TUTORIAL PARA LA CONSTRUCCION DE MODELOS DE DENSIDAD MEDIANTE OASIS Y MODEL VISION. Fernando Zamudio

I CARGAR DATOS:

Tenemos 2 archivos: grav_anillo.gdb Z_22_19.gdb

Abrir GEOSOFT y crear proyecto nuevo: File > Project > New > stgo_real2.gpf

Importar datos de topografia srtm: Data > Import > Geosoft XYZ > XYZ data file: Z_11_19.xyz Import template: default.i0 Import mode: Replace > OK

Abrir base de datos con datos gravimetricos: Data > Open database > grav_anillo.gdb

II CORRECCIONES GRAVIMETRICAS i.

En la base de datos grav_anillo.gdb:

Crear canales con correcciones gravimetricas por latitud, aire libre y Bouguer simple. Siempre grillando! Comparando con grilla de canal "altura" y los que vayan saliendo. Una vez obtenido el canal de Anomalia de Bouguer simple, realizar un escalamiento prudente y a eleccion: grillar este canal (ej: Dg_bs_esc).

Dada la resolucion de la base de datos grav_anillo.gdb, conviene usar valores de "grid cell size" y "blanking distance" en torno a 1500m y 50000m, respectivamente.

III PROYECTAR COORDENADAS srtm

En la base de datos Z_22_19.gdb Cambiar nombre de canales: X > lon / Y > lat

Crear nuevos canales con las coordenadas proyectadas: Coordinates > New Projection Coord...

> Current X/Longitude channel: lon Current Y/Latitude channel: lat Proces: All lines >Next >OK New X/Longitude channel: x_utm Y/Latitude channel: y_utm

>Next >OK

Siempre recurriendo al boton "Modify" para establecer los tipos de coordenadas, los Datum y las proyecciones correspondientes.

Grillar el canal de elevacion srtm "Z1" con x_utm y y_utm como input X,Y (Coordinates > Change X,Y channels).

Dada la resolucion de la base de datos Z_11_19.gdb, conviene usar valores de "grid cell size" y "blanking distance" en torno a 92m y 100m, respectivamente.

IV SAMPLEAR GRILLA DE TOPOGRAFIA EN BASE DE DATOS DE GRAVEDAD

Extraer datos de gravedad segun coordenadas de seccion de topografia srtm: Asi prescindimos de los datos de gravedad fuera de la zona con datos de topografia srtm.

En la grilla Z1.map Mapping > Digitising > Digitise Poligon to PLY File Ingresar un poligono se interes y guardar con nombre adecuado.

Utility > Window Data > Subset database Subset databse: grav_anillo_zoom.gdb (nombre nuevo a eleccion) Lines: All Channels: All Remove mask dummys: All dummies Mask channel: x Compression Type: None

>OK

[Ahora se tiene otra base de datos con datos de gravedad unicamente dentro de la zona con datos de topografia srtm]

Generamos un canal con el dato de elevacion srtm para cada punto con gravedad medida en la grilla grav_anillo_zoom.gdb Grid > Utilities > Sample a grid X reference channel: x Y reference channel: y Grid sampled channel: z1_srtm_sampled (nuevo a eleccion) Grid file: Z1.grd >OK

Ahora, generar canal "altura_terrain" (ese nombre porque se usara este canal para calcular Terrain) con una combinacion de los canales "altura" y "z1_srtm_sampled" a eleccion.

V CORRECIONES GRAVIMETRICAS ii. Correccion Topografica

Cargar el menu de herramientas para gravedad: GX > Load menu > gravity.omn Gravity > Terrain Corrections > Terrain Corrections X channel: x Y channel: y Elevation channel: altura_terrain ... Local DEM grid: Z1.grd ... Terrain Density g/cc: 1 [*] ... Optimization: faster (o no) ... >OK [*] Esta densidad de 1g/cc es recomendable unicam

[*] Esta densidad de 1g/cc es recomendable unicamente por que se pueden crear canales (ej: Terrain_mod) de la forma: Terrain*2.67, y asi poder ir modificando la densidad de la roca que se considera en la correcion topografica.

Crear canal (Dg_b_full) con la Amonalia de Bouguer completa. Grillar.

VI REPARAR DATOS MAL TOMADOS

Visualizar las estaciones de toma de datos en la grilla para observar valores patologicos. En la grilla de Dg_b_full, Mapping > Symbols > Location Plot

Mask channel: x >OK Map scale > sugerida (~360000)

>OK

Extraer datos patologicos de la base de datos, volviendo a grillar y a mapear la grilla luego de la extraccion de cada dato patologico.

VII PERFILES:

Crear una nueva base de datos con algun nombre. En general correspondera a linea L0:0 En la grilla Dg_b_full.map

```
Grid > Utilities > Grid Profile
Grid 1: Dg_b_full.grd
Grid 2: altura_terrain.grd
...
New Line name: L0
Sample interval: ~100
Method to set profile coordinates: digitize from map
>OK
```

En esta nueva base de datos, crear canal "fiducial" correlativo con una coordenada adecuada segun el objetivo de la modelacion.

Exportamos a formato convertible en uno legible por ModelVision:

Data > Export > Geosoft XYZ XYZ data file: P1_mv.XYZ (a eleccion) > Template:

- - X Y
 - . 1 2 3 fiducial
 - G_altura_terrain G_Dg_b_full 4
 - 5