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Molecular Chaos, Pair Correlations, and Shear-Induced Ordering of Hard Spheres
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We present results of molecular dynamics simulations that show that the shear-induced ordering of

hard spheres is preceded by the apparent decrease to zero (in certain directions) of the anisotropic
pair-distribution function (PDF) at contact. This precursor to the ordering is explained on the basis
of a careful interpretation of the meaning of “molecular chaos” in hard-sphere systems. An ansatz is
proposed to model the nonequilibrium PDF at finite separations and is shown to compare well with
simulations. [S0031-9007(96)01073-3]
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Sheared fluids have become the standard testing ground
of the methods nonequilibrium statistical mechanics [1,2].
This is because of the ease of characterizing the nonequi-
librium state due to the existence of a well-defined con-
trol parameter, the shear rate, and the development of
reliable simulation methods which do not give rise to
complicating features such as boundary layers or signi-
ficant size effects. It has been known for more than ten
years that, at high shear rates, simple fluids undergo an
ordering transition whereby the atoms are confined to
planes perpendicular to the velocity gradient: In some
cases, stringlike arrangements of atoms have been ob-
served [3]. For hard spheres, the only system for which a
realistic kinetic theory for moderately dense fluids exists,
two closely related Enskog-level microscopic theories of
the transition have been formulated, both of which relate
it to a small-wavelength hydrodynamic instability [4,5].
These theories, however, offer little insight into the mi-
croscopic mechanism driving the ordering. In an effort
to better understand the transition, we have performed a
series of nonequilibrium molecular dynamics simulations
of a sheared hard-sphere fluid in order to characterize the
behavior of various quantities, such as the pressure ten-
sor and the structure of the fluid, at a moderate density
for which direct comparison with Enskog-based theory
is possible. Our purpose here is twofold. First, we re-
port on a structural anomaly which seems to be a direct
precursor of the ordering transition: the apparent vanish-
ing of the pair-distribution function (PDF) at contact, in
a particular direction, at the transition point. Second, we
show that this quantity can be quantitatively modeled by
carefully interpreting the assumption of “molecular chaos”
that underlies the Enskog description of hard-sphere fluids
[6]. A simple extension of these ideas gives a model for
the PDF at finite separations that compares well with the
simulations.
The simulation method for sheared systems has been

described in the literature [7], and its essential elements
will only be briefly noted here. We use a cubic simulation
cell with the flow along the x direction and the velocity
varying linearly in the y direction. The flow is imposed

by the use of Lees-Edwards [8] boundary conditions
(periodic boundaries in the comoving frame). Because a
sheared fluid heats, a thermostat is applied to maintain
a nearly constant temperature (defined as the excess
kinetic energy relative to the macroscopic flow). In the
present simulations, the excess velocities were rescaled
whenever the temperature exceeded 1.05T0, where T0 was
the desired temperature, to give a new temperature of
0.95T0. Since the relevant quantity for characterizing
the state is the shear rate times the Boltzmann time,
which varies as the inverse square root of the temperature,
the effective reduced shear rate varied by approximately
63%. We have performed our simulations on a system
of 108 particles at a reduced density of n

p ≠ 0.5. The
systems were equilibrated for 2 3 106 collisions and
statistics were gathered over the next 106 collisions. The
data were analyzed using Erpenbeck’s pooling method
[7] to estimate errors. In this Letter, we focus on
only two aspects of our simulations: the quantitative
determination of the critical shear rate and the behavior
of the PDF. In the following, we use units in which the
hard-sphere radius and mass and Boltzmann’s constant
times the temperature are equal to one. The position and
momentum of the ith atom will be denoted as $

q

i

and $
p

i

,
respectively.
From the work of Erpenbeck [3], we know that the

ordering transition occurs gradually as the shear rate
increases above a critical value and that the region
of coexisting ordered and disordered fluid broadens as
the density decreases. Therefore, in order to make a
quantitative determination of the critical shear rate we
have monitored an “order parameter,” intended to be
sensitive to a stringlike ordering of the fluid, defined as

N

s

≠
X

ifij

kQs0.25 2 q

2
ij,y 2 q

2
ij,zdl . (1)

This is the average over the system of the number of
neighbors of each atom which is within a distance of 0.5
when projected on the y-z plane. We have also monitored
the anisotropic structure of fluid. First, we consider the
PDF at contact. Since the PDF cannot be measured at a
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point, we have actually monitored the quantity

gsr̂, fd ;
1

2pf1 2 cossfdg
2

NsN 2 1d

3
X

i,j

kdsq
ij

2 1dQsssq̂
ij

? r̂ 2 cossfddddl (2)

which is the PDF at contact averaged over a solid angle
of altitude cossfd centered on the direction r̂. It is
normalized so that in the limit f ! 0 it becomes the
PDF at contact in the direction r̂. To evaluate this limit,
we calculate this quantity for a sequence of 5 values
of f, from f ≠ 0.1p to 0.5p and interpolate these to
the value at zero using a polynomial in x ≠ cossfd. In
the following, we will only consider the direction r̂ ≠
s 1p

2 , 1p
2 , 0d in which, by symmetry, the greatest effects are

expected.
The behavior of both quantities is summarized in

Fig. 1. The order parameter fluctuates near its equilibrium
value up to a

p ¯ 0.8. Above this, it begins to increase
monotonically indicating the onset of ordering. The first
point that differs from the value at equilibrium by more
than the estimated errors of the measurements is at
a

p ≠ 0.91. A quadratic fit to the values greater than
a

p ≠ 0.81 crosses the equilibrium value at a

p ≠ 0.856.
The values between 0.91 and 1.21 vary almost linearly
with the shear rate: A straight-line interpolation of these
gives a value of 0.84 for the crossing. Finally, the
point at 0.81 is marginally consistent, given the estimated
errors, with the equilibrium value, but it does lie further
above the equilibrium value than does any other point.
Since the reduced shear rate fluctuates by about 3%,
we expect the order parameter to begin to increase at a
reduced shear rate about 3% below the transition point.
A very small increase of the order parameter at a

p ≠ 0.81

FIG. 1. The quantities N

s

(squares) and gsr̂ , fd (bars) as
defined in the text and determined by simulation as functions
of the reduced shear rate. The bars indicate the estimated error
in the latter quantity. The full line is from Eq. (5), the dashed
line is from the linearization of Eq. (5), and the dotted line is
the local-equilibrium contribution.

would therefore be consistent with a transition point of
a

p , 0.835.
In contrast, the PDF at contact in the chosen direction

decreases monotonically below the transition and is very
small above the transition. Below the critical shear
rate, the angular dependence fits well by a quadratic in
cossfd, and virtually identical values are obtained for
f ≠ 0 if a cubic is used instead. At low shear rates,
the PDF decreases monotonically. Above a

p , 0.9, the
interpolations become highly inaccurate; in fact, for all
higher shear rates, the measured value of gsr̂ , fd for the
smallest finite angle is no larger than the estimated error,
and it no longer appears to be a continuous function of f.
To quantify the point at which the PDF appears to vanish,
we note that at a

p , 0.9 we obtain a very small value
(approximately 0.001). Again, the 3% fluctuations in the
shear rate mean that we would expect the measured value
to go to zero at about 3% below the actual transition point.
This gives an upper bound of 0.88 for the vanishing point.
To explain the behavior of the PDF at contact, we note

that the dynamics of hard spheres consists of two parts:
free streaming interrupted by elastic binary collisions.
The effect of the latter on, e.g., two body, the distribution
function can be summarized as

fs1, 2ddsq12 2 1d ≠

(
Qs2 $

q12 ? $
p12df0s1, 2d

1Qs $
q12 ? $

p12db̂f0s1, 2d

)

3 dsq12 2 1d , (3)

where the first term in brackets introduces the precol-
lisional distribution, f0s1, 2d, whereas the second term
expresses the postcollisional distribution in terms of the
precollisional function. The operator b̂ has the effect of
replacing the relative momentum by its postcollisional
value: b̂

$
p12 ≠ $

p12 2 $
q12 $

q12 ? $
p12 (where $

q12 is evalu-
ated at contact). For hard spheres, the Enskog equa-
tion for the one-body distribution may be derived [6]
from the first equation of the BBGKY hierarchy [9] by
using the assumption of molecular chaos in the form
fs1, 2d ¯ fs1dfs2dgs $

q12d. However, as has been noted
previously [6], this is really an overprescription since only
the precollisional part of the two-body distribution (at
contact) enters into the first BBGKY equation. In our no-
tation, only f0s1, 2d is required. It is therefore sufficient to
derive the Enskog equation to make the weaker assump-
tion f0s1, 2d ¯ fs1dfs2dgs $

q12d. This leads us to express
the molecular chaos assumption in the form

fs1, 2ddsq12 2 1d ¯

(
fs1dfs2dgs $

q12d
1Qs $

q12 ? $
p12dsb̂ 2 1dfs1dfs2dgs $

q12d

)

3 dsq12 2 1d . (4)

This simply expresses the obvious fact that, although one
can assume that two atoms are uncorrelated before a
collision, they are necessarily correlated after a collision.
Integrating Eq. (4) over momenta gives a consistent
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expression for the pair-distribution function at contact
including nonequilibrium corrections. In the present
case, we make an approximate evaluation using the
solution, to first order in the shear rate and in the lowest
Sonine approximation, of the Enskog equation, given by
fs p

0d ≠ fs p

0df1 2 anp
p

0
x

p

0
y

1 osanpd2g, where fs p

0d
is a Maxwellian and the density-dependent constant, np, is
given in the literature [5]. Normalizing to the equilibrium
PDF, we obtain
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e
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64
sa2 2 24d

∂
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(5)

The nonequilibrium corrections in Eq. (5) are calculated
to second order in sanpd even though the distribution as
given is only accurate to first order. In fact, we have
calculated the full second-order contributions and find
them to be negligible: They will henceforth be neglected.
The results, as shown in Fig. 1, are in good agreement
with the simulations. Also shown separately in Fig. 1
are the local equilibrium contribution (obtained by setting
np ≠ 0) and the linearized version of Eq. (5). While
the local-equilibrium distribution gives a decrease in the
pair-distribution function, it is clear that the dissipative
terms and the full nonlinear dependence on the shear rate
are needed to fully explain the size of the decrease at
large shear rates. Equation (5) indicates that the PDF
should vanish, at this density, at a

p ≠ 0.86; above this
value, it gives negative values which is unphysical and
may be traced to the fact that the approximate one-body
distribution used is not positive definite. Nevertheless, it
appears to accurately model the PDF even quite close to
the point at which it becomes unphysical. Interestingly,
the onset of unphysical behavior at a density of n

p ≠
0.704 is a

p , 0.7 which is again close to the critical shear
rate of a

p , 0.8 reported by Erpenbeck [3].
In order to interpret these results, we first note that

the PDF at contact for hard spheres is obviously directly
related to the collision rate. Suppose that two atoms
are separated by a relative position of about s 61p

2
, 61p

2
, 0d

just before a collision. Then, their relative velocity,
due to the flow, will be ,s 6ap

2 , 0, 0d, and this tends to
increase the separation between the atoms. Thus, to
have a collision, their relative thermal velocities must
be greater than ap

2 which immediately implies that, as
the shear rate increases, collisions in this direction, and
hence the PDF in this direction, must decrease. The same
type of argument indicates an increase in the collision
rate for relative separations of s 61p

2 , 71p
2 , 0d. For very

large shear rates, we can then imagine that the latter
collisions dominate and the atoms become confined to
planes since, if one moves along the direction of the

gradient, a faster atom overtakes it, giving a collision that
pushes it in the s 1p

2
, 21p

2
, 0d direction; moving against the

gradient, it overtakes a slower atom and is scattered into
the s 21p

2
, 1p

2
, 0d direction.

At finite separations, we expect the postcollisional
correlations to decay as a function of distance due to the
interaction of the particles with the surrounding fluid. We
can model this behavior by assuming that the decay is
solely a function of the separation between the particles.
This then gives an ansatz for the decay of the correlations
of the form
fs1, 2d ¯ fs1dfs2dgs $

q12d

1 ws $
q1, $

q2dQsx 2 ydsb̂
c

2 1dfs1dfs2dgs $
q12d ,

(6)
where the prefactor, ws $

q1, $
q2d, is to be determined sub-

ject to the boundary condition that it equals one at con-
tact. The step function tests whether two particles with
the given position and momentum would have collided
if their trajectories are projected backwards in time ne-
glecting all other particles. Its arguments are x ≠ $

p12 ?

$
q12yp12q12 and y ≠

q
1 2 1yq

2
12. The operator b̂

c

re-
places the relative momentum by its postcollisional value
b̂

c

$
p12 ≠ $

p12 2 2q̂

scd
12 q̂

scd
12 ? $

p12, where q̂

scd
12 is the relative

separation at the time of the collision and is given by
q̂

scd
12 ≠ $

q12 2 $
p12t

c

with the time since collision given by
p12t

c

≠ q12sx 2
p

x

2 2 y

2d. The only unknown is the
amplitude w. To determine it, we substitute Eq. (6) into
the second equation of the BBGKY hierarchy and inte-
grate over momenta. The result is a first order partial
differential equation for the unknown function. For uni-
form shear flow, the solution of the equation is difficult
to carry out so we have only attempted to determine the
amplitude to first order in the shear rate. This necessar-
ily limits the validity of the results to small separations

FIG. 2. The quantity g

xy

srd for reduced shear rate a

p ≠ 0.5.
The circles are from simulation, and the lines are from the
calculation described in the text and based on Eq. (6). The full
line uses the equilibrium value of np while the dashed line uses
the value taken from the simulations.
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since, at intermediate points in the calculations, functions
depending on the combination aq12 must be expanded
which demands that aq12 ø 1. Figure 2 shows the quan-
tity g

xy

srd ≠ 15
4p kq̂

x

q̂

y

dsq 2 rdl as determined by simu-
lation for a

p ≠ 0.5 and the result of the ansatz. For small
separations, the theory appears to agree reasonably well
with the simulation values giving a reasonable estimate
for the height and position of the first peak. For larger
separations, the ansatz decays too rapidly and does not
give as much structure as is observed in the simulations.
The shape of the curve is sensitive to the value of np en-
tering in the approximate distribution function. The figure
also shows the calculation using the value of this constant
determined from the simulations (specifically, from the ki-
netic part of the shear viscosity), and it is evident that this
improves the description of the small distance behavior.
Although not reliable at large separations, the ansatz ap-
pears to capture the dominant effect which is the rapid
decay of the nonequilibrium correlations and the position
and height of the first peak. It thus appears that most
of the structural difference between the equilibrium and
shear fluids arises solely from the effects of momentum
correlations generated by two-body collisions.
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