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Abstract

In most large cities, the taxi industry is subject to various types of regulation, such as entry restrictions
and price controls, and economists have examined the economic consequences of such regulation exten-
sively. Unfortunately, in conventional economic analyses of competition and regulation in the taxi industry
little attention has been paid to one important issue: congestion externalities due to both occupied and
vacant taxi movements together with normal vehicular traffic. This study investigates the nature of equilib-
rium and regulation in the taxi market by taking account of congestion externalities and adopting a realistic
distance-based and delay-based taxi fare structure. The monopoly, the social optimum and the stable com-
petitive solutions are examined and illustrated with a numerical example.
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1. Introduction

Because of their convenience, efficiency, flexibility and 24-h availability, taxi service becomes an
important and indivisible part of the urban public transport in most large cities. As reviewed and
summarized recently by Yang et al. (2003), a substantial number of studies are available in the
literature concerning the models and economics of taxi services under various types of regulation
such as entry restriction and price control. A few notable contributions include the early studies
by Douglas (1972), De vany (1975), and recent studies by Cairns and Liston-Heyes (1996), Arnott
(1996) and Yang et al. (1998, 2002). These studies have overwhelmingly emphasized the role of
customer waiting time and the complex intervening relationship between users (customers) and
suppliers (firms) of the taxi service. The waiting time is generally considered as an important value
or quality of the services received by customers. This variable affects customers’ decision as to
whether or not to take a taxi, and thus plays a crucial role in the determination of the price level
and the resulting equilibrium of the market.

In most large cities, taxis make considerable demands on limited road resources and contribute
significantly to traffic congestion. In the urban area of Hong Kong (Hong Kong Island and Kow-
loon), the total taxis currently form about 25% of the overall traffic mix. In some critical locations,
taxis even account for as much as 50% to 60% of the traffic mix (Hong Kong Transport Depart-
ment, 1986-2000). Thus, effective regulation of the taxi market needs appropriate consideration of
the congestion externalities due to both vacant and occupied taxi movements. Unfortunately, pre-
vious economic analyses of taxi services are generally based on a constant average taxi ride time or
distance and the effect of traffic congestion is neglected in regulating price and setting optimal ser-
vice standards. It is true that the real taxi fare includes both a distance-based and delay-based
charge in nearly every large city. Even with a constant average taxi ride distance as assumed in
previous analytical studies, the delay-based charge varies with the congestion level, and hence with
the changes of taxi fleet size and/or normal traffic demand.

Table 1 summarizes the fare structure implemented in a few major cities around the world.
Although the fare structure varies slightly across cities, it is a common feature that the price con-
sists of initial flag-fall charge, time delay-based charge and travel distance-based charge. Taxi fare
control, together with fleet size restriction, is generally introduced in most cities for efficient reg-
ulation of the taxi industry. The empirical evidence shown in the table clearly point to the neces-
sity of incorporating the congestion effect in taxi service analysis, which will help precise
understanding of the nature of equilibrium and provide reliable information on the price and fleet
size regulation of the market.

This study investigates the monopoly, the social optimum and the stable competitive solutions
of cruising taxi services in the presence of congestion externalities by adopting a realistic distance-
based and delay-based fare structure. The paper is organized as follows: In Section 2, we intro-
duce the essential elements and the basic analytical model required to characterize taxi services
with congestion effects. In Section 3, we examine the first-best solution and show that the price
charged at the social optimum with congestion externalities should exceed the marginal cost,
and as a result the first-best solution may lie in the positive profit region. In Section 4, we address
the competitive solution with emphasis on two special cases: the stable competitive solution and
the second-best solution. In Section 5, we show in a monopoly market how a profit-maximizing
taxi firm will choose markup pricing when congestion effect is built into the model. A numerical



Table 1

Taxi fare structure in major cities around the world

Hong Kong

Singapore

New York

London

Tokyo

Shanghai

Initial charge =~ HKS$15.0/first 2km

Distance-based HK$1.4/0.2km
charge thereafter

Delay-based
charge

HKS$1.4/per min

HKS$5.0/per
baggage

Comments

S$2.4/first 1km

S$0.1 for every
240m thereafter up
to 10km, S$0.1 for

every 225m thereafter
from 10km onwards

S$0.1 every 30s

All items charged
50% more from

12:00pm to 6:00 am;

CBD and holiday
surcharge

$2.0 for getting in

$0.3/0.25 mile

$0.3/30s

Additional night
charge $0.50, tip
in the range of
15%~20%

£2.00/first 361.0m
or 77.6s

20p/each additional
180.5m or 38.8s if
the fare displayed
is less than £12.40,
20p/each 128.9m
or 27.7s thereafter

The price charge
applies for Monday
to Friday between

6:00 am and 8:00 pm

660! 340%Pe
yen/first 2km

80 yen/274m"Pe';
80 yen for the
next 250m and
80 yen/274 m"¥Pe?

The fare goes up
by 80 yen per
211m from
11:00 pm to
5:00 am

¥10/first 3km

¥2/3-10km;
¥3/thereafter

¥0.4/per min
from 3 to 10km,
¥0.6/per min
thereafter

All items charged
30% more after
11 pm

0F—L1 (S00Z) 6€ V 140d yo4pasay uoyviiodsuvi] | v 1o Suny "H
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example is provided in Section 6 to highlight the major theoretical findings, and finally, general
conclusions are given in Section 7.

2. The basic model
2.1. Basic assumptions

Consider a realistic taxi fare structure consisting of three components: a flag-fall or a constant
initial flat charge, a distance-based charge, and a delay-based charge. Let

P = initial flag-fall charge per ride (HKD)
B¢ = fare charge per occupied unit distance (HKD/km)
B' = fare charge per delay hour (HKD/h)
L = average taxi ride length (km) (assumed to be a constant)
T = average taxi ride time (h) (congestion dependent)
= average taxi ride time without congestion (h) (assumed to be a constant)

Then, the total trip fare P (HKD) is given by
PP 4 f'L 4 B(T—T°) (1)

Clearly, we have T — T° > 0.
Customer demand, Q (trip/h), for taxis is assumed to be a decreasing function of trip fare, P,
in-vehicle travel time, 7, and waiting time, W (h), respectively, and takes the following form:

Q:f(PaTaW) (2)

Customer waiting time, W, a measure of the service quality of the taxi market, is determined by
the total vacant taxi-hours available. Let N be the taxi fleet size and N', N° and N" be the numbers
of vacant taxis, occupied taxis and normal vehicles (private cars) running in the network at a given
instant. Clearly,

N° =QT 3)
N'=N-QT (4)

Then, the average customer waiting time for taxis is a decreasing function of the available vacant
taxi-hours:

W =w(N") =w(N - QT) (5)
where w’ = dw/dN" <0.

Naturally, the in-vehicle travel time for a given average length of taxi ride is given as a function
of the vehicle density on the road,

T =t(N',N°,N") (6)
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Suppose the same average length, L, for trips by normal vehicles, then for a given normal traffic
demand, Q" (veh/h), the number of normal vehicles running throughout the whole network at a
given instant is given by

L
- )

where v" is the travel speed of normal vehicles (km/h). Suppose all vehicles (taxis and normal vehi-
cles) run on the roads at the same speed, then, we have,

N = 0T (8)

Without sacrificing the realism of our model we further assume that the normal vehicle demand
Q" is fixed, and its impact on the taxi market equilibrium will be treated through parametric sen-
sitivity analysis. ' As seen from Eq. (8), the number of normal vehicles, N", running in the net-
work at a given instant is an endogenous variable for fixed normal traffic demand, Q", in the
presence of the congestion externalities considered here.

From Egs. (6), (4) and (8), we can see that the in-vehicle travel time is a function of taxi fleet
size, customer demand for taxis, normal vehicle demand and in-vehicle travel time itself:

T =t(N',N°,N") = t(N — OT, OT,N"(T, 0")) (9)

Note that here N" is an endogenous variable, whereas N is a control or regulation variable. For a
given normal traffic demand Q", N" changes with in-vehicle travel time 7, which in turn is a func-
tion of taxi fleet size N and taxi fare P, as the latter variables influence customer demand Q and
hence occupied taxis N°. Such a complex intertwining relationship makes the choice of the regu-
latory variables N and P rather less than straightforward, but we have to consider their interplay
under congested traffic conditions.

To explore the equilibrium relationship in a convenient manner, we define the partial deriva-
tives of f in function (2) with respect to P, T and W as fi, f> and f3, respectively. Clearly,
£1<0, f2<0and f; <0. In view of P°+ %L in Eq. (1) being constant for a given average ride
distance L, we combine and denote the two terms as the fixed component of taxi fare P":
P"= P’ + BL. Hence, the total taxi fare per ride P is a function of fixed fare charge P', hourly
delay charge B' and average taxi ride time 7. Namely,

P=p(P',p.T) (10)

where T in turn depends on P’ and f' (T depends on the vacant and occupied taxis and hence the
customer demand; customer demand depends on the fare charged or on P" and ). Similarly, let
P1, p> and ps denote the partial derivatives of p in P, f* and T in function (10), respectively. Then
we have p; > 0 (in fact, p; = 1.0 with fare structure given by Eq. (1)), p» > 0 and p; > 0. Finally, let
t1, 1, and t3 denote the partial derivatives of ¢ in function (9) in N, N° and N", respectively. We
also have #; >0, 1, >0 and #;3 > 0.

! This assumption will greatly simplify our analysis and facilitate interpretation of our results. One should
acknowledge the fact that normal vehicle demand responds to congestion (and thus taxi fleet size and fare).
Nevertheless, our analysis focuses on the characteristics of taxi services under congested traffic conditions; congestion
effects are examined by varying the level of normal vehicle demand and taxi fleet size.
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2.2. Comparative static effects of regulatory variables

With the distance and delay-based taxi fare structure, we now have three market regulatory
variables of constant fare charge P', delay-based charge rate ' and taxi fleet size N. Their com-
parative static effects on the market are investigated below.

We first look at the effects of the three regulatory variables on the total taxi fare per ride (in this
case, the regulatory variables (P, f', N) are regarded as independent variables; the average taxi
ride time 7 is an endogenous or intermediate variable). Taking the partial derivative of P given
in (10) with respect to P,

oP T

- - 11

P ptp P (11)
Similarly we have,

oP o7

- il 12
aﬁl P> + ﬁ aﬁt ( )

P T T

0 or 0 (13)

N PavT v
We now look at the effects of the regulatory variables on the average taxi ride time. Taking
the partial derivative of 7 given in (6) with respect to P" and utilizing Eqgs. (4), (3) and (8), we
have

%: " ZJL Hz?;f +t32];f - <_T%_Q§;> ! 2( SJ%JrQan) ne' apf
This gives rise to
or _ (=TT &Y (14)
oPf 14460 — 60— 60" 0P
Similarly,
= ear a0 (T o) (T o)+
or
| L (15)
ot 1+00—-60—160"0p
and
g]]\;_flaa]]vv +fzaa];[\] +tsaa];[\] :t1<1—T2—]%— 2—;) —i—tz(Tg—]%—i-QS—;) +t3Qn2—;
or
0T  t1+ (t, — 1) TOQ/ON (16)

N 1+40-160—- 60"
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We next look at the effects of the regulatory variables on customer demands. Taking the partial
derivative of Q in (2) with respect to P" and utilizing Eqs. (10) and (5),

0 or 0 or
S = figpe g+ fige = A (oot pgge) + A (TEE- 035
This leads to
oP' 1+ fswT
Substitute Eq. (14) into Eq. (18) gives,
oP'  (1+fswT)(1 = 60") — (12 — 1)) ((fips + f2)T + O)
Similarly, we obtain
Q _ Sip(1+ 60— 60 — 0" (20)
opt (1+/wT)(1 = 130") — (12 — t))(T(fips + /2) + O)
6Q ﬁwl(l - tZQ - t3Qn) (ﬁ +ﬁp3)t1 (21)

N~ (1+fwT)(1=60") — (ta — 1) (fips + )T + O)

Finally, we consider how the regulatory variables (P!, ', N) affect the customer waiting time,
which is an important service quality measure. Taking the partial derivatives of W in (5) with
respect to P, f' and N respectively, we get,

oW _ (100

P ( an+Qapf> 22)
oW _ (720,

o= (75 25) -
oW _ (00 oT

W-w(l - @> (24)

where 0Q/0P", 90/0p" and dQ/ON are given by Eqs. (19)~(21) and d7/dP', dT/df" and dT/ON are
given by Eqgs. (14)—(16).

We note that all the above expressions obtained so far can be greatly simplified if we assume
that both vacant and occupied taxis have about the same marginal impact on traffic flow (or run-
ning speed) in the considered cruising taxi market, namely 0z/ON" = 0t/ON° in Eq. (6) or t; = t,.
With this assumption, from Egs. (14) and (15) we have the following simplified qualitative
relationships:

or or

ﬁ:a_ﬁt:o (25)
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and from Eq. (16)
oT h
AN 1—10" >0

where 0T/ON > 0 is always true for the traffic flow operating in the normal flow regime in a linear
traffic flow model. > Also, Egs. (11)—(13) turn out to be,

(26)

oP

oP

6_[3t =p,>0 (28)

orP . t1p3

N 1m0 > 0 (from Eq. (26)) (29)
Moreover, in view of f; <0, f3<0, p; >0, p, >0, w <0 and 7> 0, we have

o0 JSipy

—=—— <0 30

oPf 1+ faiwT (30)

00 fipa

—=—=<0 31

oft 1+ fawT (31)

0 _ Wl -60-60)+ (h+fip)h /v (2 + fips — /5w Ot (32)

ON (1 +f3W/T)(1 - f3Qn) 1 +f3W/T (1 —{—f;W’T)(l - t3Qn)

Eq. (32) describes the aggregate impact of taxi fleet size on customer demand in two opposite
manners. The first term of the right-hand side shows that, everything else being equal, increase
in taxi fleet size will reduce customer waiting time (w’ <0) and thus increase customer demand
(fsw’ > 0). The first term is always positive (note that 1 + f3w'T > 0). The second term of the
right-hand side represents the negative impact of congestion on customer demand arising from
the entry of one additional taxi into the market. Whenever a new taxi enters the market, the average
taxi ride time will increase. This will lead to direct decrease in customer demand (f>¢; < 0), decrease
in customer demand due to increased delay-based charge (fipst; < 0) and also due to increased cus-

2 We consider a linear traffic flow model: v = @ — bk, where speed v is a linear function of traffic density k with
parameter a > 0 and b > 0. Suppose traffic is flowing in the normal flow regime, which means that 0 < a/2 <v < a with a
being the maximal free-flow speed (May, 1990). Substitute £ = (N + N")/L into the linear flow model where L is the
total road length in the network and since T'= L/v, we obtain t3 = 8T /ON" = bL/Lv*. Using L/v = N*/Q" from Eq. (7),
we have:

1 BN 1 b(N"+N) 1 (a—v)
t3:—n—_<—n — = —
o" vL Q0 vL o v

From 0 < a/2 < v we have 0 < (a — v)/v < 1 and thus 73 < 1/Q" in the above equation. As a result, 30" < 1 or Eq. (26) is
always positive as long as the traffic flow is operating in the normal flow regime.
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tomer waiting time (—f3w’Qt; < 0) as a result of more occupied and less vacant taxi-hours. One can
thus readily understand that 0Q/0N could be positive or negative, depending the relative magni-
tudes of the two impacts. The latter negative impact on demand, however, depends on the current
level of congestion. In fact, suppose the level of traffic congestion depends only the total number
of vehicles on the roads regardless of occupied, vacant and normal vehicles, namely, t; = t, = 3 in
Eq. (6). Then from Eq. (32), we have 9Q/ON > 0 if t; < 1/(Q + Q" — ((f> + fip3)/f3w’)). This means
that, if the current market is less (or moderately) congested, entry of additional taxis will improve
service quality and thus increase customer demand. If, however, the market is already very highly
congested due to a high level of normal vehicle demand or from an already large taxi fleet size, the
improvement in service quality cannot offset the negative impacts due to extra congestion after en-
try of one additional taxi into the market, and as a result, new taxi entry will only diminish cus-
tomer demand. Of course, the latter situation rarely occurs in reality; it is typical in large urban
commuting areas that an increase in taxis leads to a greater demand for taxis.

Similarly, substituting Eqs. (30) and (25) into (22), Egs. (31) and (25) into Eq. (23), and Eq. (32)
and Eq. (26) into (24), respectively, we obtain

aW _ /T flpl

— = 0
oPf Y + fwT < (33)

ow ) fle

a—ﬁt_ WT41+f3w’T<O (34)
ow (. W —60Y)+ (fips+ - fiw0)h h

v " (1 ! (I+fwT)(1 -850 Ql —fsQn> (33)

Like Eq. (32), 0W/0N in Eq. (35) could be positive or negative, depending on the current degree of
congestion. Similarly, we can find that 0W/ON <0 if t; < 1/(Q + Q" + T(f> + fip3)). In particular,
if there is no congestion effect or 1=t =1t;=0 in Eq. (6), then we have OW/ON =
w'/(1+ fiw'T%) <0 in Eq. (35).

2.3. Effects of normal traffic demand

To gain insight into the effect of normal vehicle demand on customer demand and taxi service
quality, we have the following relationships. From Eq. (6),

oT o oN"

From Eq. (2) and then using Eq. (10), we obtain
00 oP or ow oT or ow
a—Qn—flaQn+fza—Qn+f3a—Qn—f1P36—Qn+fza—Qn+f3aQn (37)

From Eq. (5) we have

ow ([ 00 _oT
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Substituting Eq. (38) into Eq. (37) and solving for 0Q/0Q" give rise to:

00 _ (fips+/fo— fswQ) oT

oo" (14 fsw'T) oo"
where 00/00" <0 comes from the fact that 1 + f3w'T >0 and fips + f> — f3w'Q <0 from f; <0,
f><0, f3<0, p3>0and w’ <0 as well as 07/0Q" > 0 from Eq. (36). This shows that the conges-
tion externality certainly deteriorates the service quality and drops the customer demand for taxi.
As a result, even possibly gaining additional revenue from the delay-based fare charge, taxi firms
also face the threat of losing customers in the presence of congestion effects, which would drop
their revenue in return. Therefore, the presence of congestion externality in the taxi market makes
an intriguing issue of regulating price and setting service standard. Both the taxi firms and the
regulator should figure out their preferred solutions respectively by balancing the hourly delay
charge and taxi fleet size by properly taking into account the congestion level associated with
the various normal traffic demand and taxi fleet size.

<0 (39)

2.4. Synchronous relationship among variables

Based on the qualitative analysis developed in the previous section, Fig. 1 illustrates the com-
plicated interrelationships among the exogenous and endogenous variables. A few major observa-
tions from the figure and the previous analysis are worthwhile to mention.

Firstly, recalling the assumption mentioned above, the increase in taxi fleet size has positive im-
pacts on in-vehicle travel time and total fare per taxi ride charged for a given fare charge structure.
The figure also indicates that the increase in taxi fleet size enhances the taxi availability at the same
time. Thus the change in customer demand for taxis is a joint consequence of the positive impact
of the increased vacant taxi-hour and the negative impact of the increased in-vehicle travel time
and increased fare as well. As described in Eq. (32), the customer demand could increase or de-
crease as the taxi fleet size increases, depending on the net effect of the two opposite forces (or
the current level of congestion and taxi availability).

Secondly, it is obvious, if we assume a vacant and an occupied taxi inflicts the same marginal
impact on traffic flow, that raising the fixed taxi fare component and/or the delay-based taxi
charge rate will only reduce the customer demand as shown in Egs. (30) and (31). Increase in nor-
mal vehicle demand will make congestion more severe and thus definitely result in a decline in cus-
tomer demand as well, as described in Eq. (39).

Thirdly, keeping all exogenous variables fixed, it is interesting to note that there is an internal
cycle among the customer demand, vacant taxi-hour and customer waiting time. It is this internal
cycle of interaction or internal market force which drives the market to a stable equilibrium for
fixed exogenous variables. For example, suppose there is a small amount of increase in customer
demand from the current equilibrium point, then the vacant taxi time will decrease due to in-
creased customer demand, and as a result average customer waiting time will increase. Increase
in waiting time will in turn lead to a decrease in customer demand. This means that the market
force will pull down the demand to the original level and stabilize the equilibrium.

The above observations show how the regulatory variables of taxi fleet size and fare structure
affect the endogenous variables or demand-supply equilibrium in the taxi market, including the
customers’ in-vehicle travel time, total taxi fare per ride, service quality, demand for taxis and thus
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Changes of Exogenous Corresponding Changes of
Variables Endogenous Variables
Delay-based Taxi +) .
Charge Rate Total Taxi Fare

A A

Fixed Taxi Fare (+) ® )
Component
(+) Average Taxi Ride Average Customer
| Time Waiting Time
Normal Vehicle b
Demand
© O ©
(+)
| Y v
Taxi Fleet Size Total Customer ) Vacant Taxi Hour [
Demand

| f

)

Note: (+) Positive Impact; (-) Negative Impact
—> Internal Cycle

Fig. 1. The synchronous relationships among the exogenous and endogenous variables in the taxi market with
congestion effects.

the taxi firms’ profit and social welfare. The regulator, therefore, may achieve various objectives
by effectively regulating taxi fare structure and fleet size with proper consideration of congestion
externality.

Before concluding this section, we note that at the equilibrium points, with or without regula-
tions, the combination of the initial flag-fall charge, the distance-based charge and the hourly de-
lay-charge is indeterminate in giving the same total fare charge per taxi ride. Hence it is reasonable
to first fix the sum of the initial flag-fall charge and distance-based charge for the various repre-
sentative solutions in the subsequent sections, when we ignore the congestion externalities or when
there is no congestion effect. The hourly delay-charge rate is then determined when the congestion
effect is built into the model, in addition to the predetermined congestion-free initial and distance-
based charges. This two-stage fare determination is carried out in the latter sections.

3. Social optimum

Now we consider the choice of taxi fleet size and fare structure to maximize the social welfare.
Assume that the full price for a taxi trip is given as p = P + 1T + kW, where t and k are the values
of customers’ in-vehicle travel time and waiting time, respectively. The demand function is as-
sumed to be a decreasing function of the full price given as Q = f{p) where f” <0. As mentioned
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previously, P’ is predetermined as the corresponding price charged in the absence of congestion
effects.

Assuming a constant hourly operation cost ¢ (HKD per taxi-hour) for both vacant and occu-
pied taxis and defining the social welfare as the sum of the consumer surplus and the producer
surplus (profit of taxi firms) minus the additional congestion delay cost of normal traffic, then
the social welfare maximization problem is given below:

max S(f',N) = /oof(co) dw + PQ — ¢cN — tQ"(T — T°) (40)

where, as assumed before, the normal traffic demand, Q", is treated with the same trip length as
those made by taxis, for simplicity. The same value of in-vehicle travel time is assumed for both
taxi and normal vehicle users.
Consider maximizing S with respect to f* and N. From 0S/08' = 0, we have
or ow 00
+ 0"+ KO =P
T(Q Q )aﬁt KQaﬁt aﬂt
From 0S/ON = 0, we obtain
or ow 00

c+r(Q+Qn)ﬁ+ KQW :Pﬁ

From Eqgs. (23) and (24), we obtain:
ny ! N2 a_T _ ! a_Q
(t(Q+ 0" KWQ)aﬂt—(P—i-KwQT)aﬁt (41)
0 or

(P+ xw'QT) % =c+xwWQ+ (1(Q+ Q") — kW) N (42)
From Egs. (25), (31) and (41), we have

P=—xwQT (43)

This in turn means that the left-hand side of Eq. (42) is zero. In view of 97/0N > 0 from Eq. (26),
Eq. (42) leads to:

or
c=(kwQ* —1(0+0") N Kw'Q (44)
Therefore,
P—cT=((0+0") — KW’Qz)Tg—]Y\; (45)

Eq. (45) is the central result of the social optimum regulation of the taxi market with congestion
externalities. The equation implies that if 07/0N = 0, namely, if there is no congestion effect at the
social optimum, we in effect have P = ¢T. In this case PQ = ¢TQ, implying that the total revenue
just equals (or just covers) only the total cost of occupied taxi-hours and, in the aggregate, the
taxis operate at a loss equal to the cost of vacant taxi-hours. We thus arrive at the same results
examined by Arnott (1996), who concluded that the first-best solution is located in the negative
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profit region and taxi services at the social optimum should be subsidized. If the congestion effect
cannot be ignored, (07/0N >0 from Eq. (26)), then P> c¢T comes about as a result of
T(1(Q + Q") — Q*kw')OT/ON > 0 (note that w’ < 0). This means that the taxi firms’ loss is relaxed;
the aggregate loss is less than the cost of vacant taxi-hours due to P> ¢T > ¢T° = P, where P'is
the corresponding optimal price charged in the absence of congestion effects at the first-best solu-
tion. As a result, we conclude that the price charged is higher at the first-best solution * in the
presence of congestion externality.

Naturally, one question arises from the above observation. Can the taxi firms’ profit be en-
hanced sufficiently so that the first-best solution is located in the non-negative profit region? To
answer this question, we now look at the total profit of the taxi firms at the social optimum. From
Eqgs. (43) and (44) we have

PO~ eN = kW O(N — OT) + N(:(Q + 0") — ww'QP) o (46)

In view of w' <0 and N — QT being the total vacant taxi-hour, we must have N(t7(Q + Q") —
kw' Q%) >0 and kw'Q(N — QT) < 0. Therefore, a sufficient condition for obtaining positive profit
at the social optimum is

oT - kW' Q(N — QT)
ON T N((Q+ Q") — kW)
or alternatively, with the assumption of #; =, = #; in the congestion characterization equation
(6), the following condition is met:
N iIN(O+0") \
0> (o + 0 n /(Q ")
N—-QOT kwWQ(N —QT)
Eq. (47) or (48) implies that a profitable first-best social optimum emerges in a severely congested
taxi market, where the entry of additional taxis into the market makes a large marginal congestion
effect (and thus entry should be highly controlled at the social optimum).

(>0) (47)

(48)

4. Monopoly solution

In a monopoly market, a single taxi firm operates all taxis to maximize its profit. The profit per
unit time is given by
II=PQ—cN= (P +B(T—T")0—c(N'+N°) (49)
Maximizing profit IT with respect to hourly delay charge rate ' and taxi fleet size N yields the
following first-order conditions:
orr ~ _opP o0

a_ﬁ‘_Qa_ﬁt+Pa_/3t_O (50)

3 Strictly speaking, here it is more appropriate to use the term “quasi-first-best solution” due to the unpriced external
congestion effect in the taxi market.
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arf P 30
v =QaytPay—c=0 (51)

Combining Egs. (28), (31) and (50) gives,

fi
Substituting Egs. (29), (32) into (51) leads to
WO ulh - W00
B Ji Al =560 53)
In view of Eq. (26), fr <0, >0 (k=1, 2, 3) and w' <0, we obtain
pop. Q. NE-fWOTO O (h-fWQTO 0 50

Si A0 =-60" A N ON fi

Eq. (54) is the monopoly price markup formula in the presence of congestion externalities. It
is interesting to note that when 07/ON equals zero or there is no congestion effect, Eq. (54)
reduces to

P—cT=-0/fi (55)

This is exactly the same result obtained by Cairns and Liston-Heyes (1996) when the congestion
effect is ignored. The price markup formula (55) shows the monopoly power of the single taxi firm
to set the taxi fare above its marginal cost in equilibrium. Moreover, from Eq. (54) the taxi fare
will exceed marginal cost per trip by a greater amount when there is congestion effect in the
monopoly market.

We now further examine the monopoly markup price In view of the full price p =P+
1T+ kW, we essentially have f; = 00/dp. With 0 = — £ [* f(w)dw, we obtain

fl <ap/ [ )(2%)1 %/ﬂmf(w)dw (56)

Where = f f(w)dw is the marginal consumer surplus (net willingness-to-pay) for a taxi ride.
Thus, Eq (54) can be rewritten as

P—cTz(l—(fz SWOo)T >6Q/ f(ow dco>—/ flo (57)
In the absence of congestion effect, Eq. (57) simplifies to:
a o0
P—cT=— w)dw 58
0/ 1 (58)

Eq. (58) implies that, in an effort to extract as much profit as possible, the monopolist would
charge a price in excess of marginal cost per ride by an amount equal to the consumer’s marginal
net willingness-to-pay for a ride. Eq. (57) shows that this markup will be further increased in the
presence of congestion effect. This observation is consistent with the results of the private road
pricing examined in Lindsey and Verhoef (2001). Therefore, we can conclude that previous studies
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ignored congestion effects and as a result underestimated the price charged at the monopoly
solution.

5. Competitive solution

Assuming that the market is comprised of owner-operated taxis, with one taxi per owner or
firm, then in this competitive free entry market, the resultant supply will satisfy the market equi-
librium, where the marginal revenue obtained by the last unit of taxi service just covers its cost
(profit is nil). It is at this point that the individual incentive to join the taxi industry disappears.
Hence equilibrium occurs at

PO—cN =0 (59)

Note that the solutions to the above non-linear equation form a closed zero-profit curve (roughly
smoothed right-angled triangular shape to be demonstrated later in a numerical example) in the
two dimensional space of taxi fare and fleet size. The equilibrium, at smaller fleet size, is unstable
and inferior from a welfare perspective, and thus the lower fleet size equilibrium can seldom
emerge in reality. Two special cases of the competitive solution along the zero-profit curve deserve
our attention: the stable competitive solution in a fully unregulated taxi market and the second-
best social optimum solution when the first-best solution is located in the negative profit region.

First, as pointed out in Yang et al. (2003), under a free entry ta