Chapter 6

Entropy

Our introduction to the concept of entropy will be based on the canonical distribution,

$$\rho(H) = \frac{e^{-\beta H}}{Z}.$$
(6.1)

Classically, we can define the mean volume of phase space occupied by

$$\rho(\bar{E})\Delta q\,\Delta p = 1,\tag{6.2}$$

where $\bar{E} = \langle H \rangle$ is the average energy. Then, we define the entropy by

$$S = k \ln \Delta q \,\Delta p = -k \ln \rho(\bar{E}). \tag{6.3}$$

For the canonical distribution, $\ln \rho(H) = \text{const} - \beta H$, so

$$\ln \rho(\bar{E}) = \langle \ln \rho(H) \rangle = \int dq \, dp \, \rho \ln \rho.$$
(6.4)

Thus the entropy is

$$S = -k \langle \ln \rho \rangle = -k \int dq \, dp \, \rho \ln \rho. \tag{6.5}$$

Quantum mechanically, we define the number of quantum states by

$$\rho(\bar{E})\Delta\Gamma = 1,\tag{6.6}$$

and then the entropy is

$$S = k \ln \Delta \Gamma = -k \ln \rho(\bar{E}) = -k \langle \ln \rho \rangle = -k \operatorname{Tr} \rho \ln \rho.$$
(6.7)

Note that because

$$\rho(H) = \sum_{n} |n\rangle p_n \langle n|, \qquad (6.8)$$

25 Version of February 18, 2010

where the sum is over a complete set of states, the entropy can also be written as

$$S = -k\sum_{n} p_n \ln p_n \ge 0, \tag{6.9}$$

because $1 \ge p_n \ge 0$, so the entropy is zero only for a pure state. For the canonical distribution, this occurs only at T = 0.¹ The correspondence principle relation between the number of quantum states and the volume of phase space is

$$\Delta\Gamma = \frac{\Delta q \,\Delta p}{h^s},\tag{6.10}$$

for s degrees of freedom, where $h = 2\pi\hbar$ is Planck's constant.

If we have two independent systems, so that

$$\rho = \rho_1 \rho_2, \quad \text{Tr} \, \rho_1 = \text{Tr} \, \rho_2 = 1,$$
(6.11)

the entropy of the composite system is

$$S = -k \operatorname{Tr} \rho_1 \rho_2 (\ln \rho_1 + \ln \rho_2)$$

= $-k [\operatorname{Tr} (\rho_1 \ln \rho_1) \operatorname{Tr} \rho_2 + \operatorname{Tr} (\rho_2 \ln \rho_2) \operatorname{Tr} \rho_1]$
= $-k (\operatorname{Tr} \rho_1 \ln \rho_1 + \operatorname{Tr} \rho_2 \ln \rho_2)$
= $S_1 + S_2,$ (6.12)

that is, entropies are additive.

The entropy is closely related to the quantity P introduced in Chapter 2, the number of ways of getting a distribution $\{a_l\}$:

....

$$P = \frac{N!}{\prod_l (a_l)!},\tag{6.13}$$

where the ensemble consists of N systems, and a_l is the number of systems in the *l*th state, so

$$N = \sum_{l} a_l. \tag{6.14}$$

What we actually maximized was $\ln P$, which is

$$\ln P = \ln N! - \sum_{l} \ln(a_l)! \approx N \ln N - \sum_{l} a_l \ln a_l, \qquad (6.15)$$

which uses Stirling's approximation and Eq. (6.14). The probability of finding a system in the *l*th state is $p_l = a_l/N$, so

$$\ln P = N \ln N - N \sum_{l} p_{l} (\ln p_{l} + \ln N) = -N \sum_{l} p_{l} \ln p_{l}, \qquad (6.16)$$

 $^{^{1}}$ This is the content of the third law of thermodynamics, which states that if the ground state is non-degenerate, the entropy vanishes at absolute zero.

or

$$\frac{k}{N}\ln P = S; \tag{6.17}$$

 $k \ln P$ is actually the entropy of the entire ensemble. So we see that of all distributions, with fixed N and E, the most probable distribution, the canonical distribution, maximizes the *entropy*.

Now, let us see what S is more explicitly in the canonical distribution, for which

$$p_n = \frac{e^{-\beta E_n}}{Z}, \quad Z = \sum_n e^{-\beta E_n}.$$
 (6.18)

Then the entropy is

$$S = -k \operatorname{Tr} \rho \ln \rho = -k \sum_{n} p_{n} \ln p_{n}$$
$$= -k \sum_{n} \frac{e^{-\beta E_{n}}}{Z} \left[-\beta E_{n} - \ln Z \right]$$
$$= k \beta U + k \ln Z.$$
(6.19)

We have two kinds of energy appearing here: The internal energy,

$$U = -\frac{\partial}{\partial\beta} \ln Z = \frac{1}{Z} \sum_{n} E_n e^{-\beta E_n}, \qquad (6.20)$$

and the Helmholtz free energy,

$$F = -kT\ln Z, \quad T = \frac{1}{k\beta}.$$
(6.21)

The relation (6.19) says that these are related by

$$F = U - TS, \tag{6.22}$$

which should be familiar from thermodynamics. If I take the differential of $\ln Z$,

$$d\ln Z = d\beta \frac{d}{d\beta} \ln Z + \sum_{l} dE_{l} \frac{d}{dE_{l}} \ln Z$$
$$= -Ud\beta - \frac{\beta}{Z} \sum_{l} e^{-\beta E_{l}} dE_{l}, \qquad (6.23)$$

which is equivalent to

$$d(\ln Z + \beta U) = \beta(dU - \sum_{l} p_l dE_l), \qquad (6.24)$$

where by Eq. (6.19) the differential on the left is dS/k. Inside the parenthesis on the right, dU represents the average internal energy increase, while $-\sum_{l} p_{l} dE_{l}$ represents the average work done by the system when the energy levels are

lifted from E_l to new energy levels $E_l + dE_l$. We call the latter δW , where δ is a reminder that there is no system property called work (unlike energy or entropy), and so δW depends upon the path. Then Eq. (6.24) reads

$$dS = \frac{1}{T}\delta Q, \quad \delta Q = dU + \delta W, \tag{6.25}$$

where δQ is the heat supplied to the system. That heat either does work on the system, or changes its internal energy. 1/T is the integrating factor necessary to change the imperfect differential δQ into the perfect differential dS. This, in fact, is the rigorous thermodynamic definition of temperature.

Note that thermodynamic relations, such as

$$dF = dU - TdS - SdT = -pdV + TdS - TdS - SdT$$

= -pdV - SdT, (6.26)

or

$$\left(\frac{\partial F}{\partial T}\right)_V = -S, \quad \left(\frac{\partial F}{\partial V}\right)_T = -p,$$
 (6.27)

may also be derived statistically,

$$\begin{pmatrix} \frac{\partial F}{\partial T} \end{pmatrix}_{V} = -k \ln Z + kT \frac{1}{Z} \sum_{l} \left(-\frac{E_{l}}{kT^{2}} \right) e^{-\beta E_{l}}$$
$$= \frac{F - U}{T} = -S,$$
(6.28)

because the energy levels don't change if the volume is fixed, and

$$\left(\frac{\partial F}{\partial V}\right)_{T} = -kT\frac{1}{Z}\sum_{l}(-\beta)\frac{\partial E_{l}}{\partial V}e^{-\beta E_{l}}$$
$$= -\frac{\delta W}{dV} = -p.$$
(6.29)

Finally, let us rederive the thermodynamic relation, used above,

$$dU = -pdV + TdS. (6.30)$$

This says

$$\left(\frac{\partial S}{\partial U}\right)_V = \frac{1}{T}.$$
(6.31)

In fact, from

$$S = k\beta U + k\ln Z, \tag{6.32}$$

we see

$$\begin{pmatrix} \frac{\partial S}{\partial U} \end{pmatrix}_{V} = k\beta + kU \left(\frac{\partial \beta}{\partial U} \right)_{V} + k \left(\frac{\partial}{\partial U} \ln Z \right)_{V}$$
$$= k\beta = \frac{1}{T},$$
(6.33)

29 Version of February 18, 2010

where the last two terms on the first line cancel because

$$\frac{\partial}{\partial U}\ln Z = \frac{\partial}{\partial\beta}\ln Z \frac{\partial\beta}{\partial U} = -U \frac{\partial\beta}{\partial U},\tag{6.34}$$

provided the volume is held fixed, which means that the energy levels ${\cal E}_l$ do not change.

6.1 Examples

6.1.1 Ideal Gas

Recall that for an ideal gas [Eq. (5.44)]

$$Z = V^N \left(\frac{2\pi m}{\beta}\right)^{3N/2}.$$
(6.35)

Then the free energy is

$$F = -kT\ln Z = -kT\left(N\ln V + \frac{3N}{2}\ln T + \text{constant}\right).$$
(6.36)

The internal energy is

$$U = -\frac{\partial}{\partial\beta}\ln Z = \frac{3N}{2}\frac{1}{\beta} = \frac{3N}{2}kT,$$
(6.37)

which is the equipartition theorem. The pressure is given by the ideal gas law:

$$p = -\left(\frac{\partial F}{\partial V}\right)_T = \frac{NkT}{V}, \quad pV = NkT.$$
 (6.38)

6.1.2 Harmonic Oscillator

In this case, the energy levels are

$$E_l = \left(l + \frac{1}{2}\right)\hbar\omega, \quad l = 0, 1, 2, \dots$$
(6.39)

Then the partition function is

$$Z = \sum_{l} e^{-\beta E_{l}} = e^{-\beta \hbar \omega/2} \sum_{l=0}^{\infty} e^{-\beta l \hbar \omega}$$
$$= e^{-\beta \hbar \omega/2} \frac{1}{1 - e^{-\beta \hbar \omega}} = \frac{1}{e^{\beta \hbar \omega/2} - e^{-\beta \hbar \omega/2}}$$
$$= \frac{1}{2 \sinh \beta \hbar \omega/2}.$$
(6.40)

30 Version of February 18, 2010

Then the free energy is

$$F = -kT\ln Z = kT\ln\sinh\frac{\beta\hbar\omega}{2} + kT\ln 2.$$
(6.41)

The internal energy is

$$U = -\frac{\partial}{\partial\beta} \ln Z = \frac{1}{\sinh\beta\hbar\omega/2} \cosh\beta\hbar\omega/2 \left(\frac{\hbar\omega}{2}\right) = \frac{\hbar\omega}{2} \coth\frac{\beta\hbar\omega}{2}$$
$$= \frac{\hbar\omega}{2} \frac{e^{\beta\hbar\omega/2} + e^{-\beta\hbar\omega/2}}{e^{\beta\hbar\omega/2} - e^{-\beta\hbar\omega/2}} = \frac{\hbar\omega}{2} \frac{e^{\beta\hbar\omega} + 1}{e^{\beta\hbar\omega} - 1}$$
$$= \frac{\hbar\omega}{2} + \frac{\hbar\omega}{e^{\beta\hbar\omega} - 1}, \tag{6.42}$$

which is the famous Planck distribution. Note the appearance in the first term of the zero-point energy.

6.1.3 Two-level System

Here the system has only two states of energy

$$E = 0 \quad \text{and} \quad E = \epsilon. \tag{6.43}$$

This is sometimes called a Fermi oscillator. The partition function is

$$Z = 1 + e^{-\beta\epsilon},\tag{6.44}$$

and so the free energy is

$$F = -kT\ln\left(1 + e^{-\beta\epsilon}\right),\tag{6.45}$$

from which we find the internal energy

$$U = -\frac{\partial}{\partial\beta} \ln Z = -\frac{1}{1+e^{-\beta\epsilon}} (-\epsilon) e^{-\beta\epsilon} = \frac{\epsilon}{e^{\beta\epsilon}+1}, \quad (6.46)$$

which is the famous Fermi distribution.

6.2 Fluctuations

Let us consider the spread in energies about the average,

$$\langle (H-U)^2 \rangle = \langle H^2 \rangle - U^2. \tag{6.47}$$

Now the internal energy is

$$U = -\frac{d}{d\beta} \ln Z = -\frac{1}{Z} \frac{d}{d\beta} Z, \qquad (6.48)$$

31 Version of February 18, 2010

 \mathbf{SO}

$$U^2 = \left(\frac{1}{Z}\frac{d}{d\beta}Z\right)^2,\tag{6.49}$$

while

$$\langle H^2 \rangle = \sum_l p_l E_l^2 = \frac{1}{Z} \sum_l e^{-\beta E_l} E_l^2 = \frac{1}{Z} \frac{d^2}{d\beta^2} Z,$$
 (6.50)

 \mathbf{SO}

$$\langle (H-U)^2 \rangle = \frac{1}{Z} \frac{d^2}{d\beta^2} Z - \left(\frac{1}{Z} \frac{d}{d\beta} Z\right)^2 = \frac{d^2}{d\beta^2} \ln Z.$$
(6.51)

On the other hand, the *specific heat* at constant volume is defined by

$$c_V = \left(\frac{\partial U}{\partial T}\right)_V = \frac{d\beta}{dT}\frac{dU}{d\beta} = \frac{1}{kT^2}\frac{d^2}{d\beta^2}\ln Z$$
$$= \frac{1}{kT^2}\langle (H-U)^2 \rangle. \tag{6.52}$$

Thus we define the root mean square fluctuation in the energy as

$$\delta \mathcal{E} = \sqrt{\langle (H - U)^2 \rangle},\tag{6.53}$$

we have

$$\delta \mathcal{E} = \sqrt{kc_V}T. \tag{6.54}$$

If the specific heat is independent of T, the fluctuation in the energy grows linearly with the temperature. For an ideal gas,

$$U = \frac{3N}{2}kT,\tag{6.55}$$

so $c_V = 3Nk/2$, and

$$\delta \mathcal{E} = \sqrt{\frac{3N}{2}} kT, \quad \frac{\delta \mathcal{E}}{U} = \sqrt{\frac{2}{3N}}, \tag{6.56}$$

which exhibits the typical $1/\sqrt{N}$ behavior of statistical fluctuations.