MA1101-1 - Introducción al Álgebra

18.04.2013

Auxiliar 5

Profesor: Pablo Dartnell Auxiliar: Leonel Huerta

Tipos de relaciones

Sea \mathcal{R} una relación definida en un conjunto $A \neq \phi$, es decir, $\mathcal{R} \subseteq A \times A$.

Definición: \mathcal{R} se dice **refleja** si y sólo si $(\forall x \in A)$ $x\mathcal{R}x$.

Definición: \mathcal{R} se dice **simétrica** si y sólo si $(\forall x, y \in A)$ $x\mathcal{R}y \Rightarrow y\mathcal{R}x$.

Definición: \mathcal{R} se dice antisimétrica si y sólo si $(\forall x, y \in A)$ $x\mathcal{R}y \land y\mathcal{R}x \Rightarrow x = y$.

Definición: \mathcal{R} se dice **transitiva** si y sólo si $(\forall x, y, z \in A)$ $x\mathcal{R}y \wedge y\mathcal{R}z \Rightarrow x\mathcal{R}z$.

Problemas

P1. Sea $A = \{1, 2, 3, 4\}$. Consideremos la relación \mathcal{R} sobre A definida por:

$$\mathcal{R} = \{(1,1), (1,2), (2,2), (1,3), (2,4), (1,4), (4,4)\}.$$

Determine si R es refleja, simétrica, antisimétrica o transitiva.

P2. Sea E un conjunto y $A \neq \phi$ un subconjunto fijo de E. Se define en P(E) la relación \mathcal{R} por:

$$X\mathcal{R}Y \Leftrightarrow A \cap X = A \cap Y$$

- (a) Demuestre que \mathcal{R} es relación de equivalencia.
- (b) Demuestre que el conjunto cuociente $P(E)/\mathcal{R} = \{[X] \mid X \in P(A)\}.$
- (c) Demuestre que para $X,Y\in P(A)$ se tiene que $X\neq Y\Rightarrow [X]\neq [Y].$

P3. Control 3, 2012

(a) Se define en $\mathbb Z$ la relación $\mathcal R$ por:

$$m\mathcal{R}n \Leftrightarrow m^2 - n^2$$
 es múltiplo de 3.

- (i) Demuestre que ${\mathcal R}$ es una relación de equivalencia.
- (ii) Determine 4 elementos de $[0]_{\mathcal{R}}$ y de $[1]_{\mathcal{R}}$.
- (b) Sea $\mathcal{F}=\{(A,f)|A\subseteq\mathbb{R}\wedge f:A\longrightarrow\mathbb{R},$ es función}. Se define en \mathcal{F} la relación Ω por:

$$(A,f)\Omega(B,g) \Leftrightarrow [A\subseteq B \wedge (\forall x\in A)f(x)=g(x)].$$

- (i) Demuestre que Ω es una relación de orden.
- (ii) ¿Es Ω un orden total en \mathcal{F} ? Justifique.

P4. Propuesto:

Sea $\mathcal{R}_{3,2}$ una relación en $\mathbb{Z} \times \mathbb{Z}$ definida por:

$$(a,b)\mathcal{R}_{3,2}(c,d) \Leftrightarrow a \equiv_3 c \land b \equiv_2 d$$

- (a) Pruebe que $\mathcal{R}_{3,2}$ es una relación de equivalencia.
- (b) Elija sus dos pares favoritos de números enteros y encuentre sus clases de equivalencia. Si resultan iguales, elija otro par.
- (c) ¿Cuántos elementos tiene el conjunto cuociente $(\mathbb{Z}\times\mathbb{Z})/\mathcal{R}_{3,2}$?