn*iCn), Cx, ,Cn) = V.iSx*, ,«„*, c)

In order to obtam the normal form %iG) = 91 (G*), all we have to do now is
to take expected values m equation (7 3) with respect to the whole random
vector c, m terms of the basic probability distribution R*ic) of the game We
define

(7 4) £(x.) = F.(si*, ,Sn*) = [ V.isx*, ,Sn*,c)dJi*ic)
•> c

Since each player wall treat his expected payoff as his effective payoff from the
game, we can replace 6(a-,) simply by a;, and write

(7 5) X. = TF.(si*, , Sn*)

We can now define the normal form of games G and G* as the ordered set

(7 6) DZ(G) = ^iG*) = {Sx*, , Sn*, Wx, , Wn]

Compared with equations (3 18) and (4 2) definmg the standard forms of
these two games, m equation (7 6) the ordmary strategy spaces (S, have been
replaced by the normahzed strategy spaces S*, and the ordmary payoff func-
tions V, have been replaced by the normahzed payoff functions W, On the other
hand, the range spaces C. as well as the probability distnbutions R, or R* have
been omitted because the normal form TfliG) = 3l(G*) of games G and G* does
not any more mvolve the random vectors cx, , Cn

This normal form, however, has the disadvantage that it is defined in terms
of the players' unconditional payoff expectations £(x,) = W^isx*, , Sn*),
though m actual fact each player's strategy choice will be governed by his
conditional payoff expectation £(x,| c,), because he will always know his own
mformation vector c, at the time of making his strategy choice This conditional
expectation can be defined as

(77) fi(x.|c.) = Z.(si*, ,Sn*|c.) = /"
•'c

x*, ,s»*, c.,c')d(c.)fi*(c'|c.)

To be sure, it can be shown (see Theorem I of Section 8, Part II) that if
any given player i maximizes his unconditional payoff expectation W,, then
he wall also be maximizmg his conditional payoff expectation Z,( \ c,) for each
specific value of Cj, with the possible exception of a small set of c, values which
can occur only wath probabihty zero In this respect our analysis bears out von
Neumann and Alorgenstem's Normalization Pnnciple [7, pp 79-84], accordmg
to which the players can safely restnct their attention to the normal form of
the game when they are making their strategy choices

However, owmg to the special nature of Bayesian games, the Normalization
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Prmciple has only restncted vahdity for them, and their normal form
must be used with special care, because solution concepts based on imcntical
use of the normal form may give countermtuitive results (see Section 11 of
Part II of this paper) In view of this fact, we shall mtroduce the concept of a
semi-normal form The semi-normal form S(G) = S(G*) of games G and G*
will be defined as a game where the players' strategies are the normalized strate-
gies s, descnbed above, but where their payoff functions are the conditional
payoff-expectation ftmctions Z^( \ c,) defined by equation (7 7) Formally we
define the semi-norm^al form of the games G and G* as the ordered set

(7 8) S(G) = S(G*) = {5i*, ,Sn*,Cl, ,Cn,Zl, ,Zn,R*\

As the semi-normal form, unlike the normal form, does mvolve the random
vectors ci, , Cn , now the range spaces Ci, , Cn, and the probabihty
distnbution R*, which have been omitted from equation (7 6), reappear in
equation (7 8)

Instead of von Neumann and Morgenstern's Normalization Principle, we
shall use only the weaker Serm-normahzation Prmciple (Postulate 2 below),
which IS lmphed by the Normalization Prmciple but which does not itself imply
the latter

Postulate 2 Sufficiency of the Semi-normal Form The solution of any Bayesian
game G*, and of the Bayes-eqmvalent /-game G, can be defined m terms of the
semi-normal form S(G*) =h(G), without going back to the standard form of
G* or of G
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