MA1001-5: Introducción al Cálculo.

Profesor: Emilio Vilches G. **Auxiliar:** Ítalo Riarte C.

Otoño 2013

Auxiliar 1: Axiomas de Cuerpo y Orden en \mathbb{R} .

- P1. Usando sólo los axiomas de cuerpo de los reales y los teoremas de unicidad de neutros e inversos, demuestre las siguientes propiedades, fundamentando cada paso (si necesita alguna propiedad extra, debe demostrarla):
 - (i) Demuestre que $\forall a, b, c, d \in \mathbb{R}$, con $b, d \neq 0$, se cumple:

$$ab^{-1} + cd^{-1} = (ad + cb)(bd)^{-1}.$$

(ii) Sean $a, b, c \in \mathbb{R}$. Demuestre que:

$$[(a+b=0) \land (a+c=0)] \Rightarrow b=c.$$

- (iii) Pruebe que $\forall a \in \mathbb{R} : a^2 = 0 \Rightarrow a = 0$.
- (iv) Demuestre que para cualquier real $a \neq 0$, se cumple:

$$(a^2 - a^{-1})(a + a^{-1} + 1)^{-1} = a - 1.$$

- (v) **Propuesto**: Demuestre que para cualquier real $a \neq 0$, se cumple: $(-a)^{-1} = -(a^{-1})$.
- P2. Usando los axiomas de orden, pruebe justificando en cada caso que:
- (a) $\forall a, b \in \mathbb{R} : a^2 + b^2 \ge 2ab$.

[Desigualdad Fundamental]

- (b) $\forall a, b > 0$: $a^{-1} + b^{-1} > 4 \cdot (a+b)^{-1}$.
- (c) Sean $a, b, c, d \in \mathbb{R}$. Pruebe que:

$$[(a^2 + b^2 = 1) \land (c^2 + d^2 = 1)] \Rightarrow ac + bd \le 1.$$