
Chapter 6

Entropy

Our introduction to the concept of entropy will be based on the canonical dis-
tribution,

ρ(H) =
e−βH

Z
. (6.1)

Classically, we can define the mean volume of phase space occupied by

ρ(Ē)∆q ∆p = 1, (6.2)

where Ē = 〈H〉 is the average energy. Then, we define the entropy by

S = k ln ∆q ∆p = −k ln ρ(Ē). (6.3)

For the canonical distribution, ln ρ(H) = const − βH , so

ln ρ(Ē) = 〈ln ρ(H)〉 =

∫

dq dp ρ lnρ. (6.4)

Thus the entropy is

S = −k〈lnρ〉 = −k

∫

dq dp ρ lnρ. (6.5)

Quantum mechanically, we define the number of quantum states by

ρ(Ē)∆Γ = 1, (6.6)

and then the entropy is

S = k ln ∆Γ = −k ln ρ(Ē) = −k〈ln ρ〉 = −kTr ρ ln ρ. (6.7)

Note that because

ρ(H) =
∑

n

|n〉pn〈n|, (6.8)
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where the sum is over a complete set of states, the entropy can also be written
as

S = −k
∑

n

pn ln pn ≥ 0, (6.9)

because 1 ≥ pn ≥ 0, so the entropy is zero only for a pure state. For the
canonical distribution, this occurs only at T = 0.1 The correspondence principle
relation between the number of quantum states and the volume of phase space
is

∆Γ =
∆q ∆p

hs
, (6.10)

for s degrees of freedom, where h = 2πh̄ is Planck’s constant.
If we have two independent systems, so that

ρ = ρ1ρ2, Tr ρ1 = Tr ρ2 = 1, (6.11)

the entropy of the composite system is

S = −kTr ρ1ρ2(ln ρ1 + ln ρ2)

= −k[Tr (ρ1 ln ρ1)Tr ρ2 + Tr (ρ2 ln ρ2)Tr ρ1]

= −k(Tr ρ1 ln ρ1 + Tr ρ2 ln ρ2)

= S1 + S2, (6.12)

that is, entropies are additive.
The entropy is closely related to the quantity P introduced in Chapter 2,

the number of ways of getting a distribution {al}:

P =
N !

∏

l(al)!
, (6.13)

where the ensemble consists of N systems, and al is the number of systems in
the lth state, so

N =
∑

l

al. (6.14)

What we actually maximized was ln P , which is

lnP = lnN ! −
∑

l

ln(al)! ≈ N lnN −
∑

l

al ln al, (6.15)

which uses Stirling’s approximation and Eq. (6.14). The probability of finding
a system in the lth state is pl = al/N , so

lnP = N lnN − N
∑

l

pl(ln pl + lnN) = −N
∑

l

pl ln pl, (6.16)

1This is the content of the third law of thermodynamics, which states that if the ground

state is non-degenerate, the entropy vanishes at absolute zero.
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or
k

N
lnP = S; (6.17)

k lnP is actually the entropy of the entire ensemble. So we see that of all
distributions, with fixed N and E, the most probable distribution, the canonical
distribution, maximizes the entropy.

Now, let us see what S is more explicitly in the canonical distribution, for
which

pn =
e−βEn

Z
, Z =

∑

n

e−βEn . (6.18)

Then the entropy is

S = −kTr ρ ln ρ = −k
∑

n

pn ln pn

= −k
∑

n

e−βEn

Z
[−βEn − lnZ]

= kβU + k lnZ. (6.19)

We have two kinds of energy appearing here: The internal energy,

U = − ∂

∂β
lnZ =

1

Z

∑

n

Ene−βEn, (6.20)

and the Helmholtz free energy,

F = −kT lnZ, T =
1

kβ
. (6.21)

The relation (6.19) says that these are related by

F = U − TS, (6.22)

which should be familiar from thermodynamics. If I take the differential of lnZ,

d lnZ = dβ
d

dβ
lnZ +

∑

l

dEl
d

dEl
lnZ

= −Udβ − β

Z

∑

l

e−βEldEl, (6.23)

which is equivalent to

d(ln Z + βU) = β(dU −
∑

l

pldEl), (6.24)

where by Eq. (6.19) the differential on the left is dS/k. Inside the parenthesis on
the right, dU represents the average internal energy increase, while −∑

l pldEl

represents the average work done by the system when the energy levels are
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lifted from El to new energy levels El + dEl. We call the latter δW , where δ
is a reminder that there is no system property called work (unlike energy or
entropy), and so δW depends upon the path. Then Eq. (6.24) reads

dS =
1

T
δQ, δQ = dU + δW, (6.25)

where δQ is the heat supplied to the system. That heat either does work on the
system, or changes its internal energy. 1/T is the integrating factor necessary
to change the imperfect differential δQ into the perfect differential dS. This, in
fact, is the rigorous thermodynamic definition of temperature.

Note that thermodynamic relations, such as

dF = dU − TdS − SdT = −pdV + TdS − TdS − SdT

= −pdV − SdT, (6.26)

or
(

∂F

∂T

)

V

= −S,

(

∂F

∂V

)

T

= −p, (6.27)

may also be derived statistically,
(

∂F

∂T

)

V

= −k lnZ + kT
1

Z

∑

l

(

− El

kT 2

)

e−βEl

=
F − U

T
= −S, (6.28)

because the energy levels don’t change if the volume is fixed, and
(

∂F

∂V

)

T

= −kT
1

Z

∑

l

(−β)
∂El

∂V
e−βEl

= −δW

dV
= −p. (6.29)

Finally, let us rederive the thermodynamic relation, used above,

dU = −pdV + TdS. (6.30)

This says
(

∂S

∂U

)

V

=
1

T
. (6.31)

In fact, from
S = kβU + k lnZ, (6.32)

we see
(

∂S

∂U

)

V

= kβ + kU

(

∂β

∂U

)

V

+ k

(

∂

∂U
lnZ

)

V

= kβ =
1

T
, (6.33)
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where the last two terms on the first line cancel because

∂

∂U
lnZ =

∂

∂β
lnZ

∂β

∂U
= −U

∂β

∂U
, (6.34)

provided the volume is held fixed, which means that the energy levels El do not
change.

6.1 Examples

6.1.1 Ideal Gas

Recall that for an ideal gas [Eq. (5.44)]

Z = V N

(

2πm

β

)3N/2

. (6.35)

Then the free energy is

F = −kT lnZ = −kT

(

N lnV +
3N

2
lnT + constant

)

. (6.36)

The internal energy is

U = − ∂

∂β
lnZ =

3N

2

1

β
=

3N

2
kT, (6.37)

which is the equipartition theorem. The pressure is given by the ideal gas law:

p = −
(

∂F

∂V

)

T

=
NkT

V
, pV = NkT. (6.38)

6.1.2 Harmonic Oscillator

In this case, the energy levels are

El =

(

l +
1

2

)

h̄ω, l = 0, 1, 2, . . . . (6.39)

Then the partition function is

Z =
∑

l

e−βEl = e−βh̄ω/2

∞
∑

l=0

e−βlh̄ω

= e−βh̄ω/2
1

1 − e−βh̄ω
=

1

eβh̄ω/2 − e−βh̄ω/2

=
1

2 sinhβh̄ω/2
. (6.40)
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Then the free energy is

F = −kT lnZ = kT ln sinh
βh̄ω

2
+ kT ln 2. (6.41)

The internal energy is

U = − ∂

∂β
lnZ =

1

sinhβh̄ω/2
coshβh̄ω/2

(

h̄ω

2

)

=
h̄ω

2
coth

βh̄ω

2

=
h̄ω

2

eβh̄ω/2 + e−βh̄ω/2

eβh̄ω/2 − e−βh̄ω/2
=

h̄ω

2

eβh̄ω + 1

eβh̄ω − 1

=
h̄ω

2
+

h̄ω

eβh̄ω − 1
, (6.42)

which is the famous Planck distribution. Note the appearance in the first term
of the zero-point energy.

6.1.3 Two-level System

Here the system has only two states of energy

E = 0 and E = ǫ. (6.43)

This is sometimes called a Fermi oscillator. The partition function is

Z = 1 + e−βǫ, (6.44)

and so the free energy is

F = −kT ln
(

1 + e−βǫ
)

, (6.45)

from which we find the internal energy

U = − ∂

∂β
lnZ = − 1

1 + e−βǫ
(−ǫ)e−βǫ =

ǫ

eβǫ + 1
, (6.46)

which is the famous Fermi distribution.

6.2 Fluctuations

Let us consider the spread in energies about the average,

〈(H − U)2〉 = 〈H2〉 − U2. (6.47)

Now the internal energy is

U = − d

dβ
lnZ = − 1

Z

d

dβ
Z, (6.48)
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so

U2 =

(

1

Z

d

dβ
Z

)2

, (6.49)

while

〈H2〉 =
∑

l

plE
2

l =
1

Z

∑

l

e−βElE2

l =
1

Z

d2

dβ2
Z, (6.50)

so

〈(H − U)2〉 =
1

Z

d2

dβ2
Z −

(

1

Z

d

dβ
Z

)2

=
d2

dβ2
lnZ. (6.51)

On the other hand, the specific heat at constant volume is defined by

cV =

(

∂U

∂T

)

V

=
dβ

dT

dU

dβ
=

1

kT 2

d2

dβ2
lnZ

=
1

kT 2
〈(H − U)2〉. (6.52)

Thus we define the root mean square fluctuation in the energy as

δE =
√

〈(H − U)2〉, (6.53)

we have
δE =

√

kcV T. (6.54)

If the specific heat is independent of T , the fluctuation in the energy grows
linearly with the temperature. For an ideal gas,

U =
3N

2
kT, (6.55)

so cV = 3Nk/2, and

δE =

√

3N

2
kT,

δE
U

=

√

2

3N
, (6.56)

which exhibits the typical 1/
√

N behavior of statistical fluctuations.


