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GAMES WITH INCOMPLETE INFORMATION PLAYED
BY “BAYESIAN” PLAYERS, I-III

Part 1. The Basic Model *
JOHN C HARSANYI
Unwersity of California, Berkeley

The paper develops a new theory for the analysis of games with incomplete
information where the players are uncertain about some 1mportant parameters
of the game situation, such as the payoff functions, the strategies available to
various players, the information other players have about the game, etc How-
ever, each player has a subjective probability distribution over the alternative
possibilities

In most of the paper 1t 1s assumed that these probability distributions enter-
tained by the different players are mutually ‘“‘consistent’’, 1n the sense that they
can be regarded as conditional probability distributions derived from a certain
‘‘basic probability distribution’’ over the parameters unknown to the varous
players But later the theory 1s extended also to cases where the different
players’ subjective probability distributions fail to satisfy this consistency
asswmption

In cases where the consistency assumption holds, the original game can be
replaced by a game where nature first conducts a lottery 1n accordance with
the basic probablity distribution, and the outcome of this lottery will decide
which particular subgame will be played, 1 e , what the actual values of the rele-
vant parameters will be 1n the game Yet, each player will receive only partial
information about the outcome of the lottery, and about the values of these
parameters However, every player will know the ‘“‘basic probability distribu-
tion” goverming the lottery Thus, technically, the resulting game will be a
game with complete information It 1s called the Bayes-equivalent of the
onginal game Part I of the paper describes the basic model and discusses vari-
ous intwitive 1nterpretations for the latter Part IT shows that the Nash equi-
Iibrium points of the Bayes-equivalent game yield ‘Bayesian equilibrium
points’’ for the original game Finally, Part ITII considers the main properttes of
the ‘“‘basic probablity distribution”
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Glossary of Mathematical Notation

I-game A game with ncomplete information

C-game A game with complete information

G The I-game originally given to us

G* The Bayesian game equivalent to G (G* 1s a C-game )

a** The Selten game equivalent to G and to G* (G™* 1s hikewise a C-game )
N(G), N(GT), N(GT*) The normal form of G, G* and G** respectively
$(@), s(G*) The semi-normal form of G and G* respectively

8, Some strategy (pure or mixed) of player 2, withz = 1, , N

S, = {8} Player @'s strategy space

c, Player ¢’s attribute vector (or information vector)

C, = {e} The range space of vector ¢,

c= (a, y Cn) The vector obtamned by combining the n vectors c; , ,Cn

into one vector



GAMES WITH INCOMPLETE INFORMATION 161

C = {c The range space of vector ¢

¢ = (a, y Cociy Cogl, y Cn) The vector obtained from vector ¢ by
omitting subvector c,

' = {c} The range space of vector ¢’

z, Player ¢’s payoff (expressed in utility units)

z, = U,(s1, ,8) = Vi(s1, y Su, C1, , Cq) Player +’s payoff func-
tion

P.(c1, , Cicl, Cotl ,6) = Pu(c") = R.(c"|e) The subjective prob-
ability distribution entertained by player 2

R* = R¥e¢, , ¢a) = R*(c) The basic probability distribution of the
game
R* = R*, , C1, Cuyl, ,enle) = RYc | e) The conditional

probability distribution obtained from B for a given value of vector c,

k. The number of different values that player +’s attribute vector ¢, can take
m the game (1n cases where this number 1s finite)

K= >k The number of players in the Selten game G** (when this
number 1s finite)

5.t A normalized strategy of player « (It 1s a function from the range space
C, of player ¢’s attribute vector ¢, , to his strategy space S. )

8 = {s% The set of all normalized strategies s,” available to player ¢

g The expected-value operator

&(x.) = W.(s™, , Sa¥) Player #’s normalized payoff function, stating his
unconditional payoff expectation
&z, | ) = Z.(s", L8] ¢e) Player 2’s semi-normalized payoff function,

stating his conditional payoff expectation for a given value of his attribute
vector ¢,

D A cylinder set, defined by the condition D = D; X X D, , where
D, & C, y D& Ca

G(D) For a given decomposable game G or G*, G( D) denotes the component
game played 1n all cases where the vector ¢ lies 1 eylinder D D 1s called the
defining cylinder of the component game G(D)

Special Notation 1n Certain Sections
In section 3 (Part I)

o, denotes a vector consisting of those parameters of player +’s payoff function
U, which (in player 7’s opinion) are unknown to all n players

ax, denotes a vector consisting of those parameters of the function U, which (in
7’s opinion) are unknown to some of the players but are known to player k

a = (ao , , Gos) 15 a vector summarnizing all information that (1n j’s opinion)
none of the players have about the functions U, , , Un

&= (ap, , Gin) 18 & vector summarizing all mformation that (1n j’s opinion)
player k has about the functions U, , , U. , except for the information that
(1n 7’s opimion) all n players have about these functions

b, 15 a vector consisting of all those parameters of player 2’s subjective probabihty
distribution P, which (in player 7’s opinion) are unknown to some or all of
the players k # ¢



162 JOHN C HARSANYI

In terms of these notations, player +’s information vector (or attribute vector)
¢, can be defined as

¢, = (a.,,b,)

V.* denotes player 1’s payoff function before vector aq has been integrated out
Ajfter ehmination of vector a, the symbol V, 1s used to denote player ¢’s payoff
funetion

In sections 9-10 (Part IT)

a' and a® denote the two possible values of player 1’s attribute vector ¢,

b' and b® denote the two possible values of player 2’s attribute vector ¢

rrm = B¥(c; = a" and ¢, = b™) denotes the probability mass function correspond-
ng to the basic probability distribution B*

Pim = Tim/(Tkia + Th) and @um = 7Tim/(Pim + 7em) denote the corresponding
conditional probabihity mass functions

y' and y° denote player 1’s two pure strategies

#' and 2* denote player 2’s two pure strateges

y™ = (y", ') denotes a normahzed pure strategy for player 1, requirng the use
of strategy y™1if ¢ = a', and requiring the use of strategy y‘ if ¢, = @’

= (2% z") denotes a normalized pure strategy for player 2, requiring the use

of strategy z* if ¢ = b', and requiring the use of strategy 2" if ¢, = b°

In section 11 (Pait IT)

a' and @’ denote the two possible values that erther player’s attribute vector c,
can take

rim = R*(c; = a" and ¢, = a™)

Pim and i have the same meaning as in sections 9-10

y.* denotes player 2’s payoff demand

y, denotes player ¢’s gross payoff

z, denotes player ¢’s net payoff

z.* denotes player ¢’s net payoff n the case (a

z:* denotes player +’s nel payoff in the case (;

1 2
e,0=4a)
2

a, c

I
Q
'
~

In section 18 (Part I11)

a, B, v, § denote specific values of vector ¢

as, B., 7., 8, denote speaific values of vector c,

o', B, %', 8' denote specific values of vector ¢’, ete

(v |v.) = R.(c' = 7' |c, = v.) denotes the probability mass function cor-
responding to player #’s subjective probability distnbution R, (when R, 1s 2
discrete dlstrlbutlon)

7™*(v) = R*(c = v) denotes the probablhty mass function correspondmg to the
basic probability distribution R* (when R* 1s a discrete dlstnbutlon)

® = {r*) denotes the set of all admissible probability mass functions ™

E denotes a ssmilanty class, 1 e, a set of nonnull pomnts ¢ = , ¢ = 8, sumilar
to one another (in the sense defined 1n Section 13)
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In section 16 (Part I1T)

R"™ denotes the basic probability distribution R* as assessed by player 1(z = 1,
0]

R* denotes a given player’s (player j’s) revsed estimate of the basic probability
distribution R*

¢, = (c,, d,) denotes player 7’s remsed defimtion of player s attribute vector
¢, (It 1s 1o general a larger vector than the vector ¢, onginally assumed by
player s )

R', denotes player j’s revised estimate of player ¢’s subjective probabihty distribu-
tion R,

1.

Following von Neumann and Morgenstern [7, p 30], we distinguish between
games with complete information, to be sometimes briefly called C-games mn this
paper, and games with ncomplete information, to be called I-games The latter
differ from the former m the fact that some or all of the players lack full informa-
tion about the “rules” of the game, or equivalently about 1ts normal form (or
about 1ts extensive form) For example, they may lack full information about
other players’ or even their own payoff functions, about the physical facihities
and strategies available to other players or even to themselves, about the amount
of information the other players have about various aspects of the game situa-
tion, etc

In our own view 1t has been a major analytical deficiency of existing game
theory that 1t has been almost completely restricted to C-games, in spite of the
fact that 1n many real-life economic, political, mihitary, and other social situa-
tions the participants often lack full information about some important aspects
of the “game” they are playing *

It seems to me that the basic reason why the theory of games with incomplete
information has made so little progress so far lies in the fact that these games
give rise, or at least appear to give nise, to an mnfinite regress 1n reciprocal expec-
tations on the part of the players, [3, pp 30-32] For example, let us consider any
two-person game 1 which the players do not know each other’s payoff funetions
(To simphfy our discussion I shall assume that each player knows his own payoff
function If we made the opposite assumption, then we would have to mtroduce
even more complicated sequences of reciprocal expectations )

In such a game player 1’s strategy choice will depend on what he expects (or
believes) to be player 2’s payoff function U, , as the natuie of the latter will be
an 1mportant determinant of player 2’s behavior in the game This expectation

* The distinction between games with complete and incomplete 1nformation (between C-
games and /-games) must not be confused with that between games with perfect and mper-
fect information By common terminological convention, the first distinction always refers
to the amount of information the players have about the rules of the game, while the second
refers to the amount of information they have about the other players’ and their own previ-
ous moves (and about previous chance moves) Unlike games with incomplele information,
those with imperfect information have been extensively discussed in the literature
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about U, may be called player 1’s first-order expectation But his strategy choice
will also depend on what he expects to be player 2’s first-order expectation about
his own (player 1’s) payoff function U; This may be called player 1’s second-
order expectation, as 1t 1s an expectation concerning a first-order expectation
Indeed, player 1’s strategy choice will also depend on what he expects to be
player 2’s second-order expectation—that 1s, on what player 1 thinks that player
2 thinks that player 1 thinks about player 2’s payoff function U, This we may
call player 1’s therd-order expectation—and so on ad wnfinitum Likewise, player
2’s strategy choice will depend on an mnfinmte sequence consisting of his first-
order, second-order, third-order, ete , expectations concerning the payoff func-
tions U, and U, We shall call any model of this kind a sequential-expectations
model for games with mcomplete mmformation

If we follow the Bayesian approach and represent the players’ expectations or
behefs by subjective probablity distributions, then player 1’s first-order expecta-
tion will have the nature of a subjective probablhity distribution P,'(Us) over all
alternative payoff functions U- that player 2 may possibly have Likewise, player
2’s first-order expectation will be a subjective probablity distribution P;'(Uy)
over all alternative payoff functions U, that player 1 may possibly have On the
other hand, player 1’s second-order expectation will be a subjective probability
distribution Py*(Py') over all alternative first-order subjective probability distri-
butions P;' that player 2 may possibly choose, etc More generally, the kth-order
expectation (k > 1) of ether player ¢z will be a subjective probability distribution
PX(P5) over all alternative (k — 1)th-order subjective probability distribu-
tions P; " that the other player 7 may possibly entertain ’

In the case of n-person I-games the situation 1s, of course, even more compli-
cated Even if we take the sumpler case 1 which the players know at least their
own payoff functions, each player in general will have to form expectations about
the payoff functions of the other (n — 1) players, which means forming (n — 1)
different first-order expectations He will also have to form expectations about
the (n — 1) first-order expectations entertamned by each of the other (n — 1)
players, which means forming (n — 1)? second-order expectations, etc

The purpose of this paper 1s to suggest an alternative approach to the analysis
of games with incomplete mformation This approach will be based on construet-
ing, for any given I-game G, some C-game G* (or possibly several different C-
games G*) game-theoretically equivalent to @ By this means we shall reduce the
analysis of I-games to the analysis of certain C-games G*, so that the problem of

! Probability distributions over some space of payoff functions or of probability distribu-
tions, and more generally probability distributions over function spaces, mnvolve certain
technical mathematical difficulties [5, pp 355-357] However, as Aumann has shown [1] and
[2], these difficulties can be overcome But even if we succeed 1n defining the relevant higher-
order probability distributions in a mathematically admissible way, the fact remains that
the resulting model—like all models based on the sequential-expectations approach—wll be
extremely complicated and cumbersome The main purpose of this paper 1s to describe an
alternative approach to the analysis of games with incomplete information, which com-
pletely avoids the difficulties associated with sequences of higher and higher-order recipro-
cal expectations
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such sequences of higher and higher-order reciprocal expectations will simply not
arise

As we have seen, 1f we use the Bayesian approach, then the sequential-expecta-
tions model for any given I-game G will have to be analyzed 1n terms of wfinite
sequences of higher and higher-order subjective probability distributions, 1e,
subjective probability distributions over subjective probablity distrbutions In
contrast, under our own model, 1t will be possible to analyze any given I-game G
1n terms of one unique probability distribution R* (as well as certain conditional
probablity distributions derived from R*)

For example, consider a two-person non-zero-sum game G representing price
competition between two duopolist competitiors where neither player has precise
mformation about the cost functions and the financial resources of the other
player This, of course, means that neither player : will know the true payoff
funetion U, of the other player 7, because he will be unable to predict the profit
(or the loss) that the other player will make with any given choice of strategies
(1e, price and output polices) s; and s; by the two players

To make this example more reabstic, we may also assume that each player has
some mformation about the other player’s cost functions and financial resources
(which may be represented, e g , by a subjective probability distribution over the
relevant varnables), but that each player : lacks exact information about how
much the other player 7 actually knows about player ’s cost structure and finan-
cial position

Under these assumptions this game G will be obviously an /-game, and 1t 18
easy to visualize the complicated sequences of reciprocal expectations (or of sub-
jective probablity distributions) we would have to postulate if we tried to analyze
this game 1n terms of the sequential-expectations approach

In contrast, the new approach we shall describe m this paper will enable us to
reduce this /-game G to an equivalent C-game G™ mvolving four random events
(1e, chance moves) e, e, fi, and f, assumed to occur before the two players
choose their strategies s; and s; The random event e,(z = 1, 2) will determine
player 2’s cost functions and the size of his financial resources, and so will com-
pletely determine his payoff function U; in the game On the other hand, the
random event f, will determine the amount of mformation that player 2 will ob-
tan about the cost functions and the financial resources of the other player
J(3 =1,2and # 1), and will thereby determine the actual amount of information*
that player 2 will have about player j’s payoff function U,

Both players will be assumed to know the jomnt probability distribution
R*(ey, e, f1, f2) of these four random events ® But, e g, player 1 will know the
actual outcomes of these random events only m the case of e; and fi, whereas

{In terms of the terminology we shall later introduce, the variables determined by the
random events e, and f, will constitute the random vector ¢, (2 = 1, 2), which will be called
player +’s information vector or attribute vector, and which will be assumed to determine
player +’s ““type’ 1n the game (cf the third paragraph below)

s For justification of this assumption, see sections 4 and 5 below, as well as Part IIT of
this paper
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player 2 will know the actual outcomes only 1n the case of ¢;and £,  (In our model
this last assumption will represent the facts that each player wall know only his
own cost functions and financial resources but will not know those of his op-
ponent, and that he will, of course, know how much information he himself has
about the opponent but will not know exactly how much information the op-
ponent will have about him )

As m this new game G* the players are assumed to know the probability distr1-
bution R*(ex . e, , f1, f2), this game G* will be a C-game To be sure, player 1 will
have no information about the outcomes of the chance moves e, and f; , whereas
player 2 will have no information about the outcomes of the chance moves e
and f; But these facts will not make G* a game with “incomplete” mformation
but will make 1t only a game with “imperfect” information (ef Footnote 2
above) Thus, our approach will basically amount to replacing a game G mvolving
wncomplete mformation, by a new game G which mvolves complete but imperfect
mformation, yet which 1is, as we shall argue, essentially equivalent to G from a
game-theoretical pomnt of view (see section 5 below)

As we shall see, this C-game G* which we shall use n the analysis of a given
I-game G will also admit of an alternative intuitive mterpretation Instead of
assuming that certamn important attributes of the players are determined by some
hypothetical random events at the beginning of the game, we may rather assume
that the players themselves are drawn at random from certain hypothetical popu-
lations contamning a mixture of individuals of different ‘“types’’, characterized by
different attribute vectors (1e, by different combinations of the relevant at-
tributes) For mnstance, 1n our duopoly example we may assume that each player
2(z = 1, 2) 1s drawn from some hypothetical population II, containing individuals
of different “types,” each possible “type” of player ¢ being characterized by a
different attribute vector ¢, , 1 e, by a different combination of production costs,
financial resources, and states of mformation Each player ¢ will know s own
type or attribute vector ¢, but will be, 1n general, ignorant of his opponent’s
On the other hand, both players will again be assumed to know the joint prob-
ability distribution R*(e, , ¢2) governing the selection of players 1 and 2 of differ-
ent possible types ¢ and ¢, from the two hypothetical populations II; and II,

It may be noted, however, that in analyzing a given I-game @, construction
of an equivalent C-game G™ 1s only a partial answer to our analytical problem,
because we are stil] left wath the task of defining a suitable solution concept for
this C-game G™ 1tself, which may be a matter of some difficulty This 1s so because
1n many cases the C-game G* we shall obtamn 1n this way will be a C-game of
unfamiliar form, for which no solution concept has been suggested yet in the
game-theoretical hiterature ° Yet, since G* will always be a game with complete
information, its analysis and the problem of defining a suitable solution concept
for 1t, will be at least amenable to the standard methods of modern game theory
We shall show 1n some examples how one actually can define appropriate solution
concepts for such C-games G*

¢ More particularly, this game G* will have the nature of a game with delayed commitment
(see section 11 1n Part II of this paper)
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2

Our analysis of I-games will be based on the assumption that, in dealing with
mcomplete mformation, every player ¢ will use the Bayesian approach That 1s
he will assign a subjective joint probability distribution P, to all varnables unknown
to him—or at least to all unknown ndependent vanables, 1 ¢, to all varables not
depending on the players’ own strategy choices Once this has been done he will
try to maximize the mathematical expectation of his own payoff z, in terms of
this probability distribution P, * This assumption will be called the Bayesian
hypothesis

If mcomplete information 1s mterpreted as lack of full mnformation by the
players about the normal form of the game, then such incomplete information
can arise 1n three main ways

1 The players may not know the physical outcome function ¥ of the game,
which specifies the physical outcome y = 17(s1, , 8,) produced by each
strategy n-tuple s = (&1, , $») available to the players

2 The players may not know their own or some other players’ ufility functions
X, , which specfy the utility payoff z, = X, (y) that a given player ¢ derives
from every possible physical outcome y *

3 The players may not know their own or some other players’ strategy spaces
S,, 1e, the set of all strategies s, (both pure and mixed) available to various
players ¢

All other cases of incomplete information can be reduced to these three basic
cases—indeed sometimes this can be done m two or more different (but essen-
taally equivalent) ways For example, ncomplete information may arise by some
players’ 1gnorance about the amount or the quality of physical resources (equip-
ment, raw matenals, etc ) available to some other players (or to themselves)
This situation can be equally mterpreted exther as 1gnorance about the physical
outeome function of the game (case 1), or as 1ignorance about the strategies avail-
able to various players (case 3) Which of the two interpretations we have to
use will depend on how we choose to define the ‘“‘strategies” of the players in
question For instance, suppose that in a military engagement our own side does
not know the number of fire arms of a given quahty avallable to the other side

7 A subjeciive probability distribution P, entertaned by a given player : 18 defined 1n
terms of his own choice behavior, ¢f [6] In contrast, an objeclive probability distribution
P* 18 defined 1n terms of the long-run frequencies of the relevant events (presumably as
established by an independent obgerver, say, the umpire of the game) It1soften convenent
to regard the subjective probabilities used by a given player 1 as being his personal estimates
of the corresponding objective probabilities or frequencies unknown to him

8 If the physical outcome y 18 sumply a vector of money payoffsy; , , Yn to the n players
then we can usually assume that any player +’s utihty payoff z, = X.(y.) 15 a (stnctly
mereasing) function of his money payoff ¥, and that all players will know this However,
the other players 7 may not know the specific mathematical form of player ¢’s utihty func-
tion for money, X, In other words, even though they may know player ¢'s ordinal utility
function, they may not know his cardinal utility function Thats to say, they may nnt know
how much r2sk he would be willing to take 1n order to increase his money payofl y. by given
amounts
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This can be mterpreted as mability on our part to predict the physical outcome
(re, the amount of destruction) resulting from alternative strategies of the
opponent, where any given ‘‘strategy’’ of his 1s defined as firing a given percentage
of his fire arms (case 1) But 1t can also be interpreted as mability to decide
whether certain strategies are available to the opponent at all, where now any
given “strategy” of his 1s defined as firing a specified number of fire arms (case 3)

Incomplete information can also take the form that a given player 2 does not
know whether another player 7 does or does not have mmformation about the
occurrence or non-occurrence of some specified event e Such a situation will al-
ways come under case 3 This 18 so because 1n a situation of this kind, from a game-
theoretical pomnt of view, the crucial fact 1s player +’s mability to decide whether
player 7 1s 1n a position to use any strategy s,u mvolving one course of action 1n
case event e does occur, and another course of action I case event ¢ does not
occur That 1s, the situation will essentially amount to ignorance by player 2 about
the avallability of certain strategies s, to player j

Going back to the three main cases hsted above, cases 1 and 2 are both special
cases of ignorance by the players about their own or some other players’ payoff
functions U, = X,(Y) specifying the utiity payoff x, = U,(s1, , 8n) & glven
player @ obtams if the n players use alternative strategy n-tuples s = (s,
Sn)

Indeed, case 3 can also be reduced to this general case This 18 so because the
assumption that a given strategy s, = s, 1s not avazlable to player ¢ 1s equivalent,
from a game-theoretical point of view, to the assumption that player : will never
actually use strategy s,” (even though 1t would be physically available to him)
because by using s,” he would always obtamn some extremely low (2 e, highly
negative) payoffs z, = U.,(s1, , 8 , Sa), whatever strategies s, , ,
841, Sl s , 8n the other players 1, v — 1,1+ 1, , T may be using

Accordmgly, let S ( 7 = 1ory = 1) denote the largest set of strategies s,
which m player 7’s opmion may be concewably mncluded in player +’s strategy
space S, Let S ¥ denote player +'s “true” strategy space Then, for the purposes
of our analysis, we shall define player +’s strategy space S, as

(21) S, = Up, S¥

We lose no generality by assuming that this set S, as defined by (2 1) 1s known
to all players because any lack of information on the part of some player 7 about
this set S, can be represented within our model as lack of information about the
numerical values that player +’s payoff function z, = U.(s1, , 8, , Sa)
takes for some specific choices of s, , and 1n particular whether these values are
so low as completely to discourage player 1 from using these strateges s, °
Accordingly, we define an I-game G as a game where every player j knows
the strategy spaces S, of all players+ = 1, 0 , 7 but where, i general,
he does not know the payoff functions U, of these players: = 1, R , N

)

? Likewise, instead of assuming that player 7 assigns subjective probabilities to events of
the form E = {s,° £ 8.}, we can always assume that he assigns these probabilities to events
of the form E = {U,(s1, , 84, , $n) < z.° whenever s, = 3,%, ete
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3.

In terms of this definition, let us consider a given I-game G from the pomnt of
view of a particular player ; He can write the payoff function U, of each player 1
(including his own payoff function U, for : = 7) m a more expleit form as

*
(31) I, = U|(31, ;Sn) = Vl (sly ,Sn; aOlyall; )au; ,aﬂl))

where V., unlike U, , 15 a function whose mathematical form 1s (1n player j’s
optnion) known to all n players, whereas ao, 1s a vector consisting of those parame-
ters of function U, which (in j’s opinion) are unknown to all players, and where
each ay, for k = 1, , 7 18 a vector consisting of those parameters of function
U, which (1 j’s opinion) are unknown to some of the players but are known to
player k If a given parameter a 1s known both to players k£ and m (without bemng
known to all players), then this fact can be represented by introducng two
vanables ax, and am, With a4, = am. = e, and then making ax, a component of
vector ax, while making a.,, a component of vector a.,,

For each vector ax, (k = 0, 1, , ), we shall assume that 1ts range space
Ai, = {ax}, 1 e, the set of all possible values 1t can take, 1s the whole Euchidian
space of the required number of dimensions Then 1°,* will be a function from the
Cartesian product S; X X 8. X 4o, X X 4., to player ’s utiity Iine
Z. , which 1s 1tself a copy of the real Iine R

Let us define a, as the vector combining the components of all n vectors ay, ,

, & Thus we write

(32) a = (@1, ),

fork = 0,1, ) 2 , n Clearly, vector a, summarizes the mformation that
(in player j’s opinton) none of the players has about the » functions U, , y Un
whereas vector a,(k = 1, , m) summarizes the mformation that (mn ’s

opmion) player k has about these functions, except for the information that (in
J’s opmion) all n players share about them For each vector a, , 1ts range space
will be the set Ay = {@} = Au X X Apn

In equation (3 1) we are free to replace each vector ax.(k = 0, , n) by the
larger vector a; = (aum, , Gks , Gkn), €ven though this will mean that 1n
each case the (n — 1) sub-vectors au , s Giam1) 5 Bk(s+1) 5 , &n will occur
vacuously in the resulting new equation Thus, we can write

(33) I, = V.*(Sl, y 8a , ao, a;, y @y ) aﬂ)

For any given player 2 the n vectors ao, a1, y Gl y Gyil , G, 10 general
will represent unknown varables, and the same will be true for the (n — 1)
vectors b, , y bty b, , b, to be defined below Therefore, under the
Bayesian hypothesis, player ¢ will assign a subjective jownt probability distribu-
tion

(3 4) PI = PI(GO)al) y @1, 1, » Gn bl’ ’b"llb"”l’ ’b")

to all these unknown vectors
For convemence we introduce the shorter notations a = (a,, , G,) and
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b= (b, , bn) The vectors obtained from a and b by omutting the sub-vector
a, and b, , respectively, will be denoted by a' and b* The corresponding range
spaces can be written as 4 = 4, X X A,,B = B; X X B,, A" =
Ay X X 4,4 X A.+1 X X A, , B* = B; X X B,.; X B.+1 X
x Bﬂ

Now we can write equations (3 3) and (3 4) as

(35) . = V.5(s1, .8 ,00,0)
(3 6) PI = Pl(a/ojaiy b‘)

where P, 1s a probability distribution over the vector space 4o X 4* X B'

The other (n — 1) players in general will not know the subjective probabilhity
distribution P, used by player + But player 7 (from whose pont of view we are
analyzmg the game) will be able to write P, for each player ¢z (both : = 7 and
1 # 7) mn the form

(3 7) P,(ao, at, bl) = Rl(aﬂ > alr bi | bl))

where R, , unbke P., is a function whose mathematical form 1s (i player ;’s
opinion) known to all n players, whereas b, 1s a vector consisting of those parame-
ters of function P, which (1n j’s opinion) are unknown to some or all of the players
k # 1 Of course, player 7 will realize that player + himself will know vector b,
since b, consists of parameters of player +’s own subjective probability distribu-
tion P,

The vectors b, , y b, b, , b, oceurring 1 equation (3 4), which so
far have been left undefined, are the parameter vectors of the subjective prob-
abihty distmbutions P, , Py, Py, , P, , unknown to player + The
vector b' oceurring m equations (3 6) and (37) 1s a combination of all these
vectors by, y b1, by, , b, , and summanzes the information that (in
player 7’s opinon) player 2 lacks about the other (n — 1) players’ subjective
probability distributions Py , , Py, Py, , P,

Clearly, function R, 18 a function yielding, for each specific value of vector b, ,
a probability distribution over the vector space A* X B*

We now propose to eliminate the vector ag , unknown to all players, from equa-
tions (3 5) and (37) In the case of equation (3 5) this can be done by taking
exrpected values with respect to ap In terms of player ¢’s own subjective probability
distribution P,(ae, a*, ") = R.(ao, a’,b"|b.) We define

(38) Vilsr, ,8,alb) =V.(s1, ,8.,a,b)
= f V:*(Sl y 8ny Qo, a,) d(,n)Rt(ao, a', b‘ | bz)
4p

Then we write
(3 9) T, = Vl(slr y Sa, 4, b.),

where z, now denotes the expected value of player +’s payoff 1n terms of his own
subjective probability distribution
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In the case of equation (37) we can eliminate ay by taking the appropriate
marginal probabihity distmibutions We define

(310) P(a,5) = [ danPula, a,b),
49

and

(311) R(a, b [b) = [ dupRi(a,a,5'(b)
4y

Then we write
(312) P.(a,b') = R,(a", 0" |Db.)
We now rewrite equation (39) as
(313) z, = V,(s, , 8,0, b, ,0") = Vs, , 8, ,a,0),
where vector b* occurs only vacuously Likewise we rewrite equation (3 12) as
(314) P(a',b') = R.(a', b |a.,b.),

where on the right-hand side vector @, oceurs only vacuously

Finally, we mmtroduce the defimtions ¢, = (a,,b,),c = (a,b),and ¢' = (a*,b")
Moreover, we write C, = A, X B,,C = A X B, and C' = 4* X B* Clearly,
vector ¢, represents the fotal information available to player 2 in the game (1f we
disregard the mformation available to all n players) Thus, we may call ¢, player
's information vector

From another point of view, we can regard vector ¢, as representing certain
physical, social, and psychological atiribules of player @ himself, in that 1t sum-
marizes some crucial parameters of player ¢’s own payoff function U, as well as
the main parameters of his beliefs about his social and physical environment
(The relevant parameters of player +’s payoff function U, again partly represent
parameters of his subjective utility function X, and partly represent parameters
of his environment, e g, the amounts of various physical or human resources
avalable to him, efc ) From this pownt of view, vector ¢, may be ecalled player
' attribute vector

Thus, under this model, the players’ incomplete information about the true
nature of the game situation 1s represented by the assumption that in general
the actual value of the attmbute vector (or information vector) ¢, of any given
player 2 will be known only to player : himself, but will be unknown to the
other (n — 1) players That 1s, as far as these other players are concerned,
¢, could have any one of a number—possibly even of an nfinite number—of
alternative values (which together form the range space C, = {c.} of vector ¢,)
We may also express this assumption by saying that m an /-game G, 1n general,
the rules of the game as such allow any given player 2 to belong to any one of
a number of possible “fypes”, corresponding to the alternative values his attri-
bute vector ¢, could take (and so representing the alternative payoff functions
U, and the alternative subjective probability distributions P, that player @
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might have in the game) Each player 1s always assumed to know his own actual
type but to be 1n general ignorant about the other players’ actual types
Equations (3 13) and (3 14) now can be written as

(315) z, = V.(s1, ,8,,¢) = V,(s1, , 8n, C1, , Cn)

(316) P.(c') = R.(c' ¢)

or

(317) P, , €41, Coal, ,6n) = R.(c1, , Coe1, Cotl > , Cn] €1)

We shall regard equations (3 15) and (3 17) [or (3 16)] as the standard forms
of the equations defimng an /-game @, considered from the pomt of view of some
particular player 7

Formally we define the standard form of a given I-game G for some particular
player 7 as an ordered set G such that

(318) G={Sl, ,Sn,CI, ;Cn,VI) )Vn;RI; )Rﬂ}

where for 2 = 1, , n we write S, = {s,}, C. = {¢}, moreover, where V, 1s
a function from the set S; X X8, XC X X C, to player ¢’s utility
Line =, (which 1s itself a copy of the real line R), and where, for any specific value
of the vector ¢, , the function R, = R,(c'| ¢,) 1s a probability distribution over
the set C‘ = C1 X X C|_1 X C‘+1 X X Cu

4.

Among C-games the natural analogue of this I-game G will be a C-game G*
with the same payoff functions V, and the same strategy spaces S, However,
1n G* the vectors ¢, will have to be remnterpreted as being random vectors (chance
moves) with an objective joint probability distribution

(41) R* = R*ai, ,c) =R%c)

known to all n players ™® (If some players did not know R*, then G* would not
be a C-game ) To make G* as similar to G as possible, we shall assume that
each vector ¢, will take 1ts values from the same range space C, m either game
Moreover, we shall assume that in game G*, just as 1n game G, when player ¢
chooses his strategy s,, he will know only the value of his own random vector
¢, but will not know the random vectors ¢, , s Corty Cop1, , €a Of the other
(n — 1) players Accordingly we may again call ¢, the wnformation vector of
player

Alternatively, we may again interpret this random vector ¢, as representing
certain physical, social, and psychological attributes of player 2 humself (But,
of course, now we have to assume that for all n players these attributes are de-
termined by some sort of random process, governed by the probabihity distribu-
tion R* ) Under this mterpretation we may agaimn call ¢, the attribute vector of
player 2

1» Agsumuing that a joint probability distribution R* of the required mathematical form
exists (see section 5 below, as well as Part III of this paper)
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We shall say that a given C-game G* 1s 1n standard form 1f

1 the payoff functions V, of G* have the form indicated by equation (3 15),

2 the vectors ¢, , €, oceurring 1n equation (3 15) are random vectors
with a jomnt probability distribution R* [equation (4 1)] known to all players,

3 each player ¢ 1s assumed to know only his own vector ¢, , and does not
know the vectors ¢ , y Coly Cot1 s , ¢a of the other players when he chooses
his strategy s,

Sometimes we shall again express these assumptions by saying that the rules
of the game allow each player 2 to belong to any one of a number of alternative
types (corresponding to alternative specific values that the random vector ¢,
can take), and that each player will always know his own actual type, but 1n
general will not know those of the other players

Formally we define a C-game G* m standard form as an ordered set G* such
that

(42) G*={SI) )Sn;Cl) 7Cﬂ:Ifl, ;Vﬂ)R*}

Thus, the ordered set G* differs from the ordered set G [defined by equation
(3 18)] only 1 the fact that the n-tuple R, , , B. occurring 1 @ 1s replaced
m G* by the singleton B*

If we consider the normal form of a game as a special hmiting case of a standard
form (viz as the case where the random vectors ¢, , C, are empty vectors
without components), then, of course, every C-game has a standard form
But only a C-game G* contaming random varables (chance moves) will have
a standard form non-trivially different from 1ts normal form

Indeed, f G* contains more than one random variable, then 1t will have
several different standard forms This 1s so because we can always obtain new
standard forms G**—intermediate between the orgmnal standard form G*
and the normal form G***—if we suppress some of the random variables occur-
rng 1n G*, without suppressing all of them (as we would do f we wanted to
obtamn the normal form G*** itself) Ths procedure can be called partal nor-
malization as distinguished from the full normalization, which would yield the
normal form G*** ¥

5.

Suppose that G 1s an I-game (considered from player 7’s pownt of view) while
G* 15 a C-game, both games being given 1n standard form To obtain complete
similarity between the two games, 1t 1s not enough if the strategy spaces S;,

, S, the range spaces C,, , C,., and the payoff functions V,, , Va

11 Partial normalization mvolves essentially the same operations as full normalization
(see section 7 below) It involves taking the expected values of the payoff functions ¥V, with
respect to the random varables to be suppressed, and redefining the players’ strategies
where necessary However, 1n the case of partial normalization we also have to replace the
probability distribution R* of the original standard form G*, by a marginal probability
distribution not contaiming the random variables to be suppressed (In the case of full
normalization no such marginal distribution has to be computed because the normal form
G*** wll not contain random vanables at all )
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of the two games are the same It 1s necessary also that each player 2 in either
game should always assign the same numerical proababibty p to any given
spectfic event £ Yet in game G player ¢ will assess all probabilities 1n terms of
his subjective probabihty distribution R,(c'|c,), whereas in game G*—since
vector ¢, 18 known to him—he will assess all probabilities 1n terms of the ob-
jective conditronal probability distribution R*(c'|c.) generated by the basic
probability distribution R*(¢) of the game G* Therefore, 1f the two games are
to be equivalent, then numerically the distributions R,(c'|¢,) and R*(¢'|c,)
must be 1dentically equal

This leads to the following definition Let G be an I-game (as considered by
player 7), and let G* be a C-game, both games bemng given in standard form
We shall say that G and G* are Bayes-equwalent for player 7 1f the following
conditions are fulfilled

1 The two games must have the same strategy spaces S;, , S, and the
same range spaces C; , , Cn
2 They must have the same payoff functions V,, , Va

3 The subjective probability distribution R, of each player ¢ in G must satisfy
the relationship

(51) R,(C‘I a) = R*(C‘I ),

where R*(¢) = R*(c,, ¢') 1s the basic probabihity distribution of game G* and
where

(52) R'(Cle) = B*(e.,¢) / [ denR(e )
CI
In view of equations (51) and (5 2) we can write
(53) R*(e) = R*(cr,) = R(¢'l0) [ deoR(c., )

In contrast to equation (52), which ceases to have a clear mathematical mean-
ing when the denominator on 1ts right-hand side becomes zero, equation (5 3)
always retains a clear mathematical meaning

We propose the following postulate

Postulate 1 Bayes-equivalence Suppose that some I-game G and some C-game
G* are Bayes-equivalent for player 5 Then the two games will be completely
equivalent for player y from a game-theoretical standpoint, and, in particular,
player 7’s strategy choice will be governed by the same decision rule (the same
solution concept) 1n erther game

This postulate follows from the Bayesian hypothesis, which imphes that
every player will use his subjective probabihities exactly i the same way as he
would use known objective probabihities numerically equal to the former Game
G (as assessed by player 7) and game G* agree m all defining characterstics,
mncluding the numencal probability distributions used by the players The only
dafference 1s that 1 G the probabilities used by each player are subjective prob-
abilities whereas m G* these probabilities are objective (conditional) probabili-
ties But by the Bayvesian hypothesis this difference 1s immatenal



GAMES WITH INCOMPLETE INFORMATION 175

Of course, under the assumptions of the postulate, all we can say is that
for player ) humself the two games are completely equivalent for game-theoretical
purposes We cannot conclude on the basis of the information assumed that the
two games are hkewise equivalent also for some other players k # 7 In order
to reach this latter conclusion we would have to know that G and G* would
preserve their Bayes-equivalence even if G were analyzed 1 terms of the fune-
tions Vi, , V. and R, , I, postulated by these other players k, instead
of being analyzed 1n terms of the functions Vy, , Vaand R, , K. postu-
lated by player 7 himself But so long as we are interested only i the decision
rules that player 7 himself will follow 1n game G, all we have to know are the
functions V7, V.and Ry, R, that player 3 will be using

Postulate 1 naturally gives rise to the following questions Given any I-game
G, 18 1t always possible to construct a C-game G* Bayes-equivalent to G? And,
1n cases where this 1s possible, 1s this C-game G* always uruque? These questions
are tantamount to asking whether for any arbitranly chosen n-tuple of subjective
probability distributions Ri(c'| ¢1), , R.(c"| ¢a), there always ezists a prob-
ability distmbution R*(ey, , ¢») satisfying the functional equation (53),
and whether this distribution R* 1s always unique m cases where 1t does exist
As these questions require an extended discussion, we shall answer them 1n
Part I1I of this paper (see Theorem IIT and the subsequent heuristic discussion)
We shall see that a given I-game G will have a C-game analogue G* only if G
itself satisfies certamn consistency requirements On the other hand, if such a
C-game analogue G* exists for G then 1t will be “essentially” unique (in the sense
that, 1n cases where two different C-games @,*, and G.* are both Bayes-equiva-
lent to a given I-game G, 1t will make no difference whether we use Gy* or G,*
for the analysis of G) In the rest of the present Part I of this paper, we shall
restrict our analysis to I-games G for which a Bayes-equivalent C-game analogue
G* does exist

As we shall make considerable use of Bayes-equivalence relationships between
certamn I-games G and certamn C-games G* given m standard form, 1t will be
convenient to have a short designation for the latter Therefore, we shall ntro-
duce the term Bayesian games as a shorter name for C-games G* given i stand-
ard form Depending on the nature of the I-game G we shall be dealing with m
particular cases, we shall also speak of Bayesian two-person zero-sum games,
Bayesian bargaining games, etc

6.

In view of the important role that Bayesian games will play 1n our analyss,
we shall now consider two alternative (but essentially equivalent) models for
these games, which for some purposes will usefully supplement the model we
have defined 1 Sections 4 and 5

So far we have defined a Bayesian game G* as a game where each player’s

payoff z, = V.(s1, , 8, C1, , €») depends, not only on the strategies
1, , 8, chosen by the n players, but also on some random vectors (informa-
tion vectors or attnibute vectors) ¢, , ¢n It has also been assumed that all

players will know the jomnt probabihity distmbution R*(e;, , ) of these
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random vectors, but that in general the actual value of any given vector c,
will be known only to player :+ himself whose information vector (or attribute
vector) 1t represents This model will be called the random-vector model for
Bayesian games

An alternative model for Bayesian games can be described as follows The
actual individuals who will play the roles of players 1, , n m game G* on
any given occasion, will be selected by lot from certain populations 1T, , , I,
of potential players Each population II, from which a given player < 1s to be
selected will contain mdividuals with a variety of different attributes, so that
every possible combrnation of attributes (1 e, every possible “type” of player 1),
corresponding to any specific value ¢, = ¢.’ that the attribute vector ¢, can take
m the game, will be represented in this population II, If i population II, a
given ndividual’s attribute vector c, has the specific value ¢, = ¢,”, then we shall
say that he belongs to the attribute class ¢,” Thus, each population II, will be
partitioned nto that many attribute classes as the number of different values
that player +’s attribute vector ¢, can take 1n the game

As to the random process selecting n players from the n populations II; ,

, I, , we shall assume that the probabihty of players 1, , n bemng selected
from any specific n-tuple of attribute classes ¢;’, , ¢a’ will be governed”
by the probability distribution R*(c; , , ¢a) We shall also retain the assump-
tions that this probabihty distribution R* will be known to all n players, and
that each player 2 will also know his own attribute class ¢, = ¢,” but, in general,
will not know the other players’ attribute classes ¢; = ¢, , €1 = Coy,
Copt = Cip1, , ¢a = Ca As i this model the lottery by which the players
are selected occurs prior to any other move m the game, 1t will be called the
pror-lottery model for Bayesian games.

Let G be a real-life game situation where the players have mcomplete mnfor-
mation, and let G* be a Bayesian game Bayes-equivalent to G (as assessed by a
given player 7) Then this Bayesian game G”, mterpreted i terms of the prior-
lottery model, can be regarded as a possible representation (of eourse a highly
schematic representation) of the real-hfe random social process which has ac-
tually created this game situation G More particularly, the prior-lottery model
pietures this social process as 1t would be seen by an outside observer having
mmformation about some aspects of the situation but lacking information about
some other aspects He could not have enough information to predict the attr-
bute vectors ¢; = ¢, , €» = ¢, of the n individuals to be selected by this
social process to play the roles of players 1, , n 1o game situation G But he
would have to have enough information to predict the joint probability distr-
bution R* of the attribute vectors ¢ , , ¢n of these n individuals, and, of

12 Under our assumptions 1n general the selection of players 1, , n from the respective
populations I, , , I will not be statistically independent events because the probability
distribution R*(c, , , ¢a) 10 general will not permit of factorization into n independent
probability distributions Ri*(ci), , Rn*(ca) Therefore, strictly speaking, our model
postulates simultaneous random selection of a whole player n-tuple from a population II
of all possible player n-tuples, where II 18 the Cartesian product II = II; X X I
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course, also to predict the mathematical form of the payoff functions V,,

, Va (But he could not have enough wmformation to predict the payoff
functions Uy, , Un because this would require knowledge of the attribute
vectors of all n players )

In other words, the hypothetical observer must have exactly all the mforma-
tion common to the n players, but must not have access to any additional mfor-
mation private to any one player (or to any sectional group of players—and,
of course, he must not have access to any information maccessible to all of the
n players) We shall call such an observer a properly wnformed observer Thus,
the prior-lottery model for Bayesian games can be regarded as a schematic
representation of the relevant real-life social process as seen by a properly in-
formed outside observer

As an example, let us again consider the price-competition game G with n-
complete information, and the corresponding Bayesian game G*, discussed m
Section 1 above Here each player’s attribute vector ¢, will consist of the vana-
bles defining his cost functions, his financial resources, and his facilities to collect
information about the other player *® Thus, the prior-lottery model of G* will
be a model where each player 1s chosen at random from some population of
possible players with different cost functions, different financial resources, and
different, information-gathering facihities We have argued that such a model can
be regarded as a schematic representation of the real-life social process which
has actually produced the assumed competitive situation, and has actually
determined the cost functions, financial resources, and mmformation-gathering
facilities, of the two players

Dr Selten has suggested™ a third model for Bayesian games, which we shall
call the Selien model or the posterior-lottery model Its basic difference from the
prior-lottery model consists 1 the assumption that the lottery selecting the
active participants of the game will take place only after each potential player
has chosen the strategy he would use 1 case he were 1n fact selected for active
participation mn the game

More particularly, suppose that the attribute vector ¢, of player z (z = 1,

, n) can take k, different values in the game (We shall assume that all
k.’s are fimte but the model can be easily extended also to the infinite case )
Then, mstead of having one randomly selected player 2 1n the game, we shall
assume that the role of player : will be played at the same time by k, different
players, each of them representing a different value of the attribute vector c,
The set of all k, individuals playing the role of player 7 in the game will be called
the role class 1+ Different individuals m the same role class : will be distinguished
by subseripts as players 1, 2, Under these assumptions, obviously the
total number of players in the game will not be n but rather will be the larger
(usually much larger) number

61) K= XMk,

13 Cf Footnote 4 above
U In private communication (ef Footnote 1 above)
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It will be assumed that each player 2., from a given role class + will choose
some strategy s, from player ¢’s strategy space S, Different members of the same
role class 1 may (but need not) choose different strategies s, from this strategy
space S,

After all K players have chosen their strategies, one player 2., from each role
class 2 will be randomly selected as an actwe player Suppose that the attribute
vectors of the n active players so selected will be ¢; = ¢, , 6 = ¢, and
that these players, prior to their selection, have chosen the strategies s; = s’

, 8» = s». Then each active player 1., , selected from role class 1, will obtain
a payoff

(6 2) r, = V|<sloy » snoy clox ] cﬂo)

All other (K — n) players not selected as active players will obtain zero payoffs

It will be assumed that, when the n active players are randomly selected from
the n role classes, the probability of selecting individuals with any specific
combination of attribute vectors ¢; = ¢,°, , €a = ¢, will be governed by the
probability distribution R*(¢; , ,Cn)

It 18 easy to see that in all three models we have discussed—in the random-
vector model, the prior-lottery model, and the posterior-lottery model—the
players’ payoff functions, the information available to them, and the probabihty
of any specific event 1n the game, are all essentially the same ™ Consequently,

18 In actual fact, we could just as well assume that each player would choose his strategy
only after the lottery, and after being informed whether this lottery has selected um as an
active player or not (Of course if we made this assumption then players not selected as
active players could simply forget about choosing a strategy at all ) From a game-theoret1-
cal point of view this assumption would make no real difference so long as each active player
would have to choose his strategy without being told the names of the other players selected
as active players, and 1n particular without being told the attribute classes to which these
other active players would belong

Thus the fundamental theoretical difference between our second and third models 1s not
so much 1n the actual tzming of the postulated lottery as such It 1s not so much in the fact
that 1n one case the lottery precedes, and 1n the other case 1t follows, the players’ strategy
choices The fundamental difference rather lies 1n the fact that our second model (like our
first) conceives of the game as an n-person game, 1n which only the n active players are
formally ‘“‘players of the game’’, whereas our third model conceives of the game as a K-per-
son game, 1n which both the active and the 1nactive players are formally regarded as “play-
ers” Yet, to make 1t easier to avoid confusion between the two models, 1t 1s convement to
assume also a difference 1n the actual timing of the assumed lottery

* Technieally speaking, the players’ effective payoff functions under the posterior-
lottery model are not quite 1dentical with their payoff functions under the other two models,
but this difference 18 immaterial for our purposes Under the posterior-lottery model, let
r = r.(c.") be the probability (marginal probability) that a given player 1. with attribute
vector ¢, = ¢,° will be selected as the active player from role class + Then player 2. will
have the probability r of obtaining a payoff corresponding to the payoff function V, and
will have the probability (1 — r) of obtaiming a zero payoff whereas under the other two
models each player : will always obtain a payoff corresponding to the payoff function V,
Consequently, under the posterior-lottery model player n's expected payoff will be only 7
times (0 < r = 1) the expected payoff he could anticipate under the other two models How-
ever, under most game-theoretical solution concepts (and 1n particular under all solution
concepts we would ourselves choose for analyzing game situations), the solution of the game
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all three models can be considered to be essentially equivalent But, of eourse,
formally they represent quite different game-theoretical models, as the random-
vector model corresponds to an n-person game G* with complete information,
whereas the posterior-lottery model corresponds to a K-person game G** with
complete information In what follows, unless the contrary 1< indicated, by the
term “Bayesian game” we shall always mean the n-person game G* corresponding
to the random-vector model, whereas the K-person game G** corresponding to
the posterior-lottery model will be called the Selter game

In contrast to the other two models, the prior-lottery model formally does
not qualify as a true ‘“game” at all because 1t assumes that the n players are
selected by a chance move representing the first move of the game, whereas
under the formal game-theoretical defimtion of a game the 1dentity of the players
must always be known from the very beginning, before any chance move or
personal move has occurred 1n the game

Thus, we may characterize the situation as follows The real-hfe social process
underlying the I-game G we are considering 1s best represented by the prior-
lottery model But the latter does not correspond to a true ‘“‘game” m a game-
theoretical sense The other two models are two alternative ways of converting
the prior-lottery model mnto a true “‘game’” In both cases this conversion entails
a price mn the form of introducing some unrealistic assumptions In the case of
the posterior-lottery model corresponding to the Selten game G**, the price
consists 1 mtroducing (K — =) fictitious players in addition to the n real
players participating 1n the game "

In the case of the random-vector model corresponding to the Bayesian game
G*, there are no fictitious players, but we have to pay the price of making the
unrealistic assumption that the attribute vector ¢, of each player 2 1s determined
by a chance move affer the beginning of the game—which seems to mmply that
player 2 will be 1n existence for some period of time, however short, during which
he will not know yet the specific value ¢, = ¢, his attribute vector ¢, will take
So long as the Bayesian game G corresponding to the random-vector model 18
being considered 1n 1ts standard form, this unreahistic assumption makes very
httle dufference But, as we shall see, when we convert G* mnto 1ts normal form
this unrealistic assumption mmplhed by our model does cause certain techniecal
difficulties, because 1t seems to commut us to the assumption that each player
can choose his normalized strategy (1 e, hus strategy for the normal-form version
of G*) before he learns the value of his own attribute vector ¢, An mmportant
advantage of the Selten game G** hes m the fact that 1t does not require this
particular unrealistic assumption we are free to assume that every player i,

will remain 1nvariant if the players’ payoff functions are multiplied by positive constants 7
(even 1f different constants r are used for different players)

In any case, the posterior-lottery model can be made completely equivalent to the other
two models 1f we assume that each active player 2., will obtain a payoff corresponding to the
payoff function V./r,(c,?), instead of obtauning a payoff corresponding to the payoff func-
tion V, as such [as prescribed by equation (6 2)]

17 This will be true even 1f we change the timing of the assumed lottery in Selten’s model
(see Footnote 15 above)
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will know his own attribute vector ¢, from the very beginning of the game,
and will always choose his own strategy i hight of this information '

Thus, as analytical tools used in the analysis of a given I-game G, both the
Bayesian game G* and the Selten game G** have therr own advantages and
dsadvantages *°

7.

Let G be an I-game given 1n standard form, and let G* be a Bayesian game
Bayes-equivalent to ¢ Then we define the normal form 91(G) of this I-game
@ as beng the normal form 91(G”*) of the Bayesian game G*

To obtain this normal form we first have to replace the strategies s, of each
player © by normalized strategies s,* A normalized strategy s.* can be regarded
as a conditional statement specifying the strategy s, = s,"(c.) that player ¢
would use 1f his mformation vector (or attribute vector) ¢, took any given
specific value Mathematically, a normahzed strategy s,* 1s a function from the
range space C, = {c,} of veetor ¢, to player s strategy space S, = {s} The
set of all possible such functions s,* 1s called player #’s normahzed-strategy
space S.* = {s,*} In contrast to these normalized strategies s,*, the strategies
s, avatlable to player 2 1n the standard form of the game will be called his ordinary
strategres

If 1n a given game the information vector ¢, of a certan player 2 can take only
k different values (with k finite) so that we can write

(7 1) c, = Clly ) clky

then any normalized strategy s,* of this player can be defined simply as a k-
tuple of ordinary strategies

(72) s.* = (stly ’ stk)y

where 5,” = 5,%(c,"), with m = 1, , k, denotes the strategy that player ¢
would use mn the standard form of the game if his information vector ¢, took
the specific value ¢, = ¢, In this case player +’s normalized strategy space
S,* = {s,*] will be the set of all such k-tuples s,*, that 1s, 1t will be the k-times
repeated Cartesian product of player ¢’s ordinary strategy space S, by 1tself
Thus we can write 8,* = 8.'X X8 with 8,' = =8F=38,

Under erther of these definitions, the normalized strategies s,* will not have
the nature of mized strategies but rather that of behavoral strategies Never-

18 Moreover, as Selten has pointed out, his model also has the advantage that 1t can be
extended to the case where the subjective probability distributions R; , , Ky of a given
I-game G fail to satisfy the required consistency conditions, so that no probability distribu-
tion R* satisfying equation (53) will exist, and therefore no Bayesian game G* Bayes-
equivalent to G can be constructed at all In other words, for any I-game G we can always
define an equivalent Selten game G**, even 1n cases where we cannot define an equivalent
Bayesian game G* (See Section 15, Part IIT)

¥ We have given intuitive reasons why a Bayesian game G* and the corresponding Selten
game G** are essentially equivalent For a more detailed and more ngorous game-theoreti-
cal proof the reader 1s referred to a forthcoming paper by Reinhard Selten
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theless, these definitions are admissible because any game G* n standard form
1s & game of perfect recall, and so 1t will make no difference whether the players
are assumed to use behavioral strategies or mixed strategies [4]

Equation (3 15) can now be written as

(7 ?’) T, = V,(S1*(Cl), y Sn*(cn): a, ) C,.) = Vu(sl*: ’ sn*; C)

In order to obtain the normal form 91(G) = 9U(G*), all we have to do now 1s
to take expected values in equation (7 3) with respect to the whole random
vector ¢, 1n terms of the basic probabiity distribution R*(c) of the game We
define

(74)  &(z) = W.(s*, ,s°) = f Vs, 8% ¢) d.R*(¢)

Since each player will treat his expected payoff as his effective payoff from the
game, we can replace §(z,) sumply by z, and write

(7 5) Ty, = ]Trl('sl*; ) sﬂ*)
We can now define the normal form of games G and G* as the ordered set
(76) (@) = G = (8", LS8, Wi, Wl

Compared with equations (3 18) and (4 2) defining the standard forms of
these two games, 1n equation (7 6) the ordmary strategy spaces S, have been
replaced by the normalized strategy spaces S.*, and the ordinary payoff func-
tions V', have been replaced by the normahzed payoff functions W, On the other
hand, the range spaces C, as well as the probability distributions R, or R* have
been omitted because the normal form 9(G) = N(G*) of games G and G* does

not any more mnvolve the random vectors ¢, , Cn
This normal form, however, has the disadvantage that 1t 1s defined 1n terms
of the players’ unconditional payoff expectations &(z,) = W.(s", L 8.5),

though 1n actual fact each player’s strategy choice will be governed by his
conditronal payoff expectation &(z.|¢.), because he will always know his own
mnformation vector ¢, at the time of making his strategy choice This conditional
expectation can be defined as

(7 7) 8(17@'61) = Z‘I(sl*) )sﬂ*’ci) =./;“ Vl(sl*, 1871*; ciyc‘)d(c')R*(cllcl)

To be sure, 1t can be shown (see Theorem I of Section 8, Part II) that if
any given player : maximizes his unconditional payoff expectation W,, then
he will also be maximizing his condufronal payoff expectation Z,( |¢,) for each
specific value of ¢, , with the possible exception of a small set of ¢, values which
can occur only with probability zero In this respect our analysis bears out von
Neumann and Morgenstern’s Normahzation Principle [7, pp 79-84], according
to which the players can safely restrict theiwr attention to the normal form of
the game when they are making their strategy choices

However, owing to the special nature of Bayesian games, the Normalization



182 JOHN C HARSANYI

Principle has only restricted validity for them, and their normal form 91(G*)
must be used with special care, because solution concepts based on uncritical
use of the normal form may give countermtuitive results (see Section 11 of
Part II of this paper) In wview of this fact, we shall introduce the concept of a
semi-normal form The semi-normal form $(G) = $(G*) of games G and G*
will be defined as a game where the players’ strategies are the normalized strate-
gies s,* described above, but where their payoff functions are the conditzonal
payoff-expectation functions Z,( | ¢,) defined by equation (77) Formally we
define the semi-normal form of the games G and G* as the ordered set

(7 8) S(G) = S(G*) = {Sl*y ) Sn*; Cl ) ] Cﬂ )y Zl ] ] Zn ) R*}
As the semi-normal form, unbke the normal form, does mnvolve the random
vectors ¢ , , ¢n, now the range spaces C, , Cn, and the probabihity

distnbution R*, which have been omutted from equation (7 6), reappear mn
equation (7 8)

Instead of von Neumann and Morgenstern’s Normalization Principle, we
shall use only the weaker Semi-normahzation Principle (Postulate 2 below),
which 1s imphed by the Normalization Principle but which does not 1tself imply
the latter

Postulate 2 Sufliciency of the Semi-normal Form The solution of any Bayesian
game G, and of the Bayes-equivalent I-game @, can be defined 1n terms of the
semi-normal form $(G*) =5(G), without gomng back to the standard form of
G* or of @
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