Otros temas

Simulación

Dpto. Ingeniería Industrial, Universidad de Chile

IN47B, Ingeniería de Operaciones

30 de septiembre de 2013

- Introducción
- 2 Eventos discretos
- Modelación Implementación
- 4 Analizando Resultados
- Otros temas

Otros temas

Contenidos

¿Qué es Simulación

- Representación de un sistema en un computador.
- Intenta emular el funcionamiento de un sistema.
- Usado para evaluar numéricamente el comportamiento de sistemas bajo ciertas condiciones.

¿Qué es un Sistema?

Definición

Un Sistema es un conjunto de entidades (por ejemplo máquinas o personas), que interactúan para lograr algún fin lógico.

Estado

Es un conjunto de variables que describen un sistema en un tiempo particular.

Ejemplo:

Atención de clientes en un Banco

- El sistema puede ser el conjunto de clientes, cajeros, colas, y procedimientos predefinidos (FIFO, etc.) que describen la operación.
- Las variables de estado en este caso son el número de clientes en cada cola, el número de cajeros, y el estado de cada cajero (ocupado/desocupado).,

Sistemas Discretos y Continuos

Sistema Discreto

Un Sistema se dice *Discreto* si sus variables de estado cambian sus valores en un conjunto numerable de instantes de tiempo (Ej.: sistemas de colas).

Sistema Continuo

Un Sistema se dice *continuo* si sus variables de estado cambian continuamente en el tiempo (Ej.: El sistema solar).

Sistemas Dinámicos y Estáticos

Sistema Estático

Un Sistema se dice *estático* si el tiempo en el no juega ningún rol (Ej.: Simulaciones tipo montecarlo, estimar π).

Sistemas Dinámicos

Un Sistema se dice *dinámico* si este evoluciona a medida que el tiempo pasa.

Sistemas Determinísticos y Estocásticos

Sistema Determinístico

Un Sistema se dice *determinista* si su evolución temporal esta definida completamente por las condiciones iniciales del mismo (Ej.: Sistema de ecuaciones diferenciales).

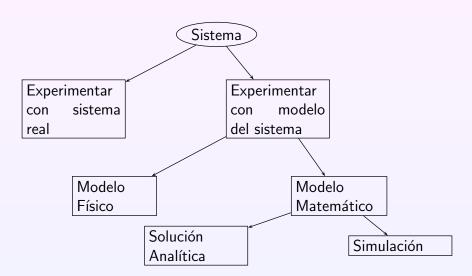
Sistema Estocástico

Un Sistema se dice *estocástico* si tiene componentes descritos en términos probabilísticos, o donde existe incertidumbre en la entrada o en el proceso mismo del sistema (Ej.: Sistema de colas en un banco).

Introducción

Contenidos

Formas de estudiar un Sistema



Otros temas

Contenidos

- Se asume modelo dinámico que cambia variables de estado una cantidad numerable de veces.
- Un evento es un acontecimiento instantáneo que puede cambiar el estado del sistema.
- Ejemplo M/M/1:
 - Variables de estado son largo de cola (tiempo de llegada?), y estado del servidor.
 - Dado lo anterior, existen esencialmente dos tipos de eventos: llegada de clientes, y salida de clientes.
- En general, podríamos considerar eventos que no cambian las variables de estado de un sistema:
 - Un evento que marca el fin de la simulación.
 - Cambio en las reglas de operación del sistema.

Mecanismos de avance de tiempo:

- Necesitamos conocer el tiempo simulado.
- Tiempo interno del sistema se llama reloj de simulación.

Incremento Fijo

Se asume que los eventos ocurren en el conjunto $T_{sim} \in \{t_o, t_o + \Delta, t_o + 2\Delta, \ldots\}.$

Avanzar al siguiente evento

Asume que los eventos pueden ocurrir en cualquier momento $(T_{sim} \in \mathbb{R})$, pero relacionados a un evento $(\|T_{sim}\| < \aleph_o)$.

Introducción

Contenidos

Componentes y Organización

- Variables de Estado: Conjunto de variables de estado que describen el sistema en algún momento.
- Reloj de simulación: Variable que guarda el tiempo en el sistema.
- Lista de eventos: Lista (parcial) de eventos a realizarse en el futuro.
- Contadores Estadísticos: Variables que guardan los indicadores relevantes del sistema.
- Inicialización: Subrutina que inicializa modelo en t_o.
- Selección de evento: Subrutina que determina siguiente evento a realizarse

Componentes y Organización

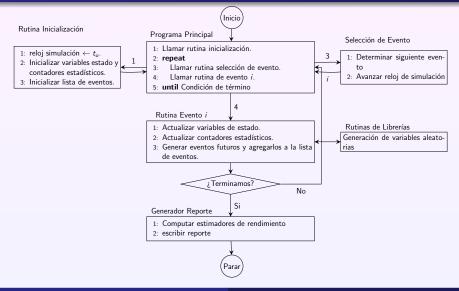
- Rutinas de evento: Subrutina que actualiza el sistema cuando un evento ocurre.
- Rutinas Auxiliares: Generación de variables aleatorias, etc.
- Generador de Reporte: Subrutina que computa estimadores de las medidas de desempeño del sistema (basándose en los contadores estadísticos) cuando la simulación termina.
- Programa Principal: Programa que primero lee parámetros de entrada, inicializa el sistema, y después llama a la rutina de selección de eventos hasta el término de la simulación, y finalmente llama a la rutina de reporte.

Otros temas

Introducción

Contenidos

Flujo de un programa Típico de Simulación



¿Por que escribir software de simulación?

- Conocer como funcionan internamente todos los softwares de simulación ayuda a evitar errores conceptuales en su uso.
- En simulaciones complejas muchas veces es necesario programar algunas partes de la simulación para interactuar con softwares comerciales.
- Lenguajes de programación generales estan siempre disponibles, y son de bajo costo.
- Muchas simulaciones comerciales aun se programan en lenguajes generales.

Introducción

Contenidos

Generando Variables Aleatoreas:

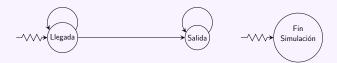
- En general asumiremos que existe un generador de numeros pseudo-aleatoreos f() uniforme (0,1).
- Dada una distribuición acumulada $F(x) = \mathbb{P}(X \le x)$, generaremos un valor aleatoreo usando la fórmula $x = F^{-1}(f())$
- Cuidado con funciones aleatoreas por defecto, en general de mala calidad.
- ¿Cuándo funciona?
 - Si F es estrictamente creciente.
 - Con cuidado podemos hacerlo si F es discreta, o si tiene saltos

Simulación de un M/M/1

Eventos

- Llegada de un Cliente $F(x) = 1 e^{-\frac{x}{\beta_1}}$.
- Cliente Termina de ser atendido $F(x) = 1 e^{-\frac{x}{\beta_2}}$.
- Cliente Comienza a ser atendido?

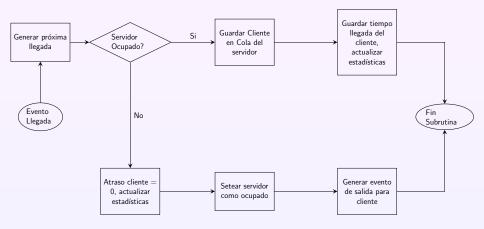
Grafo de Eventos



Programando Simulaciones

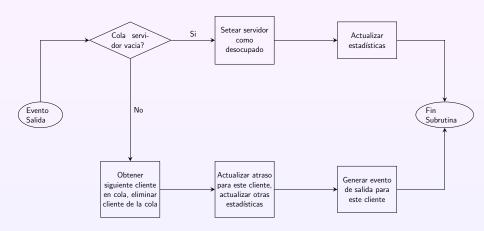
Contenidos

Lógica llegada de cliente



Introducción

Lógica salida de cliente

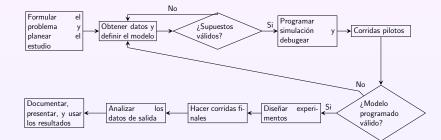


Evaluando política de inventario

- Consideremos una política de inventario (S, s) de revisión mensual, con costos por mantener items en bodega y back-orders.
- Demandas espaciadas $iid \approx \exp(0,1)$, cantidades $\{1,2,3,4\}$ con probabilidades $\{1/6,1/3,1/3,1/6\}$.
- Cuando una orden se coloca, el tiempo de llegada es distribuido como U[1/2, 1], y el costo es función de la cantidad demandada.

Vista General

Contenidos



Formular el problema y planear estudio

- Problema presentado por una unidad.
 - Problema puede estar mal definido, o en términos cualitativos.
 - Proceso Iterativo es necesario
- Varias reuniones con director proyecto, experto de simulación, experto en el sistema.
 - Definir objetivos del estudio.
 - Definir preguntas específicas a repsonder.
 - Definir medidas numércias para comparar diferentes configuraciones.
 - Alcance del modelo.
 - Diferentes configuraciones a probar.
 - Tiempo del estudio y recursos necesarios.
- Seleccionar el software a usar.

Pasos de un buen estudio de simulación

Recoger Datos del Sistema

- Recoger información sobre estructura y reglas de operación del sistema.
 - Ningún individuo es suficiente.
 - Personas con conocimiento equivocado del sistema (buscar expertos reales).
 - Procedimientos pueden no estar formalizados.
- Recoger datos para definir parámetros del sistema y distribuciones de entrada.
- Formalizar información anterior en un documento de supuestos.
- Recoger datos sobre el desempeño del sistema real.

Pasos de un buen estudio de simulación

Recoger Datos del Sistema

- Escoger nivel de detalle del sistema.
 - Objetivos del proyecto.
 - Métircas a utilizar.
 - Datos disponibles.
 - Problemas de credibilidad.
 - Opinion de los expertos del sistema.
 - Restricciones de tiempo/presupuesto.
- Empezar con un modelo simplificado y refinarlo a medida que sea necesario.
- Interactuar con el director del proyecto y expertos del sistema regularmente.

Otros temas

Contenidos

¿Son los Supuestos Válidos?

- Realizar una revision del documento de supuestos con los expertos del sistema y con el director del proyecto.
 - Asegurar que supuestos son correctos y completos.
 - Ayudar a la interacción entre miembors del equipo.
 - Incrementar el sentido de propiedad del modelo en el equipo.
 - Debería hacerce antes de comenzar a programar.

Construir un programa y verificarlo

- Programar en un lenguaje general (C,C++,Java,C#) o en un software de simulación (Arena, Extend, Flexsim, ProModel).
 - Lenguajes generales tienen la ventaja de que usualmente uno es conocido.
 - Ofrecen control absoluto del programa.
 - Son mucho mas baratos de comprar (Licencias).
 - Pueden resultar en tiempos de ejecucion menores.
 - Lenguajes de simulacion resultan en menores tiempos de programación
 - Proveen de interfaces gráficas (Atractivas para gerencia).
- Debugear el programa.

Corridas Piloto, ¿Es el modelo programado Válido?

- Ejecutar corridas pilotos del programa
- Comparar desempeño real del sistema con sistema simulado.
- Revisar consistencia de resultados con expertos del sistema real y con director proyecto.
- Realizar análisis de sensibilidad, identificando aspectos del sistema que necesitan mayor nivel de detalle o cuidado en el modelo.

Diseño de Experimentos

- Para cada configuración de interes especificar:
 - Largo de cada corrida de simulación.
 - Período transiente de cada corrida (si necesario).
 - Número de simulaciones independientes a realizar, para así definir los correspondientes intervalos de confianza.

Otros temas

Contenidos

Corridas Finales, Análisis de Resultados

- Ejecutar corridas principales.
- Objetivos principales en el análisis son:
 - Determinar desempeño absoluto de cada configuración analizada.
 - Comparar configuraciones alternativas en forma comparativa (análisis de tipo pareto).

Documentar, presentar, y usar resultados

- Documentar supuestos utilizados.
- Documentar código del programa.
- Documentar creiterios de intervalos de confianza, etc.
- Presentar Resultados:
 - Uso de animaciones para presentar modelo a audiencia amplia.
 - Discutir proceso de validación de sistema.
 - Resultados se usarán en la medida de que sean validos y creibles.

Introducción

Contenidos

Supuestos Generales

- Asumimos que existe un generador de números aleatoreos uniforme.
- Nótese que estos no son continuos, tienen entre 32 o 56 bits de resolución.
- Diferencias menores a $10^{-9.6}$ o $10^{-16.8}$ no pueden observarse (recomendado: no menos de 10^{-6})
- Asumimos que aleatoredad del generador es buena.
- Asumimos que el generador es eficiente.

Introducción

Contenidos

Transformación Inversa

- Dado $U \sim U(0,1)$, $X \sim F$ probabilidad acumilada, retornar $X = F^{-1}(U)$.
- Ejemplo: $X \sim \exp(\beta)$ entonces

$$F(x) = \begin{cases} 1 - e^{-x/\beta} & x \ge 0\\ 0 & \text{si no} \end{cases}$$

- $F^{-1}(u) = -\beta \log(1-u)$.
- Requiere generar un solo número aleatoreo.
- Extendible a F no continuas, con saltos numerables.
- Más generalmente $X = \min\{x : F(x) \ge U\}$.
- Si F^{-1} no se conoce, método numérico es necesario.
- Fácil producir distribuiciones truncadas.

Generando Variables Aleatoreas

Contenidos

Compocición

Introducción

- Aplicable a compocición convexa de variables aleatoreas.
- $F(x) = \sum_{i \in \mathbb{N}} p_i F_i(x), \ p_i \ge 0, \ \sum_{i \in \mathbb{N}} p_i = 1.$
- Generar número j tal que $P(j) = p_j$.
- Retornar X con distribuición F_i.
- Ejemplo: $X \sim Trap(a)$, donde $f(x) = \begin{cases} a + 2(1-a)x & 0 \le x \le 1\\ 0 & \text{on no} \end{cases}.$
- $f(x) = aI_{[0,1]}(x) + (1-a)2xI_{[0,1]}(x)$.
- Requiere sólo un números aleatoreo y generar sub-variable aleatorea.

Generando Variables Aleatoreas

Contenidos

Convolución

- Aplicable a variables aleatoreas que son sumas de otras variables aleatoreas independientes.
- $\bullet X = \sum_{i=1}^n Y_i.$
- Generar Y_i con la distribuición apropiada.
- Retornar $X = \sum_{i=1}^{n} Y_i$.
- Ejemplo: $X \sim \text{m-Erlang}(\beta)$
- $X = \sum_{i=1}^{m} \exp(\beta/m)$.

Aceptar/Rechazar

- Tenemos X con densidad f(x) a soporte acotado S.
- Definimos $c = \max\{f(x) : x \in S\}$.
- Generar x uniformemente en S.
- generar Y uniformemente en [0, c]
- Retornar x si $Y \le f(x)$, si no, generar nuevamente x, Y.
- Útil cuando otros métodos son difícil de implementar.
- Dependiendo de f puede requerir muchas generaciones de números aleatoreos.

Definiciones

Introducción

•
$$\mathbb{E}(X) = \int_{Dom(X)} x \cdot f(x) \cdot dx$$
.

- $\operatorname{Var}(X) = \mathbb{E}(X^2) \mathbb{E}(X)^2 = \mathbb{E}((X \mathbb{E}(X))^2).$
- \mathbb{C} ov $(X, Y) = \mathbb{E}((X \mathbb{E}(X))(Y \mathbb{E}(Y))) =$ $\mathbb{E}(XY) - \mathbb{E}(X)\mathbb{E}(Y)$.
- Si X, Y son independientes Cov(X, Y) = 0.
- La reciproca no es cierta.
- \mathbb{C} or $(X, Y) = \frac{\mathbb{C}$ ov $(X, Y)}{\sqrt{\mathbb{V}$ ar $(X)\mathbb{V}$ ar $(Y)}$.

Estimadores

Introducción

• Consideramos X_i : i = 1, ..., n una muestra de X.

$$\bullet \ \overline{X}(n) = \frac{\sum_{i=1}^{n} X_i}{n}$$

• $\overline{X}(n)$ es un estimador no sesgado de $\mathbb{E}(X)$.

•
$$S^{2}(n) = \frac{\sum_{i=1}^{n} (X_{i} - \overline{X}(n))^{2}}{n-1}$$
.

• $S^2(n)$ es un estimador no sesgado de Var(X).

•
$$\operatorname{Var}(\overline{X}(n)) = \frac{\operatorname{Var}(X)}{n}$$
.

Introducción

Contenidos

Teorema Central del Límite

- Consideramos $\{X_i\}_{i\in\mathbb{N}}$ variables aleatoreas iid con $\mathbb{E}(X_i) = \mu \text{ y } \mathbb{V}\text{ar}(X_i) = \sigma^2.$
- Definimos $Z_i = \frac{\overline{X}(n) \mu}{\sqrt{\frac{\sigma^2}{n}}}$.
- Llamamos $F_n(z) = \mathbb{P}(Z_n \le x)$

Teorema Central del Límite

$$\lim_{n\to\infty}F_n(z)=\Phi(z)$$

Donde
$$\Phi(z) = \frac{1}{\sqrt{2\pi}} \int\limits_{-\infty}^{z} e^{-y^2/2} dy$$
.

Teorema Central del Límite

- Básicamente el TCL dice que $Z_n \sim \mathcal{N}(0,1)$ cuando n es grande.
- Otro problema es que Z_n esta definido en términos de σ^2 .
- Definimos $t_n = \frac{\overline{X}(n) \mu}{\sqrt{\frac{S^2(n)}{n}}}$.
- Se puede demostrar que t_n tambien converge a una $\mathcal{N}(0,1)$.
- De ahi podemos decir que $\mathbb{P}(-z_{1-\alpha/2} < t_n < z_{1-\alpha/2}) \approx 1 - \alpha$ para n suficientemente grande.

Contenidos

Intervalos de Confianza

De lo anterior, podemos concluir que

$$\mathbb{P}(I(n) \le \mu \le u(n)) = 1 - \alpha$$

para n suficientemente grande, donde

$$I(n) = \overline{X}(n) - z_{1-\alpha/2} \sqrt{\frac{S^2(n)}{n}}$$

У

$$u(n) = \overline{X}(n) + z_{1-\alpha/2} \sqrt{\frac{S^2(n)}{n}}$$

Intervalos de Confianza

Introducción

- i Qué pasa si $X_i \sim \mathcal{N}(0,1)$?
- En ese caso $t_n \sim \text{T-student de } n-1 \text{ grados de libertad.}$
- Intervalo de confianza exacto esta dado por $\overline{X}(n) \pm t_{n-1,1-\alpha/2} \sqrt{S^2(n)/n}$.
- Se tiene que estos intervalos son mayores a considerar que $t_n \sim \mathcal{N}(0,1)$.
- En general, debemos preguntarnos ¿ Qué significa n suficientemente grande?.

Cobertura Real

- Consideramos intervalos de confianza derivados de la T-student.
- Distinto número de muestras n = 5, 10, 20, y 40.
- Consideramos X_i iid con distintas distribuciones.
- ullet Comparamos cobertura real del intervalo estimado a 90 %sobre 500 repeticiones.

Dist	ν	n=5	n=10	n=20	n=40
Normal	0.00	0.910	0.902	0.898	0.900
Exponencial	2.00	0.854	0.878	0.870	0.890
Chi ²	2.83	0.810	0.830	0.848	0.890
Lognormal	6.18	0.758	0.768	0.842	0.852
Hiper-exp	6.43	0.584	0.586	0.682	0.774

Midiendo Simetría de Distribuciones

- ¡Qué es ν?
- $\bullet \ \nu = \frac{\mathbb{E}((X-\mu)^3)}{\sigma^3}.$
- ν es una medida de simetria de la distribución.
- Simetría de una distribuición es un factor importante al momento de determinar cuando n es suficientemente grande en el contexto del TCL.
- En general, No deberíamos mirar solamente a μ , si no que también a σ^2 cuando describimos una distribuición.

Introducción

Contenidos

¿Cómo obtenemos variables iid?

- Consideremos un sistema de simulación donde hay sólo una medida de desempeño, que es reportada en distintos puntos J durante la simulación.
- Suponemos además que ejecutamos n corridas independientes de la simulación, esto define $X_{i,j}$ con $i=1,\ldots,n$ y $j\in J$.
- Asumiendo buenos números aleatoreaos, podemos considerar $\{X_{i,j}\}_{j=1}^n$ como variables iid.
- Desafortunadamente $\{X_{i,j}\}_{j\in J}$ en la práctica no son independientes, de hecho, usualmente, tienen correlación positiva.

Algunos Ejemplos prácticos

- Consideramos un modelo M/M/1 con taza de ocupación $\rho = .9$.
- Tratamos de estimar promedio de Iso 25 primeros atrazos.
- Computamos 500 intervalos de confianza basados en 5,10,20 y 40 replicaciones.
- Comparamos proporción de intervalos correctos y su ancho medio.

M/M/1, estimando d_{25}

n	cobertura	intervalo 90 %	medio ancho
5	0.880	± 0.024	0.67
10	0.864	± 0.025	0.44
20	0.886	± 0.023	0.30
40	0.914	± 0.021	0.21

Tiempo medio a Falla

Introducción

- Sistema con tres componentes.
- Sistema funciona mientras componente 1 funcione y componente 2 o componente 3 funcionen.
- Tiempo falla $G = \min\{G_1, \max\{G_2, G_3\}\}, G_i$ es Weibull(0.5,1).

n	cobertura	intervalo 90 %	medio ancho
5	0.708	± 0.033	1.16
10	0.750	± 0.032	0.82
20	0.800	± 0.029	0.60
40	0.840	± 0.027	0.44

El Problema

Contenidos

- En general queremos comparar distintas configuraciones.
- Significa estimar parametros y compararlos.
- ¿Cuándo podemos decir que son distintos?

Ejemplo

Compararemos un sistema M/M/1 con un sistema M/M/2. En sistema M/M/1 llegadas son 10 por unidad de tiempo, y atendemos 11 clientes por minutos. En sistema M/M/2 llegadas son 10 por unidad de tiempo, y cada servidor atiende 5.5 clientes por minutos.

Contenidos

Comparando estimadores de μ

- Supongamos que ambas configuraciones cuestan lo mismo.
- Escoger sólo dependera de calidad de servicio.
- Medimos calidad de servicio como tiempo espera promedio.

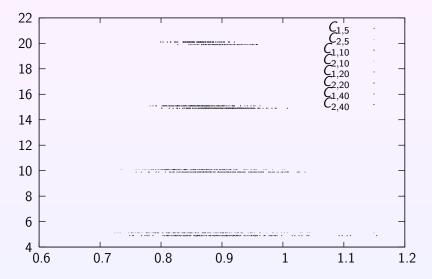
Primer reflejo

Supongamos que tenemos un especialista que sabe de simulación. Simula ambos sistemas, y computa una estimación de μ para ambos sistemas con k corridas independientes. El decide escoger el sistema con mejor tiempo de espera estimada

Contenidos

¿Cómo nos va?

Introducción

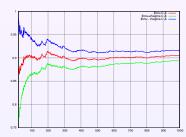


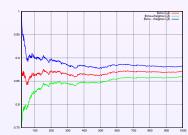
Introducción

Contenidos

Otro Enfoque

- Un mejor enfoque seria compupar intervalos de confianza para ambos μ .
- Habria que alanzar un nivel donde ambos intervalos no se overlapen.





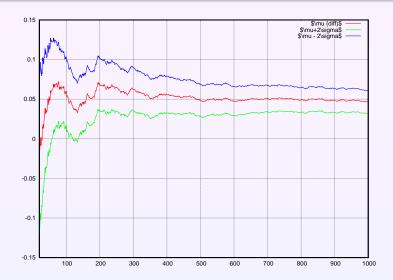
Algunas Observaciones

- El enfoque anterior funciona.... pero
- Típicamente requiere un número de replicaciones altas.
- Sufre de los problemas de no-simetria de las distribuiciones subjacentes.
- El problema anterior podríamos solucionarlo.
- Considerando diferencia de los estimadores.
- Analizamos $Z_n = X_n Y_n$.
- Z_n tiende a tener una alta simetria.
- Decimos que configuraciones son distintas si 0 no esta en intervalo de confianza.

Comparando Distintas Configuraciones

Contenidos

¿Cómo nos va con este enfoque?



Contenidos

Podemos Mejorar?

- Otra forma de comparar sistemas o configuraciones.
- Exacerbar differencias en lo sistemas.
- Comparar bajo situaciones de stress del sistema.
- Ello conlleva a diferencias más sustanciales en los estadísticos.

Caso de múltiples configuraciones:

Comparación con Standard:

- Elegimos una configuración base X⁰.
- Comparamos k configuraciones $X^i : i = 1, ..., k$.
- Computamos intervalos de confianza de $X^{0} - X^{i} : i = 1, ..., k$ a nivel $1 - \alpha/k$.
- Obtenemos Intervalo de confianza global de $1-\alpha$.

Introducción

Contenidos

Caso de múltiples configuraciones:

Comparación todos los pares:

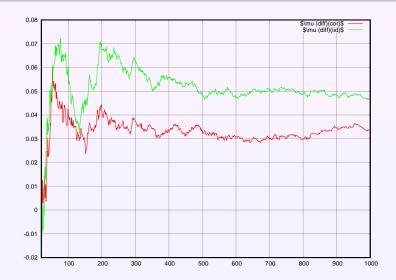
- Dado k configuraciones $X^i : i = 1, ..., k$.
- Comparamos todos los pares i, j.
- Computamos intervalos de confianza para $X^i - X^j : i, j = 1, \dots, k, i \neq j$ de nivel $1 - \alpha/k(k-1)$.
- Obtenemos Intervalo de confianza global de $1-\alpha$.

¿Qué comparamos cuando comparamos?

- Típicamente comparamos un sistema bajo distintas reglas de operación.
- Los enfoques anteriores comparar ciegamente.
- Llevan a una alta varibilidad.
- ¿Qué queremos realmente?
- Comparar sistema en condiciones lo más cercanas posibles.
- En nuestro ejemplo, ¿qué significaría esto?
- Sistema bajo *misma* demanda.
- Notese que ahora correlación de X e Y no es cero.
- Lleva a menores varianzas.
- requiere menos replicaciones para resultados confiables.

Impacto en Ejemplo

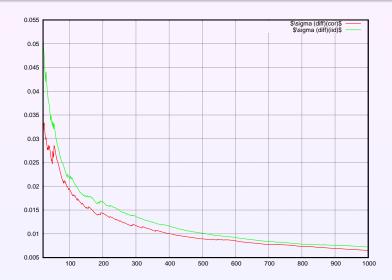
Introducción



Manejando la Varianza

Contenidos

Impacto en Ejemplo



Contenidos

¿Qué quedó afuera?

- Generar variables aleatoreas correlacionadas.
- Validando supuestos del modelo
 - Habría que hacer análisis estadísticos.
- Case de sistemas en estado estacionario.
- Análisis de sistemas oscilantes.
- Buscando buenos generadores de números aleatoreos.