IN3701 Modelamiento y Optimización

Semestre Otoño

Auxiliar 4 - Geometría: 11 de abril

Profesores: Roberto Cominetti C., Victor Bucarey L.

Auxiliares: Alberto Vera A, Giorgiogiulio Parra De B, Juan Ignacio Neme, Pastor Lyon R, Paz Obrecht I

Problema 1: Nociones básicas

- 1. Sea $P \subseteq \mathbb{R}^n$ poliedro, muestre que x es punto extremo ssi $\not\exists y, z \in P \setminus \{x\}$ tal que $x = \frac{1}{2}y + \frac{1}{2}z$.
- 2. Sean $x^1, \dots, x^k \in \mathbb{R}^n$ y sea S el sub-espacio generado por éstos puntos. Muestre que si no hay n vectores l.i. (de entre los k), $\exists d \in \mathbb{R}^n$ ortogonal a S.
- 3. Sea $P := \{x \in \mathbb{R}^n | Ax = b, 0 \le x \le u\}$, donde $A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^m$ y $u \in \mathbb{R}^n$. Caracterice las soluciones básicas factibles de P.

Problema 2: Mínimo es convexo

Sean $c \in \mathbb{R}^n$, $A \in \mathbb{R}^{m \times n}$, denotemos por $1_n \in \mathbb{R}^n$ al vector de unos y considere la función f definida por

$$f(y) := \min_{x \in \mathbb{R}^n} \quad c'x$$
 s.a $Ax \ge 0$
$$1'_n x \le y$$
 $x \ge 0$

- 1. Muestre que $\forall y \in \mathbb{R}_{>0}$, f(y) está bien definida.
- 2. Muestre que $f: \mathbb{R}_{\geq 0} \to \mathbb{R}$ es decreciente y convexa.

Problema 3: Adyacencia

Sea P en forma estándar, sean $x \neq y \in \mathbb{R}^n$ adyacentes

- 1. Muestre que existen bases adyacentes que determinan a x e y respectivamente.
- 2. Estudie la afirmación: toda base que determina a x es advacente a una base que determine a y.

Problema 4: Suma de poliedros

Sean P,Q dos poliedros en \mathbb{R}^n , definamos $R:=\{(x,y)\in\mathbb{R}^n\times P|\exists z\in Q, x=y+z\}$. Muestre que R es un poliedro.