Physics 413: Stat. Mech. - Solutions of Homework 5

Problem 1: Relativistic ideal gas

a)

eigenstates are plane waves Yy = V1/2eikex

€ =c|p| = ch /K2 + k2 + k2
Total energy

with wavevectors k; = (27/L)n; with n; integer

N
E=chy \/(kix + k2, k2,)
=1

To count microstates we need the volume of the object defined by this equation in 3/N-dimensional
k-space. The length scale of the object is Ry = E/(ch). Thus, the volume is Vi = B(N) [E/(ch)]?N
where the constant prefactor only depends on V.

The number of states with energies below FE, is therefore

3N
Y(E,N,V) =Vi/(@2n/L)*N = B(N) (if)

N
Q(E, N, V) ~ 9S(E, N, V)/OE ~ %Z(E, N,V

In calculating S we use the fact that it has to be extensive to pull the appropriate factors of N

into the logarithm:
V[ E\®
N \ Nch

S—f(N)
E = Nch(N/V)Y3¢ 3Nkg
temperature T' = (0E/0S)nv = E/(3NkpT), therefore E = 3NkgT.

S(E,N,V) = Nkgln + f(N)

Solve for the energy:

pressure T'= —(0E/0V)ns = E/(3V) = NkgT/V, therefore pV = NkpT.

C,—Cy = TVa?/kr

The r.h.s. only depends on the thermodynamic eq. of state, thus it is the same as for the
non-relativistic ideal gas: Cp, — C, = Nkp

Therefore: C), = 4Nkp and C,/C, = 4/3.

Problem 2: Comparison of the microcanonical and canonical ensembles: system of
two-level atoms

a)

Microcanonical ensemble

No+ Ny =N, ’I’LO:N()/N, nlle/N, ng+ny =1, E = NogFEg+ N1 Fy = Nie



(i) Q= N!/(No!Ny!)
S =kpInQ = kp[In(N!) — In(Np!) — In(Ny!)]
minimum S: S =0 for Ng=0,N; =N or Ng=N,N; =0
(just a single microstate, i.e maximum order)
maximum S: S = kg[In(N!) — 21In(N/2!)]
(maximum disorder)
S/N = (k}B/N)[NlDN — N — Nogln Ny + Ng — N1 In N7 + Nl]
S/N = ]{:B[—(No/N) In Ny — (Nl/N) In N7 + lnN]
S/N = kp[—(No/N)In(No/N) — (N1/N) In(N1/N)]
S/N = kB[—TL() lnno —ni lnnl]
(i) 1/T = (0S/OFE), E = Nye
1T = (1/€)(95/0N1) = (1/€)(0(5/N)/O(N1/N))
1/T = (kp/€e)(90/0n1)[—(1 — n1) In(1 — n1) — ny Inny]
1/T = (kp/€e)[In(1 —n1) +1 —Inng — 1]
1/T = (kp/e) In(ng/n1)
kT =€/ In(ng/n1)
T > 0 if ng > nq, usual case — occupation probability decreases with increasing energy
T < 0 if ng < nq, inversion, important i.e in lasers, in equilibrium only possible with
bounded energy spectrum
with increasing energy the temperature goes T'= 04+ — 400 — —00 — 0—
(ili) C = (OE/OT) = ¢(ON1/0T)
1/C = (1/€)(0T/ON1) = 1/(Nkp)(9/0n1)[1/ In((1 = n1)/n1)]
1/C = —1/(Nkg)1/In*(ng/n1)(—1/ng — 1/n1)
C = Nkgngny lng(no/nl) C > 0 for all temperatures!

Zi(B)=1+e P po=1/(1+e5), p=e /(1 + ")
A= —NkpTInZ(8) = —NkgTIn(1 + ")

U=—N(InZ /0) = Nee P /(1 + e P¢) = Nep;
TS = (U —A) = Nee ?/(1 4+ e 7) 4 NkgTIn(1 + e 7)

Ne2 e€/ kBT
C = OU/OT) = | s T

(iii)
kT = ¢/ In(po/p1)
U= N€p1
C = Nkp1n?(po/p1)pop1
S = —kp(polnpo + p1Inp;)

Results are identical to those obtained from the microcanonical approach above.



Problem 3: Two interacting magnetic moments

a) In the ground state, the two moments will be parallel.

b)
1 dx exp(BJx) = 4—Wsinh(ﬂj)
1

Q= /d¢d0 sinf exp(fJ cosf) = 27?/ BJ

A= —kpTIn [;7} sinh(ﬁJ)]

(E) = _agnﬁcg = —Jcoth(8J) + 1/
2
C = 85? = kg [1 + X (1- Cothz(ﬁJ))]

d) At low temperatures, the angle § will be small. Thus we can expand sinf ~ 6 and cosf ~
1—6%)2.

 [X0d6 bexp(—BI62/2)

(6) = Jo~ 0df exp(—BJ6%/2) ™/(287)
_J570d6 6% exp(—pJ0%/2)

(%) = Dfo"" 0d0 exp(—pJ62/2) 2/(87)
(6 — (0 = 2L (2~ n/2)

One could argue that () = 0 because of symmetry. This depends on how exactly you define 6.
I count both answers as correct.



