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Problem 1: Relativistic ideal gas

a) eigenstates are plane waves ψk = V −1/2eik·x with wavevectors ki = (2π/L)ni with ni integer

ε = c|p| = c~
√
k2x + k2y + k2z

Total energy

E = c~
N∑
i=1

√
(k2i,x + k2i,y + k2i,z)

To count microstates we need the volume of the object defined by this equation in 3N -dimensional
k-space. The length scale of the object isRk = E/(c~). Thus, the volume is Vk = B(N) [E/(c~)]3N

where the constant prefactor only depends on N .

The number of states with energies below E, is therefore

Σ(E,N, V ) = Vk/(2π/L)3N = B(N)

(
LE

ch

)3N

Ω(E,N, V ) ∼ ∂Σ(E,N, V )/∂E ∼ 3N

E
Σ(E,N, V )

In calculating S we use the fact that it has to be extensive to pull the appropriate factors of N
into the logarithm:

S(E,N, V ) = NkB ln

[
V

N

(
E

Nch

)3
]

+ f(N)

b) Solve for the energy:

E = Nch(N/V )1/3e
S−f(N)
3NkB

temperature T = (∂E/∂S)N,V = E/(3NkBT ), therefore E = 3NkBT .

c) pressure T = −(∂E/∂V )N,S = E/(3V ) = NkBT/V , therefore pV = NkBT .

d) Cp − Cv = TV α2/κT
The r.h.s. only depends on the thermodynamic eq. of state, thus it is the same as for the
non-relativistic ideal gas: Cp − Cv = NkB
Therefore: Cp = 4NkB and Cp/Cv = 4/3.

Problem 2: Comparison of the microcanonical and canonical ensembles: system of
two-level atoms

a) Microcanonical ensemble

N0 +N1 = N , n0 = N0/N , n1 = N1/N , n0 + n1 = 1, E = N0E0 +N1E1 = N1ε



(i) Ω = N !/(N0!N1!)
S = kB ln Ω = kB[ln(N !)− ln(N0!)− ln(N1!)]

minimum S: S = 0 for N0 = 0, N1 = N or N0 = N,N1 = 0
(just a single microstate, i.e maximum order)

maximum S: S = kB[ln(N !)− 2 ln(N/2!)]
(maximum disorder)

S/N = (kB/N)[N lnN −N −N0 lnN0 +N0 −N1 lnN1 +N1]
S/N = kB[−(N0/N) lnN0 − (N1/N) lnN1 + lnN ]
S/N = kB[−(N0/N) ln(N0/N)− (N1/N) ln(N1/N)]
S/N = kB[−n0 lnn0 − n1 lnn1]

(ii) 1/T = (∂S/∂E), E = N1ε
1/T = (1/ε)(∂S/∂N1) = (1/ε)(∂(S/N)/∂(N1/N))
1/T = (kB/ε)(∂/∂n1)[−(1− n1) ln(1− n1)− n1 lnn1]
1/T = (kB/ε)[ln(1− n1) + 1− lnn1 − 1]
1/T = (kB/ε) ln(n0/n1)

kBT = ε/ ln(n0/n1)

T > 0 if n0 > n1, usual case – occupation probability decreases with increasing energy
T < 0 if n0 < n1, inversion, important i.e in lasers, in equilibrium only possible with
bounded energy spectrum

with increasing energy the temperature goes T = 0+→ +∞→ −∞→ 0−
(iii) C = (∂E/∂T ) = ε(∂N1/∂T )

1/C = (1/ε)(∂T/∂N1) = 1/(NkB)(∂/∂n1)[1/ ln((1− n1)/n1)]
1/C = −1/(NkB)1/ ln2(n0/n1)(−1/n0 − 1/n1)
C = NkBn0n1 ln2(n0/n1) C > 0 for all temperatures!

b) (i)

Z1(β) = 1 + e−βε, p0 = 1/(1 + e−βε), p1 = e−βε/(1 + e−βε)

A = −NkBT lnZ1(β) = −NkBT ln(1 + e−βε)

(ii)

U = −N(∂ lnZ1/∂β) = Nεe−βε/(1 + e−βε) = Nεp1

TS = (U −A) = Nεe−βε/(1 + e−βε) +NkBT ln(1 + e−βε)

C = (∂U/∂T ) =
Nε2

kBT 2

eε/kBT

(1 + eε/kBT )2

(iii)

kBT = ε/ ln(p0/p1)

U = Nεp1

C = NkB ln2(p0/p1)p0p1

S = −kB(p0 ln p0 + p1 ln p1)

Results are identical to those obtained from the microcanonical approach above.



Problem 3: Two interacting magnetic moments

a) In the ground state, the two moments will be parallel.

b)

Q =

∫
dφdθ sin θ exp(βJ cos θ) = 2π

∫ 1

−1
dx exp(βJx) =

4π

βJ
sinh(βJ)

A = −kBT ln

[
4π

βJ
sinh(βJ)

]
c)

〈E〉 = −∂ lnQ

∂β
= −J coth(βJ) + 1/β

C =
∂〈E〉
∂T

= kB

[
1 +

J2

k2BT
2
(1− coth2(βJ))

]
d) At low temperatures, the angle θ will be small. Thus we can expand sin θ ≈ θ and cos θ ≈

1− θ2/2.

〈θ〉 =

∫∞
0 θdθ θ exp(−βJθ2/2)∫∞
0 θdθ exp(−βJθ2/2)

=
√
π/(2βJ)

〈θ2〉 =

∫∞
0 θdθ θ2 exp(−βJθ2/2)∫∞
0 θdθ exp(−βJθ2/2)

= 2/(βJ)

〈θ2〉 − 〈θ〉2 =
kBT

J
(2− π/2)

One could argue that 〈θ〉 = 0 because of symmetry. This depends on how exactly you define θ.
I count both answers as correct.


