IN 5204 - Organización Industrial Repaso curso Estrategia y Teoria de Juegos

R. Fischer CEA-DII Universidad de Chile

Agosto 2013

¡Bienvenidos!

- Me llamo Ronald Fischer
 - Pueden llamarme Ronald, Profesor Fischer, profe, etc.
 - Me interesan sus ideas y su participación.
 - Si me equivoco, corríjanme. Si están en desacuerdo, díganlo.
- Este es IN5204, viene después del curso de Juegos.
- Primeras clases son nuevas, repasan el curso anterior con casos.
- Este curso cubre:
 - Comportamiento de mercados con competencia imperfecta.
 - Políticas regulatorias y antimonopolios.
- Usaré transparencias porque tengo mala letra.
- Les haré preguntas sorpresa, y espero tengan buenas respuestas.

,

- El objetivo principal es ayudarlos a entender la (micro-)economía en el mundo que los rodea.
- Quando sean ejecutivos, tengan empresas, o trabajen en el Estado, y enfrenten problemas (micro-)económicos, no confundan temas accesorios con temas fundamentales.
- No todas las preguntas (micro-)económicas tienen respuestas precisas, pero el curso les dará herramientas útiles para entenderlas.

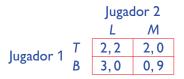
Información útil

- Mi oficina es la 409 del DII.
- Mis horas de oficina son MA-JU, 16:00–17:00 (Llamar previamente a Lina Canales, 978-4058)
- Lecturas están en u-cursos.
- Hay apuntes para el curso en u-cursos.
- Los 2 primeros capítulos de los apuntes son útiles para repasar (o aprender si no se hizo el curso de teoría de juegos y estrategia).
- Las lecturas obligatorias son controladas (y pueden variar).
- Las lecturas opcionales se preguntan en pruebas por puntaje extra.
 También pueden cambiar.
- Cuatro(¿tres?) controles, sin CTP's.

Contenidos esta parte del curso

- Presentación
- Repaso teoría de juegos
 - Conceptos y definiciones
 - Equilibrio perfecto en el subjuego
- Repaso riesgo moral
 - Definiciones
 - Problemas de financiamiento.
- Selección adversa
 - Seguros

Repaso teoría de juegos: Forma normal


Definición (Un juego en forma normal esta formado por:)

- Jugadores racionales $i \in 1, ..., n$.
- ② Estrategias $s_i \in S_i$ de cada jugador. $s \equiv (s_i)_{i=1}^n \in S = \prod_{i=1}^n S_i$ es una combinación de estrategias.
- Pagos u_i(s) a cada jugador.

Repaso teoría de juegos: Forma normal

Definición (Un juego en forma normal esta formado por:)

- Jugadores racionales $i \in 1, ..., n$.
- ② Estrategias $s_i \in S_i$ de cada jugador. $s \equiv (s_i)_{i=1}^n \in S = \prod_{i=1}^n S_i$ es una combinación de estrategias.
- Pagos u_i(s) a cada jugador.

Definición

Present a ción

Una estrategia s^{*} de un jugador i es mejor respuesta a s_{-i} si

$$u_i(s_i^*, s_{-i}) \geq u_i(s_i, s_{-i}), \forall s_i \in S_i$$

Conceptos de solución

Definición

Una estrategia s_i^* de un jugador i es mejor respuesta a s_{-i} si

$$u_i(s_i^*, s_{-i}) \geq u_i(s_i, s_{-i}), \forall s_i \in S_i$$

Definición

Una estrategia s_i^* del jugador i es dominante si es mejor respuesta ante todas las estrategias de los demás jugadores:

$$u_i(s_i^*, s_{-i}) \geq u_i(s_i, s_{-i}), \forall s_i, \forall s_{-i}.$$

con desigualdad estricta para algún si.

Conceptos de solución

Definición

Una estrategia s_i^* de un jugador i es mejor respuesta a s_{-i} si

$$u_i(s_i^*, s_{-i}) \geq u_i(s_i, s_{-i}), \forall s_i \in S_i$$

Definición

Una estrategia s_i^* del jugador i es dominante si es mejor respuesta ante todas las estrategias de los demás jugadores:

$$u_i(s_i^*,s_{-i})\geq u_i(s_i,s_{-i}), \ \forall s_i, \ \forall s_{-i}.$$

con desigualdad estricta para algún si.

Definición

Una combinación de estrategias $s^* \equiv (s_i^*)_{i=1}^n$ es un equilibrio en estrategias dominantes si cada s_i^* es dominante.

Ejemplos

Ejemplo

(Estrategia dominante)

Ejemplos

Ejemplo

(Estrategia dominante)

Jugador 1
$$\begin{array}{c|cccc} & L & M \\ \hline Jugador 1 & T & 10,10 & 10,-10 \\ B & 10,-10 & -10,10 \end{array}$$

Ejemplos

Ejemplo

(Estrategia dominante)

Ejemplo

(Dilema del prisionero)

El problema de los comunes

Ejemplo

(Colaboración)

- n vecinos
- desean mejorar la plaza
- Si cada uno contribuye con $v_j, j = 1...n$, beneficio es $\sum_{i=1}^{n} \ln(v_i) v_j.$
- ¿Cómo comparan la solución óptima con la solución real, no-cooperativa?

En la solución óptima, se maximiza la suma de los beneficios individuales, con todos actuando igual.

Present a ción

Estudio: La pesca del jurel

• El jurel es una especie demersal 🕒 Ir a Distr. Jurel

- El jurel es una especie demersal.
- Parte de la zona de captura de jureles adultos ocurre en la Zona Económica Exclusiva (ZEE) Jurely ZEE

Present a ción

- El jurel es una especie demersal.
- Parte de la zona de captura de jureles adultos ocurre en la Zona Económica Exclusiva (ZEE).
- Industriales capturan tanto en la ZEE como fuera de ella.

- El jurel es una especie demersal Ir a Distr. Jurel
- Parte de la zona de captura de jureles adultos ocurre en la Zona Económica Exclusiva (ZEE).
- Industriales capturan tanto en la ZEE como fuera de ella. ► Ir a Captura Industrial
- La captura del jurel se ha reducido notablemente.

- El jurel es una especie demersal Ir a Distr. Jurel
- Parte de la zona de captura de jureles adultos ocurre en la Zona Económica Exclusiva (ZEE).
- Industriales capturan tanto en la ZEE como fuera de ella. ► Ir a Captura Industrial
- La captura del jurel se ha reducido notablemente.
- Industriales chilenos acusan a la pesca internacional en aguas fuera de la Zona Económica Exclusiva.

- El jurel es una especie demersal.
- Parte de la zona de captura de jureles adultos ocurre en la Zona Económica Exclusiva (ZEE).
- Industriales capturan tanto en la ZEE como fuera de ella.
- La captura del jurel se ha reducido notablemente.
- Industriales chilenos acusan a la pesca internacional en aguas fuera de la Zona Económica Exclusiva.
- Además, hay una lucha interna entre industriales y
 (semi-)industriales –supuestamente artesanales– por la división de la
 cuota. Capturas "Artesanales"–Industriales.

- El jurel es una especie demersal.
- Parte de la zona de captura de jureles adultos ocurre en la Zona Económica Exclusiva (ZEE).
- Industriales capturan tanto en la ZEE como fuera de ella. ► Ir a Captura Industrial
- La captura del jurel se ha reducido notablemente.
- Industriales chilenos acusan a la pesca internacional en aguas fuera de la Zona Económica Exclusiva.
- Además, hay una lucha interna entre industriales y
 (semi-)industriales –supuestamente artesanales– por la división de la
 cuota. Capturas "Artesanales"-Industriales.
- No se capturan las cuotas (al menos industriales).

Modelo estático del jurel con costos de extracción

- ullet q_i : Captura y esfuerzo de agente $i=1\ldots n$. $Q=\sum q_i$
- Costo marginal constante de extracción C por unidad de esfuerzo.
- ullet Función de captura agregada H(Q), cóncava, con máximo interno.
- Precios del jurel normalizados a 1.
- Retorno promedio $\phi(Q) = H(Q)/Q$ decreciente.
- La utilidad del agente i es $\pi_i(q_i, q_{-i}) = q_i(\phi(Q) c)$.
- Bienestar total: $\sum \pi_i(q_i,q_{-i}) = Q(\phi(Q)-c) = H(Q)-cQ$

Cont...

Maximizando el bienestar total:

$$\operatorname{Max}_{Q} H(Q) - cQ \Rightarrow \Longleftrightarrow \phi(Q) + Q\phi'(Q) = c$$

Costo marginal igual al beneficio marginal.

Libre entrada: empresas entran hasta que

$$0 = \pi_i(q, (n-1)q) = q\underbrace{(\phi(Q) - c)}_{(=0)}$$

Situación en la industria pre-1981(?), $Q^{LE} > Q^*$. Jurel costos pesca

Control de acceso

- Solo n participantes.
- Cada empresa maximiza q_i considerando q_{-i} fijo.
- Equilibrio de Nash: Para todo i:

$$0 = \frac{\partial}{\partial q_i} \pi_i(q_i^N, q_{-i}^N) \Longrightarrow \phi(Q^N) + q_i^N \phi'(Q^N) = c.$$

- Simetría: $\phi(Q^N) + \frac{Q^N}{r} \phi'(Q^N) = c$.
- Si $n=1 \Rightarrow Q^*$ Si $n=\infty \Rightarrow Q_{LE}$
- Si $1 < n < \infty$. $Q^* < Q^N < Q_{IF}$

La carrera olímpica

- El problema de la captura excesiva se resuelve con una cuota global.
- ¿Resuelve esto todos los problemas?
- Empresas compiten por la cuota: sobreinvierten, pescan rápido, sin uso el resto del año.
- Solución: Cuotas individuales de pesca.
- ¿Deberían ser gratis o licitadas?

Equilibrio de Nash

Definición

Un equilibrio de Nash es s* tal que $\forall i, \forall s_i \in S_i$

$$u_i(s_i^*, s_{-i}^*) \geq u_i(s_i, s_{-i}^*).$$

Problemas: A veces no existe, a veces hay múltiples equilibrios.

Equilibrio de Nash

Definición

Un equilibrio de Nash es s* tal que $\forall i, \forall s_i \in S_i$

$$u_i(s_i^*, s_{-i}^*) \geq u_i(s_i, s_{-i}^*).$$

Problemas: A veces no existe, a veces hay múltiples equilibrios.

Cuadro: El juego del gallina

1 2	Sigue	Desvía
Sigue	-100, -100	10, 0
Desvía	0, 10	1,1

Equilibrio de Nash

Definición

Un equilibrio de Nash es s* tal que $\forall i, \forall s_i \in S_i$

$$u_i(s_i^*, s_{-i}^*) \geq u_i(s_i, s_{-i}^*).$$

Problemas: A veces no existe, a veces hay múltiples equilibrios.

Cuadro: El juego del gallina

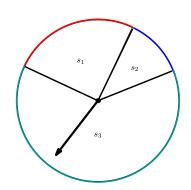
2	Sigue	Desvía
Sigue	-100, -100	10, 0
Desvía	0, 10	1,1

Definición

Una estrategia mixta $\sigma_i = (\sigma_i(s_i^1), \dots, \sigma_i(s_1^{m_i}))$ es una distribución de probabilidad sobre las m_i estrategias de i.

es

una combinación de estrategias mixtas.

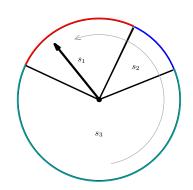

Estrategias mixtas y equilibrios de Nash

Definición

Una estrategia mixta $\sigma_i = (\sigma_i(s_i^1), \dots, \sigma_i(s_1^{m_i}))$ es una distribución de probabilidad sobre las m_i estrategias de i.

es

una combinación de estrategias mixtas.

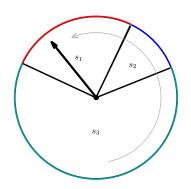


Definición

Una estrategia mixta $\sigma_i = (\sigma_i(s_i^1), \dots, \sigma_i(s_1^{m_i}))$ es una distribución de probabilidad sobre las m_i estrategias de i.

es

una combinación de estrategias mixtas.



Estrategias mixtas y equilibrios de Nash

Definición

Una estrategia mixta $\sigma_i = (\sigma_i(s_i^1), \dots, \sigma_i(s_1^{m_i}))$ es una distribución de probabilidad sobre las m_i estrategias de i.

Notación: $\sigma \equiv (\sigma_1, \sigma_2, \dots, \sigma_n)$. es una combinación de estrategias mixtas.

Present a ción

Definición

El pago a i se la combinación de estrategias σ es:

$$U_i(\sigma_i, \sigma_{-i}) = \sum_{s \in S} (\prod_{j=1}^n \sigma_j(s_j)) u_i(s)$$

•

Definición

Una estrategia σ_i del jugador i es mejor respuesta a σ_{-i} si $U_i(\sigma_i, \sigma_{-i}) \geq U_i(\sigma'_i, \sigma_{-i}), \forall \sigma'_i$

Equilibrio de Nash en Estrategias mixtas

Definición

Un equilibrio de Nash es una combinación de estrategias $\sigma^* = (\sigma_1^*, \dots, \sigma_n^*)$ tal que

$$U_i(\sigma_i^*, \sigma_{-i}^*) \geq U_i(\sigma_i, \sigma_{-i}^*), \ \forall i, \ \forall \sigma_i$$

Lemma (Caracterización de equilibrios de Nash)

 σ^* es un equilibrio de Nash si y solo si para todo jugador i, si la probabilidad asignada por σ_i^* a una estrategia s_i^I es positiva, entonces s_i^I es mejor respuesta a σ^* :

Present a ción

- Juegos en forma normal
- Mejor respuesta, estrategia dominante, eq. en estrategas dominantes.
- Equilibrio de Nash
- Estrategias mixtas, eq. de Nash en estrategias mixtas, caracterización, existencia.

Problemas del equilibrio de Nash

- Multiplicidad de equilibrios.
- No todos los equilibrios igualmente razonables: amenazas no creíbles.
- A menudo consideración dinámica es importante.

Problemas del equilibrio de Nash

- Multiplicidad de equilibrios.
- No todos los equilibrios igualmente razonables: amenazas no creíbles.
- A menudo consideración dinámica es importante.

Ejemplo

(Entrada de competencia) Monopolio enfrenta potencial entrante, amenaza con guerra de precios si entra.

		\mathcal{E}	
		Ε	NE
\mathcal{M}	C	20, 20	50,0
	G	-10, -10	50,0

Forma extensiva

Para estudiar el problema dinámico:

- Jugadores $i \in 1 \dots n$.
- Arbol del juego.
- Conjuntos de información: de cada jugador.
- Estrategias $s_i \in S_i$ de cada jugador.
- Pagos u_i a los jugadores.

Forma extensiva

Para estudiar el problema dinámico:

- Jugadores $i \in 1 \dots n$.
- Árbol del juego.
- Conjuntos de información: de cada jugador.
- Estrategias $s_i \in S_i$ de cada jugador.
- \bigcirc Pagos u_i a los jugadores.

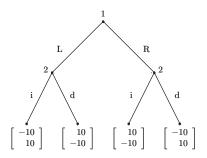


Figura : Juego de la moneda con información.

Forma extensiva

Para estudiar el problema dinámico:

- Jugadores $i \in 1 \dots n$.
- Arbol del juego.
- Conjuntos de información: de cada jugador.
- Estrategias $s_i \in S_i$ de cada jugador.
- \odot Pagos u_i a los jugadores.

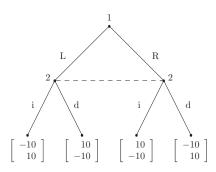
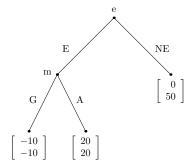
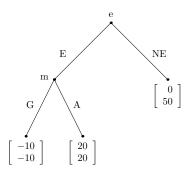



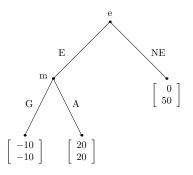
Figura : Juego de la moneda sin información.


Equilibrio perfecto en el subjuego

Entrada de competencia en forma extensiva

Equilibrio perfecto en el subjuego

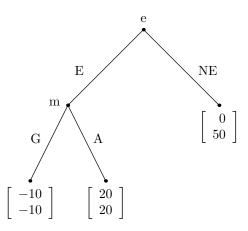
Entrada de competencia en forma extensiva.

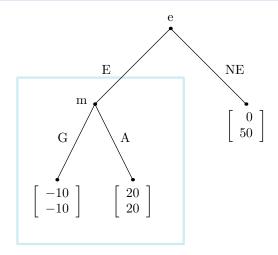


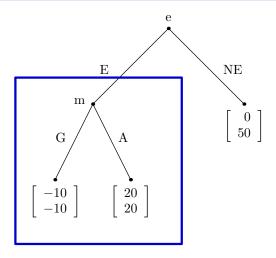
Definición

Un equilibrio es perfecto en el subjuego (EPS) si en cada subárbol, el equilibrio en subárbol es Nash.

Equilibrio perfecto en el subjuego

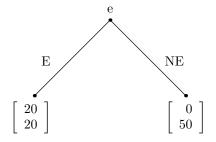

Entrada de competencia en forma extensiva.

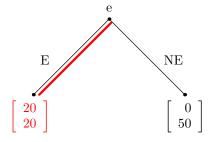



Definición

Un equilibrio es perfecto en el subjuego (EPS) si en cada subárbol, el equilibrio en subárbol es Nash.

- Siempre existe
- Único, en juegos con información perfecta.





Repaso teoría de juegos

El juego reducido:

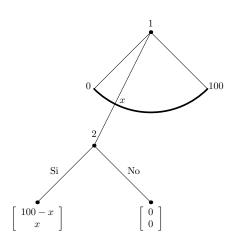
El juego reducido: El EPS es (E, A).

 Con Enami casi quebrada, CODELCO adquiere opción de compra por hasta un 49 % de Anglo Sur a un precio de una fórmula.

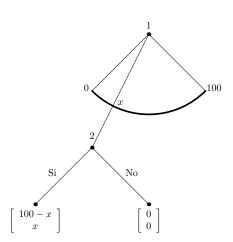
cación: caso coacico / mgio

- Con Enami casi quebrada, CODELCO adquiere opción de compra por hasta un 49 % de Anglo Sur a un precio de una fórmula.
- En octubre de 2011, Codelco y Mitsui acuerdan crédito de US\$
 6.750MM para comprar 49% de los Bronces. Codelco le vendería un 24.5% de para pagar crédito.

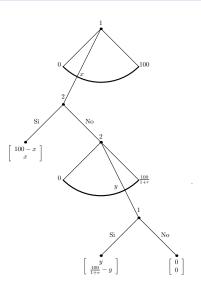
- Con Enami casi quebrada, CODELCO adquiere opción de compra por hasta un 49 % de Anglo Sur a un precio de una fórmula.
- En octubre de 2011, Codelco y Mitsui acuerdan crédito de US\$ 6.750MM para comprar 49% de los Bronces. Codelco le vendería un 24.5 % de para pagar crédito.
- Valor real de los Bronces es muy superior al de la fórmula, y Codelco podría recibir más de US\$ 3.500 netos.


- Con Enami casi quebrada, CODELCO adquiere opción de compra por hasta un 49 % de Anglo Sur a un precio de una fórmula.
- En octubre de 2011, Codelco y Mitsui acuerdan crédito de US\$
 6.750MM para comprar 49% de los Bronces. Codelco le vendería un 24.5% de para pagar crédito.
- Valor real de los Bronces es muy superior al de la fórmula, y Codelco podría recibir más de US\$ 3.500 netos.
- Anglo se niega, vende un 24.5 % a Mitsubishi, ofreciendo el resto a Codelco, que recibiría más de US\$ 1.750 MM netos.

- Con Enami casi quebrada, CODELCO adquiere opción de compra por hasta un 49 % de Anglo Sur a un precio de una fórmula.
- En octubre de 2011, Codelco y Mitsui acuerdan crédito de US\$
 6.750MM para comprar 49% de los Bronces. Codelco le vendería un 24.5% de para pagar crédito.
- Valor real de los Bronces es muy superior al de la fórmula, y Codelco podría recibir más de US\$ 3.500 netos.
- Anglo se niega, vende un 24.5 % a Mitsubishi, ofreciendo el resto a Codelco, que recibiría más de US\$ 1.750 MM netos.
- ullet Anglo acusa luego a Codelco de violar contrato \Rightarrow opción es nula.

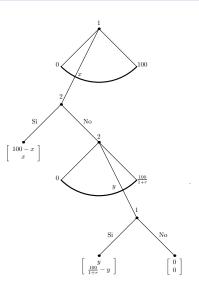

- Con Enami casi quebrada, CODELCO adquiere opción de compra por hasta un 49 % de Anglo Sur a un precio de una fórmula.
- En octubre de 2011, Codelco y Mitsui acuerdan crédito de US\$
 6.750MM para comprar 49% de los Bronces. Codelco le vendería un 24.5% de para pagar crédito.
- Valor real de los Bronces es muy superior al de la fórmula, y Codelco podría recibir más de US\$ 3.500 netos.
- Anglo se niega, vende un 24.5 % a Mitsubishi, ofreciendo el resto a Codelco, que recibiría más de US\$ 1.750 MM netos.
- ullet Anglo acusa luego a Codelco de violar contrato \Rightarrow opción es nula.
- Diferencia entre las interpretaciones es de US\$ 1.750 MM. ¿Que pasó?

Juego del ultimátum

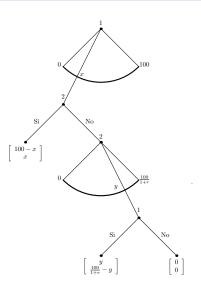


- Estrategias de 1: $x \in [0, 1]$
- Estrategias de 2: elegir \bar{x} tal que elige Si, si $x > \bar{x}$.

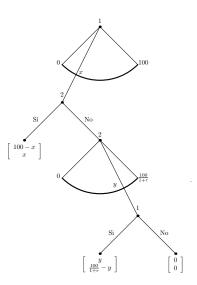
Juego del ultimátum



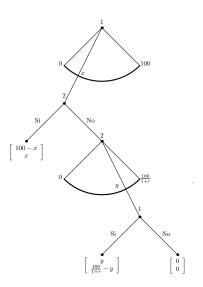
- Estrategias de 1: $x \in [0, 1]$
- Estrategias de 2: elegir \bar{x} tal que elige Si, si $x > \bar{x}$.
- $\forall x \in (0, 100],$ $\{x; \text{Si, si oferta} \ge x\}$ es un equilibrio (o sea $\bar{x} = x$).
- ¿Cuál es el único EPS?



• 1/(1+r): costo de esperar.



• ¿Cuál es el EPS?



• ¿Cuánto dura el juego?

• ¿Cómo se generaliza al caso de *n* períodos?

• Si $\delta = 1/(1+r)$,

$$x = \frac{1}{1+\delta}, y = \frac{\delta}{1+\delta}$$

Problemas del modelo y sus aplicaciones

- Solución instantánea.
- No hay quiebre de negociación.

- Solución instantánea.
- No hay quiebre de negociación.
- ¿Tal vez hay incertidumbre que requiere tiempo para despejarse¿Se puede incorporar como un factor.
- ¿Tal vez la incertidumbre, antes de despejarse, implica posiciones incompatibles?

Son motivos para no llegar a acuerdos rápidamente.

Presentación

Predicciones T. de J. sobre caso Codelco–Anglo en marzo 2011)

- Hay presiones sobre las partes:
 - Del público en Codelco
 - De los accionistas en Anglo
- Aún demasiada incertidumbre judicial.
- Dado que es caro tardar y que es costosa la incertidumbre.
- Lo más probable es un acuerdo en algunos meses.
- Es probable que Codelco se quede con lo que tiene (US\$ 1750+ MM) más una fracción del resto: US\$ 1750+ MM.

Presentación

Predicciones T. de J. sobre caso Codelco–Anglo en marzo 2011)

- Hay presiones sobre las partes:
 - Del público en Codelco
 - De los accionistas en Anglo
- Aún demasiada incertidumbre judicial.
- Dado que es caro tardar y que es costosa la incertidumbre.
- Lo más probable es un acuerdo en algunos meses.
- Es probable que Codelco se quede con lo que tiene (US\$ 1750+ MM) más una fracción del resto: US\$ 1750+ MM.

¡Fue lo que ocurrió!

Introducción a problemas de agencia

- ¿Qué ocurre cuando dos partes en una relación tienen distinta información?
- Ejemplos: Médico-paciente, patrón-empleado, empresa de seguros-comprador de seguros.
- Riesgo moral: Una parte no puede observar el comportamiento de la otra parte.
- Selección adversa: Una parte no conoce las características de la otra parte.

Algunas definiciones

- Partes en la relación: Principal y agente.
- Resultados del agente dependen de factores bajo su control (esfuerzo, p. ej.) y otros aleatorios.
- El principal no puede verificar lo que hace el agente, así que no puede establecerlo en un contrato (el esfuerzo, por ejemplo).
- El principal debe usar métodos indirectos.
- Esto genera ineficiencias: Los mercados no funcionan bien.

El problema de los préstamos

Empresarios pueden elegir entre proyectos de inversión a y b.

Requieren crédito de monto I, y deben devolver R.

Resultados de los proyectos:

$$ar{x}_p = egin{cases} x_i > 0 & ext{con probabilidad } p_i \ 0 & ext{con probabilidad } 1 - p_i \end{cases}$$

Proyecto a tiene mayor v.e., pero retorna menos al empresario:

$$p_a x_a > p_b x_b > I, \ x_b > x_a, \ 1 > p_a > p_b > 0$$

Si el proyecto fracasa, la firma quiebra y no paga el préstamo.

El conflicto principal-agente

- El banco siempre prefiere proyecto a porque su retorno es $\Pi_B^i(R,I) = p_i R I$.
- El empresario recibe un retorno $U_i(R, I) = p_i(x_i R), i = a, b$.
- Hay un conflicto (empresario prefiere b) cuando

$$p_b(x_b - R) > p_a(x_a - R) \Leftrightarrow R \ge \frac{p_a x_a - p_b x_b}{p_a - p_b}$$

• Si \bar{R} es el límite, entonces el banco recibe:

$$\Pi_B = \begin{cases} p_a R - I & \text{si } 0 \le R \le \bar{R} \\ p_b R - I & \text{si } \bar{R} < R \le x_b \end{cases}$$

Racionamiento de crédito con banco monopólico

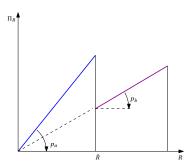


Figura : La función Π_B

• Con información verificable, banco exige $R=x_a$ siempre (sin racionamiento de crédito).

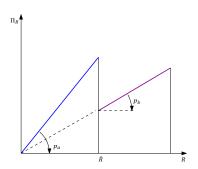


Figura : La función Π_B

- Con información verificable, banco exige $R = x_a$ siempre (sin racionamiento de crédito).
- Si no es verificable:

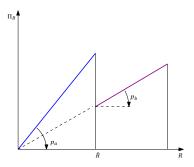


Figura : La función Π_B

- Con información verificable, banco exige $R = x_a$ siempre (sin racionamiento de crédito).
- Si no es verificable:
 - Si $p_a \bar{R} > p_b x_b$, banco exige $R = \bar{R}$.

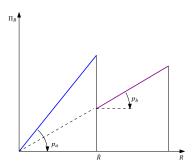


Figura : La función Π_B

- Con información verificable, banco exige $R=x_a$ siempre (sin racionamiento de crédito).
- Si no es verificable:
 - Si $p_a \bar{R} > p_b x_b$, banco exige $R = \bar{R}$.
 - Si $p_a \bar{R} < p_b x_b$, banco exige $R = x_b$.

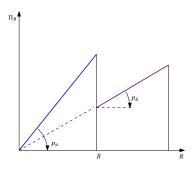


Figura : La función Π_B

- Con información verificable, banco exige $R = x_a$ siempre (sin racionamiento de crédito).
- Si no es verificable:
 - Si $p_a \bar{R} > p_b x_b$, banco exige $R = \bar{R}$.
 - Si $p_a \bar{R} < p_b x_b$, banco exige $R = x_b$.
- En el primer caso, empresarios reciben renta.

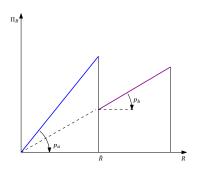


Figura : La función Π_B

- Con información verificable, banco exige $R = x_a$ siempre (sin racionamiento de crédito).
- Si no es verificable:
 - Si $p_a \bar{R} > p_b x_b$, banco exige $R = \bar{R}$.
 - Si $p_a \bar{R} < p_b x_b$, banco exige $R = x_b$.
- En el primer caso, empresarios reciben renta.
- ⇒ Todas las firmas desean un crédito.

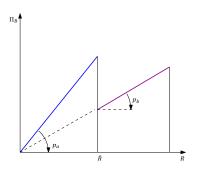


Figura : La función Π_B

- Con información verificable. banco exige $R = x_a$ siempre (sin racionamiento de crédito).
- Si no es verificable:
 - Si $p_a \bar{R} > p_b x_b$, banco exige $R - \bar{R}$
 - Si $p_a \bar{R} < p_b x_b$, banco exige $R = x_h$
- En el primer caso, empresarios reciben renta
- ⇒ Todas las firmas desean un crédito
- Si NI > L, ¡Racionamiento de crédito!

 Acceso a Financiamiento: Mal Endémico de Pymes en América, El Mercurio, 17 de Marzo de 2001.

- Acceso a Financiamiento: Mal Endémico de Pymes en América, El Mercurio, 17 de Marzo de 2001.
- Facilitar el financiamiento de pymes, en la mira de MK2 , El Mercurio, 31 de Julio de 2006.

- Acceso a Financiamiento: Mal Endémico de Pymes en América, El Mercurio, 17 de Marzo de 2001.
- Facilitar el financiamiento de pymes, en la mira de MK2, El Mercurio, 31 de Julio de 2006.
- Gobierno agiliza la devolución del IVA y del impuesto a la renta para mejorar el financiamiento de pymes y personas, El Mercurio, 5 de Noviembre de 2008.

- Acceso a Financiamiento: Mal Endémico de Pymes en América, El Mercurio, 17 de Marzo de 2001.
- Facilitar el financiamiento de pymes, en la mira de MK2, El Mercurio, 31 de Julio de 2006.
- Gobierno agiliza la devolución del IVA y del impuesto a la renta para mejorar el financiamiento de pymes y personas, El Mercurio, 5 de Noviembre de 2008.
- Bachelet anuncia nuevo paquete de medidas económicas para reactivar el financiamiento a las pymes y las personas, El Mercurio, 30 de marzo de 2009

- Acceso a Financiamiento: Mal Endémico de Pymes en América, El Mercurio, 17 de Marzo de 2001.
- Facilitar el financiamiento de pymes, en la mira de MK2, El Mercurio, 31 de Julio de 2006.
- Gobierno agiliza la devolución del IVA y del impuesto a la renta para mejorar el financiamiento de pymes y personas, El Mercurio, 5 de Noviembre de 2008.
- Bachelet anuncia nuevo paquete de medidas económicas para reactivar el financiamiento a las pymes y las personas, El Mercurio, 30 de marzo de 2009
- Gobierno definirá planes de financiamiento especial para las pymes Emol, 05/03/10

- Acceso a Financiamiento: Mal Endémico de Pymes en América, El Mercurio, 17 de Marzo de 2001.
- Facilitar el financiamiento de pymes, en la mira de MK2, El Mercurio, 31 de Julio de 2006.
- Gobierno agiliza la devolución del IVA y del impuesto a la renta para mejorar el financiamiento de pymes y personas, El Mercurio, 5 de Noviembre de 2008.
- Bachelet anuncia nuevo paquete de medidas económicas para reactivar el financiamiento a las pymes y las personas, El Mercurio, 30 de marzo de 2009
- Gobierno definirá planes de financiamiento especial para las pymes Emol, 05/03/10
- Financiamiento de las pymes, El Mercurio, 15 de Abril de 2011.

Crimen callejero Financiamiento Inflación Tipo de cambie

Corrupción Crimen organizado

Inestabilidad política
mpuastos y regulaciones
Infraestructura
0 5 10 15 20 25 30 35 40 45 50

Grandes Medianas Pequeñas

Figura : Principales obstáculos al desarrollo de empresas en LA, BM 2000.

Un modelo con bancos competitivos

- Empresario con riqueza A, requiere inversión I
- Retorno del proyecto R
- Existe actividad alternativa que le da beneficio privado B al empresario.
 - Flojear
 - Apostar
 - Elegir un proyecto más riesgoso pero más rentable.
 - Comprar insumos caros o vender barato a amigos.
- Reduce la probabilidad de éxito: $p_a > p_b$
- VAN del proyecto positivo si empresario se comporta: $p_a R I > 0$.
- VAN del proyecto es negativo si no: $p_bR I + B < 0$ (¡No debe hacerse!)

Activos para recibir préstamo

- ullet ¿Cuánta utilidad π_e debe recibir el empresario para que se comporte?
- Debe convenirle: $\pi_e(p_a p_b) \ge B$ (CI).
- No se le puede pagar menos de $\pi_e=B/\Delta p$.
- El banco no puede obtener más que:

$$R - \frac{B}{\Delta p}$$
, es decir, $\Pi_B = p_a \left(R - \frac{B}{\Delta p} \right)$

Condición de financiamiento

El banco solo presta si no pierde con ello.

Condición de financiamiento es:

$$\Pi_B \geq I - A$$
.

En tal caso, la riqueza mínima que debe tener el empresario es:

$$\bar{A} = I - \Pi_B$$

Si hay competencia bancaria ($\Pi_B = I - A$), empresario recibe renta de agencia:

$$\pi_e = \begin{cases} 0 & \text{if } A < \bar{A}.\\ p_a R - I > 0 & \text{si } A \ge \bar{A}. \end{cases}$$

• Hay que tener riqueza para poder tener préstamos.

- Hay que tener riqueza para poder tener préstamos.
- Bajo un cierto nivel de riqueza no se presta.

- Hay que tener riqueza para poder tener préstamos.
- Bajo un cierto nivel de riqueza no se presta.
- ullet Si se tiene buena reputación (b < B) eso ayuda.

- Hay que tener riqueza para poder tener préstamos.
- Bajo un cierto nivel de riqueza no se presta.
- Si se tiene buena reputación (b < B) eso ayuda.
- Si hay malas leyes (no se castiga a deudores), x < X, más difícil el financiamiento.

¿Cómo resolver el problema de racionamiento de crédito?

- Para evitar desviación de créditos, bancos prestan por piso construido (y revisado por expertos) a constructoras.
- Esta verificación es costosa, por lo que puede limitar acceso a créditos de las pymes.
- Financiamiento de proveedores.
- Prestamistas ilegales pueden prestarles porque pueden hacer que cuando el proyecto fracasa, la quiebra no lo salva (por ejemplo, amenazas, matones).
- Tener leyes que premien el bueno comportamiento y castiguen el mal comportamiento.
- ¿Para que sirve Dicom? Es buena una ley que elimina a los que tienen deudas pequeñas del registro?

Información asimétrica: definiciones para un modelo simple

- Partes en la relación: agente y principal.
- Resultados del agente dependen de su esfuerzo y un factor aleatorio.

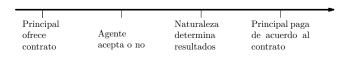


Figura : Estructura temporal del juego de agente-principal con riesgo moral

Más definiciones

- Probabilidad($x = x_i | e$) = $p_i(e)$, i = 1, ..., n es la probabilidad del resultado x_i cuando el esfuerzo es e.
- $\sum_{i=1}^{n} p_i = 1$ y que $p_i > 0, \forall i$.
- Utilidad del principal: B(x w), B' > 0, B'' < 0.
- Utilidad del agente: $\mathcal{U}(w, e) = u(w) v(e)$, u', v' > 0, u'' < 0, v'' > 0.

El contrato eficiente (con riesgo moral) resuelve:

$$\begin{aligned} & \underset{\{e,\{w(x_i)\}_{i=1}^n\}}{\text{Max}} & \sum_{i=1} p_i(e)B(x_i - w(x_i)) \\ & s.t. & \sum_{i=1} p_i(e)u(w(x_i)) - v(e) \geq \mathcal{U} \quad (RP) \\ & e \in \arg \underset{\{\hat{e}\}}{\text{Max}} \left\{ \sum_{i=1}^n p_i(\hat{e})u(w(x_i)) - v(\hat{e}) \right\} \quad (CI) \end{aligned}$$

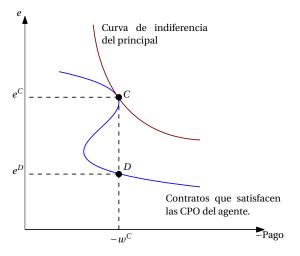


Figura : El agente haría esfuerzo e^D y recibiría pago w^C .

El problema de usar las condiciones de primer orden

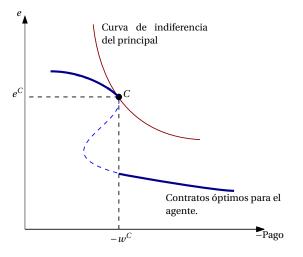


Figura : Solución: usar solo los óptimos del agente (zona punteada no óptima).

Present a ción

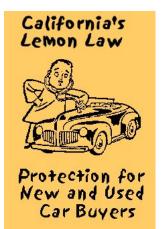
Resultados en riesgo moral

- El esfuerzo requiere incentivos.
- Si hay más de una variable importante, el esfuerzo se concentra en la más fácilmente observable:
 - Onocimientos versus valores en la escuela.
 - Cantidad versus calidad de la investigación.
- Además, en algunos casos se valoran intrÃŋnsecamente ciertas actividades (voluntariado), y el uso de incentivos puede reducir este valor: el caso de las donaciones de sangre.
- A veces, el costo de los incentivos es demasiado elevado o no se puede observar el efecto de las acciones sobre el resultado: no se dan incentivos.

Selección adversa: El caso de los limones

- Supongamos compradores de autos usados desinformados (pagan en base a calidad promedio).
- Vendedores conocen la calidad de sus autos.
- Compradores valoran más la calidad que los vendedores.

 El mercado puede ser ineficiente: una transacción que es ventajosa para ambas partes puede no realizarse.


Selección adversa: El caso de los limones

- Supongamos compradores de autos usados desinformados (pagan en base a calidad promedio).
- Vendedores conocen la calidad de sus autos.
- Compradores valoran más la calidad que los vendedores.
- A los dueños de autos de calidad mejor que el promedio, compradores le ofrecen precio de un auto de calidad promedio.
- Si los vendedores no tienen necesidad de vender, tal vez no lo hagan a ese precio.
- El mercado puede ser ineficiente: una transacción que es ventajosa para ambas partes puede no realizarse.
- En el caso los limones, Akerlof muestra que el mercado puede desaparecer.

¿Qué se puede hacer?

- Leyes de arrepentimiento.
- Leyes antilimones: http://www.bbb.org/us/ auto-line/sate-lemon-laws/.
- Revisiones mecánicas tipo AAA.
- ¿Otras?

Formulación del problema de selección adversa

Dos tipos de agentes, en proporciones q (trabajadores) y 1-q (flojos).

Principal no conoce el tipo de agente que enfrenta y debe contratar.

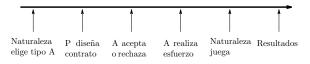


Figura : Estructura temporal del juego de selección adversa

Sin problemas de información asimétrica

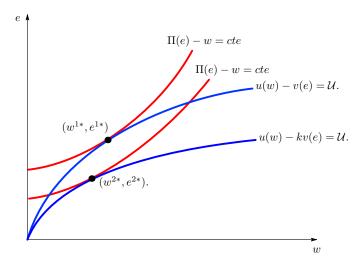
Si no existieran problemas de información el problema es:

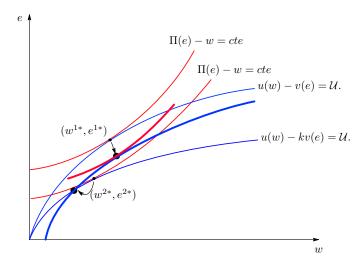
$$\begin{aligned} & \underset{\{e,w\}}{\mathsf{Max}} \Pi(e) - w \\ & s.t. \quad u(w) - v(e) \ge \mathcal{U} \end{aligned}$$

Con contrato óptimo:
$$u(w^{1*}) - v(e^{1*}) = \mathcal{U}$$
, y $\Pi'(e^{1*}) = v'(e^{1*})/u'(w^{1*})$.

La formulación del problema con información asimétrica

$$\begin{split} & \underset{\{(e^1,w^1),(e^2,w^2)\}}{\text{Max}} q \left[\Pi(e^1) - w(e^1) \right] + (1-q) \left[\Pi(e^2) - w(e^2) \right] \\ & s.t. \quad u(w^1) - v(e^1) \geq \mathcal{U} \quad (RP_1) \\ & \quad u(w^2) - kv(e^2) \geq \mathcal{U} \quad (RP_2) \\ & \quad u(w^1) - v(e^1) \geq u(w^2) - v(e^2) \quad (CI_1) \\ & \quad u(w^2) - kv(e^2) \geq u(w^1) - kv(e^1) \quad (CI_2) \end{split}$$


La formulación del problema con información asimétrica


$$\begin{aligned} & \underset{\{(e^1,w^1),(e^2,w^2)\}}{\text{Max}} q \left[\Pi(e^1) - w(e^1) \right] + (1-q) \left[\Pi(e^2) - w(e^2) \right] \\ & s.t. \quad u(w^1) - v(e^1) \geq \mathcal{U} \quad (RP_1) \\ & \quad u(w^2) - kv(e^2) \geq \mathcal{U} \quad (RP_2) \\ & \quad u(w^1) - v(e^1) \geq u(w^2) - v(e^2) \quad (CI_1) \\ & \quad u(w^2) - kv(e^2) \geq u(w^1) - kv(e^1) \quad (CI_2) \end{aligned}$$

Notas: i) RP_1 es redundante. ii) $e^1 > e^2$ (usando CI_1 y CI_2).

La solución en forma gráfica

Algunas conclusiones

- Al agente de tipo 1 obtiene una renta informacional, pero el tipo 2 recibe \mathcal{U} .
- El agente tipo 1 está en un punto eficiente, pero el del tipo 2 está distorsionado.
- Mientras menos tipo 2 haya, más distorsionado su contrato, menos renta al tipo I.
- Si hay muy pocos tipo 2, el principal puede preferir ofrecer un solo contrato, que el tipo 2 no acepta y que al tipo 1 le extrae su renta.

Algunas conclusiones

- Al agente de tipo 1 obtiene una renta informacional, pero el tipo 2 recibe \mathcal{U} .
- El agente tipo 1 está en un punto eficiente, pero el del tipo 2 está distorsionado.
- Mientras menos tipo 2 haya, más distorsionado su contrato, menos renta al tipo I.
- Si hay muy pocos tipo 2, el principal puede preferir ofrecer un solo contrato, que el tipo 2 no acepta y que al tipo 1 le extrae su renta.

Ejemplo

El caso de los seguros de salud en EEUU y los no asegurados.

Aplicación: El mercado de seguros (Einav y Finkelstein 2011)

Agentes con distinta prob. siniestro, conocida solo por ellos.

Agentes con mayor riesgo dispuestos a pagar más.

Curva de costo marginal es decreciente.

¡Demanda y costo no son independientes!

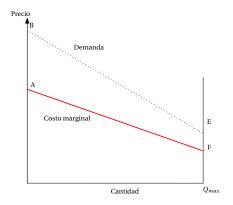


Figura : Demanda y costo por seguros

Agentes con distinta prob. siniestro, conocida solo por ellos.

Agentes con mayor riesgo dispuestos a pagar más.

Curva de costo marginal es decreciente.
¡Demanda y costo no son

Equilibrio ineficiente (CMg < p) por selección adversa

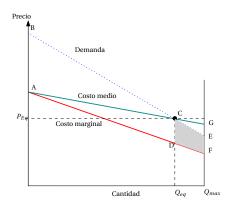


Figura : Equilibrio en mercado de seguros

independientes!

Pero la selección adversa no siempre da resultados ineficientes

En la figura, el equilibrio es eficiente.

Ocurre si las diferencias de riesgo no son muchas entre individuos o si son muy adversos al riesgo.

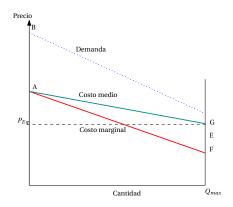


Figura : Equilibrio eficiente con selección adversa

Selección adversa y desaparición del mercado

En la figura, no hay equilibrio.

El mercado de seguros desaparece.

Ocurre, por ejemplo, si empresas ajustan el precio del seguro al costo promedio del período anterior.

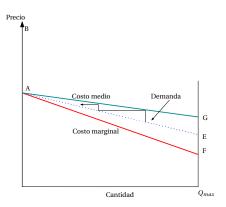


Figura : Mercado desaparece con selección adversa

seguros

- Obligación de contratar seguro.√
- Subsidio a la contratación del seguro.√
- Uniformidad de precios en variables observables (género, edad) puede tener efectos positivos o negativos sobre la cobertura.

Más detalles: seguros y selección adversa

Muchas compañías de seguro competitivas.

Agentes con probabilidad de accidente π_1 y π_2 con $\pi_1 < \pi_2$.

Agentes con riqueza W, con accidente, W-L.

Agentes adversos al riesgo, firmas neutrales al riesgo (LGN).

Precio del seguro: p, si se paga pz, se recibe z en caso de siniestro.

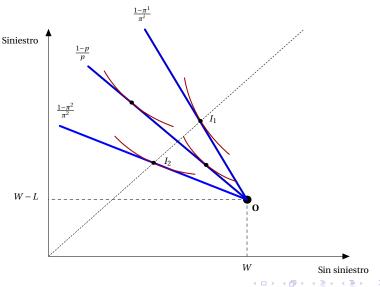
Problema del agente

Agente tipo i:

$$\max_{z} \pi^{i} u(W-L-pz+z) + (1-\pi^{i})u(W-pz)$$

CPO respecto a z:

$$\frac{u'(W - L - pz + z)}{u'(w - pz)} = \frac{(1 - \pi^{i})p}{\pi^{i}(1 - p)}$$


Ejercicio

Muestre que los agentes con mayor probabilidad de accidente contratan más seguros.

Competencia implica $\pi^i = p_i$ para cada tipo de agente.

Gráficamente

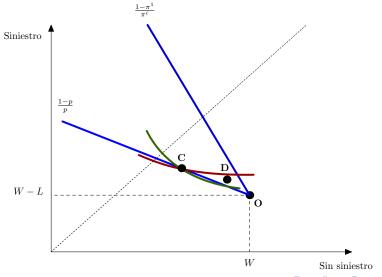
Present a ción

Cont . . .

- Para la empresa, es más caro ofrecer seguro a agentes con más accidentes.
- Si pudiera distinguirlos, ofrecería seguro que elimina riesgo a cada uno.
- Si ofrece dos precios, los de alto riesgo se hacen pasar por bajo riesgo.
- Si ofrece un precio, hay sobreaseguramiento de agentes de alto riesgo y subaseguramiento de agentes de bajo riesgo.

Seguros con cobertura y precios

A menudo, seguros ofrecen paquetes de cobertura y precios (p, z).


Firmas en competencia ofrecen dos tipos de contratos: Pooling (igual para todos) y Separantes (uno para cada tipo).

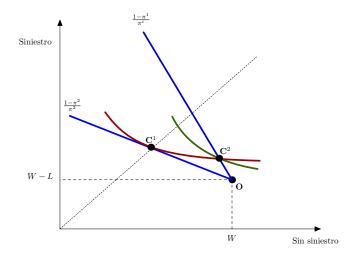
Contratos de tipo *pooling* no son viables: Enfrentan el problema del descreme de clientes.

En la figura, el contrato ${f D}$ descrema a los agentes tipo 1 del contrato ${f C} \Rightarrow$ incompatible con competencia.

Descreme de clientes en seguros de tipo Pooling

Contratos separantes

El seguro separante (página siguiente) debe satisfacer:


- A cada agente se le cobra de acuerdo al riesgo \Rightarrow 0-utilidad.
- ② Agentes de tipo 2 no quieren hacerse pasar por tipo 1.
- Agentes tipo 2 tienen seguro completo.
- Agentes tipo 1 con seguro parcial.

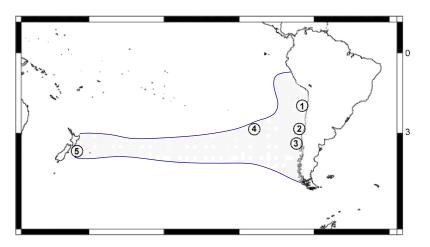
Pero es posible que no exista un equilibrio (cuando agentes de tipo 2 son muchos).

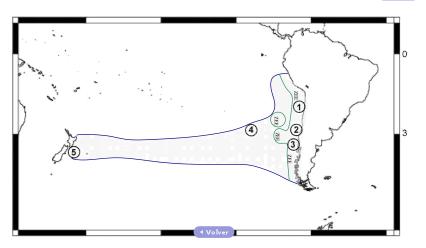
En tal caso, solo seguro para tipo 2 de agentes.

Equilibrio separante en seguros

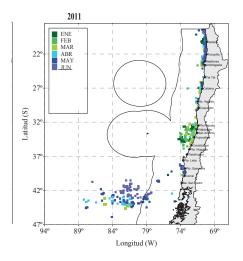
Aplicación Isapres

- Un seguro de salud privado especial: regulado y no se puede cancelar.
- Tiene el problema de las prexistencias.
- Cotizantes "cautivos". Solución: "marraqueta" (Recomendación Fischer-Serra 1997)

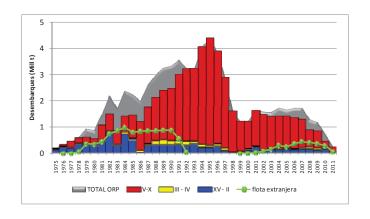

Ejemplo (Isapres: "Existe técnicamente la posibilidad de solución.ª las preexistencias que afectan a 25 % de afiliados. (El Mercurio 10/3/13))


El sistema operaría de la siguiente forma: cuando un usuario se cambie de Isapre Ilega a otra con fondos adicionales aportados por la Isapre que deja de gastar en é1. Con esto, la nueva Isapre no perdería dinero al afiliar al cotizante con preexistencias, sino que el sistema se ajustaría, siempre y cuando todas las Isapres lo aceptaran. Para que no se genere una merma entre los costos de un seguro de salud y otro, se generaría un cálculo generado solo por esa enfermedad en el paciente cautivo, y luego se llevaría al valor presente. "Y si somos más exigentes todavía, eso también se podría extrapolar a una persona que estuviera en Fonasa, pero ahí el fisco debería hacer un desembolso por el costo adicional de los usuarios del seguro público de salud", explica Doren.

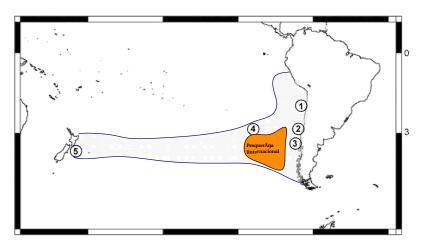
Area del jurel

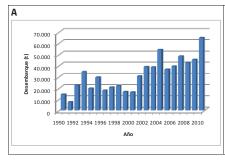

Repaso teoría de juegos

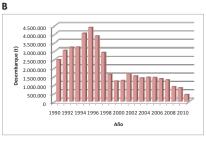
Capturas industriales (Enero-Junio 2011)



Capturas históricas

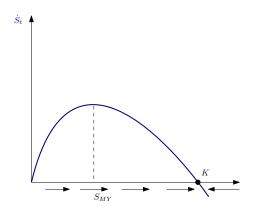

√ Volver



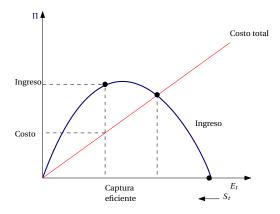

Zona de captura extranjeros

Volver

Industriales y "artesanales"

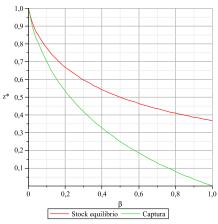


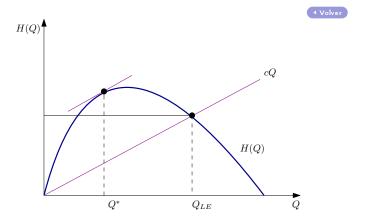
Capturas y cuotas


		2005	2006	2007	2008	2009	2010
Desembarque	Industrial	1.393.890	1.330.906	1.254.448	853.668	789.845	385.160
(toneladas)	Artesanal	36.544	39.356	48.336	42.440	45.082	64.840
	TOTAL	1.430.434	1.370.262	1.302.784	896.108	834.927	450.000
Cuota	Industrial	1.338.859	1.263.500	1.444.000	1.474.400	1.263.500	1.173.250
(toneladas)	Artesanal	70.466	66.500	76.000	77.600	66.500	61.750
	TOTAL(*)	1.483.500	1.400.000	1.600.000	1.600.000	1.400.000	1.300.000

√ Volver

Equilibrio eficiente con pesca




Ejemplo captura eficiente de jurel

∢ Volver

Modelo con costos de captura

