Auxiliar 3 - MA3801 - Análisis

Departamento de Ingeniería Matemática, Universidad de Chile Martes 02 de Abril, 2013

Profesor de Cátedra: Carlos Conca R.
Profesores Auxiliares: Francisco Arana - Matías Godoy Campbell - Ignacio Vergara S.

Pregunta 1. Consideremos la tupla (X, \leq) donde X es un conjunto cualquiera $y \leq$ una relación de orden parcial. Para cada $x \in X$ se definen los conjuntos:

$$U_I(x) := \{ y \in X : y \le x \}, \ U_D(x) := \{ y \in X : x \le y \}$$

a) Definamos

$$\mathcal{B}_I := \{ U_I(x) \mid x \in X \}, \ \mathcal{B}_D = \{ U_D(x) \mid x \in X \}$$

Pruebe que tanto \mathcal{B}_I como \mathcal{B}_D son bases de una topología sobre X, denotadas τ_I y τ_D respectivamente.

- **b)** Pruebe que A es abierto en τ_I ssi $(\forall x \in A)$ $U_I(x) \subset A$.
- c) Pruebe que en τ_I la intersección arbitraria de abiertos es abierto.
- d) Pruebe que la única topología τ que es más fina que τ_I y τ_D simultáneamente es la topología discreta $\mathcal{P}(X)$.
- e) Deduzca que las topologías τ_I y τ_D en general no son comparables.

Pregunta 2. Considere la siguiente familia de subconjuntos de \mathbb{R} :

$$\mathcal{B} = \{ [a, b) : a, b \in \mathbb{R}, a < b \}$$

- a) Verifique que \mathcal{B} es la base de una topología τ sobre \mathbb{R} . Llamamos a (\mathbb{R}, τ) la recta de Sorgenfrey.
- b) Muestre que la topología de Sorgenfrey es estrictamente más fina que la topología usual.
- c) Muestre que τ no es discreta.
- d) Sea D denso en la topología usual. Pruebe que D es denso para en la topología τ .
- e) Muestre que la recta de Sorgenfrey es un espacio separable que satisface el primer axioma de numerabilidad pero no el segundo.

Pregunta 3. El propósito de este problema es caracterizar completamente los conjuntos abiertos en \mathbb{R} dotado de la topología usual. Para ello:

Sea \mathcal{O} un abierto de \mathbb{R} dotado de la topología usual. Para cada $x \in \mathcal{O}$ definamos:

$$a_x := \inf\{a : (a, x) \subset \mathcal{O}\}, \ b_x := \sup\{b : (x, b) \subset \mathcal{O}\}$$

- a) Demuestre que los conjuntos $\{a:(a,x)\subset\mathcal{O}\}\ y\ \{b:(x,b)\subset\mathcal{O}\}\$ son no vacíos.
- **b)** Demuestre que $(a_x, b_x) \subset \mathcal{O}$
- c) Muestre que $a_x \notin \mathcal{O}$ y $b_x \notin \mathcal{O}$.
- d) Defina en \mathcal{O} la relación \sim siguiente:

$$x \sim y \Leftrightarrow (a_x, b_x) = (a_y, b_y)$$

Note que esta relación es de equivalencia y pruebe que $\forall x \in \mathcal{O}$ se tiene $[x] = (a_x, b_x)$, de esto deduzca que existe una colección numerable de intervalos abiertos disjuntos $\{(a_k, b_k) : k \in \mathbb{N}\}$ tales que:

$$\mathcal{O} = \bigcup_{k \ge 0} (a_k, b_k)$$

Pregunta 4. Sea \mathbb{F} un cuerpo (\mathbb{R} o \mathbb{C} para este problema). Sea $n \geq 1$ y denotemos $\mathbb{F}[x_1, \dots, x_n]$ el conjunto de los polinomios en n variables con coeficientes en \mathbb{F} .

Un subconjunto $C \subset \mathbb{F}^n$ en un espacio *n*-dimensional se dirá **Zariski cerrado** si es el lugar geométrico de ceros de un conjunto de polinomios, es decir:

$$C = V(S) := \{ x \in \mathbb{F}^n \mid f(x) = 0 \ \forall f \in S \}$$

para algún $S \subset \mathbb{F}[x_1, \dots, x_n]$.

Nota: A V(S) se le suele llamar la *variedad algebraica* asociada a S, de ahí su notación. Por convención, diremos que S no puede ser vacío.

- a) Pruebe que la noción de conjuntos 'Zariski cerrados' definen una topología en \mathbb{F}^n , usualmente llamada Topología de Zariski.
- b) Pruebe que la topología de Zariski es estrictamente menos fina que la topología usual en \mathbb{F}^n .
- c) Pruebe que la topología de Zariski en \mathbb{F}^n es T_1 , pero no es T_2 (es decir, no es Hausdorff).
- d) En el caso n=1, pruebe que la topología de Zariski en \mathbb{F} es la topología cofinita.