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Abstract

In most large cities, the taxi industry is subject to various types of regulation, such as entry restrictions
and price controls, and economists have examined the economic consequences of such regulation exten-
sively. Unfortunately, in conventional economic analyses of competition and regulation in the taxi industry
little attention has been paid to one important issue: congestion externalities due to both occupied and
vacant taxi movements together with normal vehicular traffic. This study investigates the nature of equilib-
rium and regulation in the taxi market by taking account of congestion externalities and adopting a realistic
distance-based and delay-based taxi fare structure. The monopoly, the social optimum and the stable com-
petitive solutions are examined and illustrated with a numerical example.
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1. Introduction

Because of their convenience, efficiency, flexibility and 24-h availability, taxi service becomes an
important and indivisible part of the urban public transport in most large cities. As reviewed and
summarized recently by Yang et al. (2003), a substantial number of studies are available in the
literature concerning the models and economics of taxi services under various types of regulation
such as entry restriction and price control. A few notable contributions include the early studies
by Douglas (1972), De vany (1975), and recent studies by Cairns and Liston-Heyes (1996), Arnott
(1996) and Yang et al. (1998, 2002). These studies have overwhelmingly emphasized the role of
customer waiting time and the complex intervening relationship between users (customers) and
suppliers (firms) of the taxi service. The waiting time is generally considered as an important value
or quality of the services received by customers. This variable affects customers� decision as to
whether or not to take a taxi, and thus plays a crucial role in the determination of the price level
and the resulting equilibrium of the market.

In most large cities, taxis make considerable demands on limited road resources and contribute
significantly to traffic congestion. In the urban area of Hong Kong (Hong Kong Island and Kow-
loon), the total taxis currently form about 25% of the overall traffic mix. In some critical locations,
taxis even account for as much as 50% to 60% of the traffic mix (Hong Kong Transport Depart-
ment, 1986–2000). Thus, effective regulation of the taxi market needs appropriate consideration of
the congestion externalities due to both vacant and occupied taxi movements. Unfortunately, pre-
vious economic analyses of taxi services are generally based on a constant average taxi ride time or
distance and the effect of traffic congestion is neglected in regulating price and setting optimal ser-
vice standards. It is true that the real taxi fare includes both a distance-based and delay-based
charge in nearly every large city. Even with a constant average taxi ride distance as assumed in
previous analytical studies, the delay-based charge varies with the congestion level, and hence with
the changes of taxi fleet size and/or normal traffic demand.

Table 1 summarizes the fare structure implemented in a few major cities around the world.
Although the fare structure varies slightly across cities, it is a common feature that the price con-
sists of initial flag-fall charge, time delay-based charge and travel distance-based charge. Taxi fare
control, together with fleet size restriction, is generally introduced in most cities for efficient reg-
ulation of the taxi industry. The empirical evidence shown in the table clearly point to the neces-
sity of incorporating the congestion effect in taxi service analysis, which will help precise
understanding of the nature of equilibrium and provide reliable information on the price and fleet
size regulation of the market.

This study investigates the monopoly, the social optimum and the stable competitive solutions
of cruising taxi services in the presence of congestion externalities by adopting a realistic distance-
based and delay-based fare structure. The paper is organized as follows: In Section 2, we intro-
duce the essential elements and the basic analytical model required to characterize taxi services
with congestion effects. In Section 3, we examine the first-best solution and show that the price
charged at the social optimum with congestion externalities should exceed the marginal cost,
and as a result the first-best solution may lie in the positive profit region. In Section 4, we address
the competitive solution with emphasis on two special cases: the stable competitive solution and
the second-best solution. In Section 5, we show in a monopoly market how a profit-maximizing
taxi firm will choose markup pricing when congestion effect is built into the model. A numerical



Table 1
Taxi fare structure in major cities around the world

Hong Kong Singapore New York London Tokyo Shanghai

Initial charge HK$15.0/first 2km S$2.4/first 1km $2.0 for getting in £2.00/first 361.0m
or 77.6s

660type1 340type2

yen/first 2km
¥10/first 3km

Distance-based
charge

HK$1.4/0.2km
thereafter

S$0.1 for every
240m thereafter up
to 10km, S$0.1 for
every 225m thereafter
from 10km onwards

$0.3/0.25 mile 20p/each additional
180.5m or 38.8s if
the fare displayed
is less than £12.40,
20p/each 128.9m
or 27.7s thereafter

80 yen/274mtype1;
80 yen for the
next 250m and
80 yen/274mtype2

¥2/3–10km;
¥3/thereafter

Delay-based
charge

HK$1.4/per min S$0.1 every 30s $0.3/30s ¥0.4/per min
from 3 to 10km,
¥0.6/per min
thereafter

Comments HK$5.0/per
baggage

All items charged
50% more from
12:00pm to 6:00 am;
CBD and holiday
surcharge

Additional night
charge $0.50, tip
in the range of
15%�20%

The price charge
applies for Monday
to Friday between
6:00 am and 8:00 pm

The fare goes up
by 80 yen per
211m from
11:00 pm to
5:00 am

All items charged
30% more after
11 pm
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example is provided in Section 6 to highlight the major theoretical findings, and finally, general
conclusions are given in Section 7.
2. The basic model

2.1. Basic assumptions

Consider a realistic taxi fare structure consisting of three components: a flag-fall or a constant
initial flat charge, a distance-based charge, and a delay-based charge. Let

P0 = initial flag-fall charge per ride (HKD)
bd = fare charge per occupied unit distance (HKD/km)
bt = fare charge per delay hour (HKD/h)
L = average taxi ride length (km) (assumed to be a constant)
T = average taxi ride time (h) (congestion dependent)
T0 = average taxi ride time without congestion (h) (assumed to be a constant)

Then, the total trip fare P (HKD) is given by
P ¼ P 0 þ bdLþ btðT � T 0Þ ð1Þ
Clearly, we have T � T0 P 0.
Customer demand, Q (trip/h), for taxis is assumed to be a decreasing function of trip fare, P,

in-vehicle travel time, T, and waiting time, W (h), respectively, and takes the following form:
Q ¼ f ðP ; T ;W Þ ð2Þ
Customer waiting time, W, a measure of the service quality of the taxi market, is determined by
the total vacant taxi-hours available. Let N be the taxi fleet size and Nv, No and Nn be the numbers
of vacant taxis, occupied taxis and normal vehicles (private cars) running in the network at a given
instant. Clearly,
No ¼ QT ð3Þ

N v ¼ N � QT ð4Þ
Then, the average customer waiting time for taxis is a decreasing function of the available vacant
taxi-hours:
W ¼ wðN vÞ ¼ wðN � QT Þ ð5Þ
where w 0 = dw/dNv < 0.
Naturally, the in-vehicle travel time for a given average length of taxi ride is given as a function

of the vehicle density on the road,
T ¼ tðN v;No;NnÞ ð6Þ
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Suppose the same average length, L, for trips by normal vehicles, then for a given normal traffic
demand, Qn (veh/h), the number of normal vehicles running throughout the whole network at a
given instant is given by
1 T
ackno
Never
effects
Nn ¼ Qn L
vn

ð7Þ
where vn is the travel speed of normal vehicles (km/h). Suppose all vehicles (taxis and normal vehi-
cles) run on the roads at the same speed, then, we have,
Nn ¼ QnT ð8Þ

Without sacrificing the realism of our model we further assume that the normal vehicle demand
Qn is fixed, and its impact on the taxi market equilibrium will be treated through parametric sen-
sitivity analysis. 1 As seen from Eq. (8), the number of normal vehicles, Nn, running in the net-
work at a given instant is an endogenous variable for fixed normal traffic demand, Qn, in the
presence of the congestion externalities considered here.

From Eqs. (6), (4) and (8), we can see that the in-vehicle travel time is a function of taxi fleet
size, customer demand for taxis, normal vehicle demand and in-vehicle travel time itself:
T ¼ tðN v;No;NnÞ ¼ tðN � QT ;QT ;NnðT ;QnÞÞ ð9Þ

Note that here Nn is an endogenous variable, whereas N is a control or regulation variable. For a
given normal traffic demand Qn, Nn changes with in-vehicle travel time T, which in turn is a func-
tion of taxi fleet size N and taxi fare P, as the latter variables influence customer demand Q and
hence occupied taxis No. Such a complex intertwining relationship makes the choice of the regu-
latory variables N and P rather less than straightforward, but we have to consider their interplay
under congested traffic conditions.

To explore the equilibrium relationship in a convenient manner, we define the partial deriva-
tives of f in function (2) with respect to P, T and W as f1, f2 and f3, respectively. Clearly,
f1 < 0, f2 < 0 and f3 < 0. In view of P0 + bdL in Eq. (1) being constant for a given average ride
distance L, we combine and denote the two terms as the fixed component of taxi fare Pf:
Pf = P0 + bdL. Hence, the total taxi fare per ride P is a function of fixed fare charge Pf, hourly
delay charge bt and average taxi ride time T. Namely,
P ¼ pðP f ; bt; T Þ ð10Þ

where T in turn depends on Pf and bt (T depends on the vacant and occupied taxis and hence the
customer demand; customer demand depends on the fare charged or on Pf and bt). Similarly, let
p1, p2 and p3 denote the partial derivatives of p in P

f, bt and T in function (10), respectively. Then
we have p1 > 0 (in fact, p1 = 1.0 with fare structure given by Eq. (1)), p2 > 0 and p3 > 0. Finally, let
t1, t2 and t3 denote the partial derivatives of t in function (9) in Nv, No and Nn, respectively. We
also have t1 > 0, t2 > 0 and t3 > 0.
his assumption will greatly simplify our analysis and facilitate interpretation of our results. One should
wledge the fact that normal vehicle demand responds to congestion (and thus taxi fleet size and fare).
theless, our analysis focuses on the characteristics of taxi services under congested traffic conditions; congestion
are examined by varying the level of normal vehicle demand and taxi fleet size.
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2.2. Comparative static effects of regulatory variables

With the distance and delay-based taxi fare structure, we now have three market regulatory
variables of constant fare charge Pf, delay-based charge rate bt and taxi fleet size N. Their com-
parative static effects on the market are investigated below.

We first look at the effects of the three regulatory variables on the total taxi fare per ride (in this
case, the regulatory variables (Pf,bt,N) are regarded as independent variables; the average taxi
ride time T is an endogenous or intermediate variable). Taking the partial derivative of P given
in (10) with respect to Pf,
oP

oP f
¼ p1 þ bt oT

oP f
ð11Þ
Similarly we have,
oP
obt ¼ p2 þ bt oT

obt ð12Þ

oP
oN

¼ p3
oT
oN

¼ bt oT
oN

ð13Þ
We now look at the effects of the regulatory variables on the average taxi ride time. Taking
the partial derivative of T given in (6) with respect to Pf and utilizing Eqs. (4), (3) and (8), we
have
oT

oP f
¼ t1

oN v

oP f
þ t2

oNo

oP f
þ t3

oNn

oP f
¼ t1 �T

oQ

oP f
� Q

oT

oP f

� �
þ t2 T

oQ

oP f
þ Q

oT

oP f

� �
þ t3Q

n oT

oP f
This gives rise to
oT

oP f
¼ ðt2 � T 1ÞT

1þ t1Q� t2Q� t3Q
n

oQ

oP f
ð14Þ
Similarly,
oT

obt ¼ t1
oN v

obt þ t2
oNo

obt þ t3
oNn

obt ¼ t1 �T
oQ

obt � Q
oT

obt

� �
þ t2 T

oQ

obt þ Q
oT

obt

� �
þ t3Q

n oT

obt
or
oT
obt ¼

ðt2 � t1ÞT
1þ t1Q� t2Q� t3Q

n

oQ
obt ð15Þ
and
oT
oN

¼ t1
oN v

oN
þ t2

oNo

oN
þ t3

oNn

oN
¼ t1 1� T

oQ
oN

� Q
oT
oN

� �
þ t2 T

oQ
oN

þ Q
oT
oN

� �
þ t3Q

n oT
oN
or
oT
oN

¼ t1 þ ðt2 � t1ÞToQ=oN
1þ t1Q� t2Q� t3Q

n ð16Þ
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We next look at the effects of the regulatory variables on customer demands. Taking the partial
derivative of Q in (2) with respect to Pf and utilizing Eqs. (10) and (5),
oQ

oP f
¼ f1

oP

oP f
þ f2

oT

oP f
þ f3

oW

oP f
¼ f1 p1 þ p3

oT

oP f

� �
þ f2

oT

oP f
þ f3w0 �T

oQ

oP f
� Q

oT

oP f

� �
ð17Þ
This leads to
oQ

oP f
¼ f1p1 þ ðf1p3 þ f2 � f3w0QÞoT=oP f

1þ f3w0T
ð18Þ
Substitute Eq. (14) into Eq. (18) gives,
oQ

oP f
¼ f1p1ð1þ t1Q� t2Q� t3Q

nÞ
ð1þ f3w0T Þð1� t3Q

nÞ � ðt2 � t1Þððf1p3 þ f2ÞT þ QÞ ð19Þ
Similarly, we obtain
oQ

obt ¼
f1p2ð1þ t1Q� t2Q� t3Q

nÞ
ð1þ f3w0T Þð1� t3Q

nÞ � ðt2 � t1ÞðT ðf1p3 þ f2Þ þ QÞ ð20Þ

oQ
oN

¼ f3w0ð1� t2Q� t3Q
nÞ þ ðf2 þ f1p3Þt1

ð1þ f3w0T Þð1� t3Q
nÞ � ðt2 � t1Þððf1p3 þ f2ÞT þ QÞ ð21Þ
Finally, we consider how the regulatory variables (Pf,bt,N) affect the customer waiting time,
which is an important service quality measure. Taking the partial derivatives of W in (5) with
respect to Pf, bt and N respectively, we get,
oW

oP f
¼ �w0 T

oQ

oP f
þ Q

oT

oP f

� �
ð22Þ

oW
obt ¼ �w0 T

oQ
obt þ Q

oT
obt

� �
ð23Þ

oW
oN

¼ w0 1� T
oQ
oN

� Q
oT
oN

� �
ð24Þ
where oQ/oPf, oQ/obt and oQ/oN are given by Eqs. (19)–(21) and oT/oPf, oT/obt and oT/oN are
given by Eqs. (14)–(16).

We note that all the above expressions obtained so far can be greatly simplified if we assume
that both vacant and occupied taxis have about the same marginal impact on traffic flow (or run-
ning speed) in the considered cruising taxi market, namely ot/oNv = ot/oNo in Eq. (6) or t1 = t2.
With this assumption, from Eqs. (14) and (15) we have the following simplified qualitative
relationships:
oT

oP f
¼ oT

obt ¼ 0 ð25Þ
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and from Eq. (16)
2 W
param
being
total r
we ha

From
alway
oT
oN

¼ t1
1� t3Q

n > 0 ð26Þ
where oT/oN > 0 is always true for the traffic flow operating in the normal flow regime in a linear
traffic flow model. 2 Also, Eqs. (11)–(13) turn out to be,
oP

oP f
¼ p1 > 0 ð27Þ

oP
obt ¼ p2 > 0 ð28Þ

oP
oN

¼ t1p3
1� t3Q

n > 0 ðfrom Eq: (26)Þ ð29Þ
Moreover, in view of f1 < 0, f3 < 0, p1 > 0, p2 > 0, w 0 < 0 and T > 0, we have
oQ

oP f
¼ f1p1

1þ f3w0T
< 0 ð30Þ

oQ
obt ¼

f1p2
1þ f3w0T

< 0 ð31Þ

oQ
oN

¼ f3w0ð1� t2Q� t3QÞ þ ðf2 þ f1p3Þt1
ð1þ f3w0T Þð1� t3Q

nÞ ¼ f3w0

1þ f3w0T
þ ðf2 þ f1p3 � f3w0QÞt1
ð1þ f3w0T Þð1� t3Q

nÞ ð32Þ
Eq. (32) describes the aggregate impact of taxi fleet size on customer demand in two opposite
manners. The first term of the right-hand side shows that, everything else being equal, increase
in taxi fleet size will reduce customer waiting time (w 0 < 0) and thus increase customer demand
(f3w

0 > 0). The first term is always positive (note that 1 + f3w
0T > 0). The second term of the

right-hand side represents the negative impact of congestion on customer demand arising from
the entry of one additional taxi into the market.Whenever a new taxi enters the market, the average
taxi ride time will increase. This will lead to direct decrease in customer demand (f2t1 < 0), decrease
in customer demand due to increased delay-based charge (f1p3t1 < 0) and also due to increased cus-
e consider a linear traffic flow model: v = a � bk, where speed v is a linear function of traffic density k with
eter a > 0 and b > 0. Suppose traffic is flowing in the normal flow regime, which means that 0 < a/2 < v 6 a with a
the maximal free-flow speed (May, 1990). Substitute k ¼ ðN þ NnÞ=L into the linear flow model where L is the
oad length in the network and since T = L/v, we obtain t3 ¼ oT=oNn ¼ bL=Lv2. Using L/v = Nn/Qn from Eq. (7),
ve:

t3 ¼
1

Qn

bNn

vL
<

1

Qn

bðNn þ NÞ
vL

¼ 1

Qn

ða� vÞ
v

0 < a/2 < v we have 0 < (a � v)/v < 1 and thus t3 < 1/Qn in the above equation. As a result, t3Q
n < 1 or Eq. (26) is

s positive as long as the traffic flow is operating in the normal flow regime.
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tomer waiting time (�f3w 0Qt1 < 0) as a result of more occupied and less vacant taxi-hours. One can
thus readily understand that oQ/oN could be positive or negative, depending the relative magni-
tudes of the two impacts. The latter negative impact on demand, however, depends on the current
level of congestion. In fact, suppose the level of traffic congestion depends only the total number
of vehicles on the roads regardless of occupied, vacant and normal vehicles, namely, t1 = t2 = t3 in
Eq. (6). Then from Eq. (32), we have oQ/oN > 0 if t1 < 1/(Q + Qn � ((f2 + f1p3)/f3w

0)). This means
that, if the current market is less (or moderately) congested, entry of additional taxis will improve
service quality and thus increase customer demand. If, however, the market is already very highly
congested due to a high level of normal vehicle demand or from an already large taxi fleet size, the
improvement in service quality cannot offset the negative impacts due to extra congestion after en-
try of one additional taxi into the market, and as a result, new taxi entry will only diminish cus-
tomer demand. Of course, the latter situation rarely occurs in reality; it is typical in large urban
commuting areas that an increase in taxis leads to a greater demand for taxis.

Similarly, substituting Eqs. (30) and (25) into (22), Eqs. (31) and (25) into Eq. (23), and Eq. (32)
and Eq. (26) into (24), respectively, we obtain
oW

oP f
¼ �w0T

f1p1
1þ f3w0T

< 0 ð33Þ

oW
obt ¼ �w0T

f1p2
1þ f3w0T

< 0 ð34Þ

oW
oN

¼ w0 1� T
f3w0ð1� t3Q

nÞ þ ðf1p3 þ f2 � f3w0QÞt1
ð1þ f3w0T Þð1� t3Q

nÞ � Q
t1

1� t3Q
n

� �
ð35Þ
Like Eq. (32), oW/oN in Eq. (35) could be positive or negative, depending on the current degree of
congestion. Similarly, we can find that oW/oN < 0 if t1 < 1/(Q + Qn + T(f2 + f1p3)). In particular,
if there is no congestion effect or t1 = t2 = t3 = 0 in Eq. (6), then we have oW/oN =
w 0/(1 + f3w

0T0) < 0 in Eq. (35).

2.3. Effects of normal traffic demand

To gain insight into the effect of normal vehicle demand on customer demand and taxi service
quality, we have the following relationships. From Eq. (6),
oT
oQn ¼

ot
oNn

oNn

oQn ¼ t3T > 0 ð36Þ
From Eq. (2) and then using Eq. (10), we obtain
oQ
oQn ¼ f1

oP
oQn þ f2

oT
oQn þ f3

oW
oQn ¼ f1p3

oT
oQn þ f2

oT
oQn þ f3

oW
oQn ð37Þ
From Eq. (5) we have
oW
oQn ¼ w0 �T

oQ
oQn � Q

oT
oQn

� �
ð38Þ
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Substituting Eq. (38) into Eq. (37) and solving for oQ/oQn give rise to:
oQ
oQn ¼

ðf1p3 þ f2 � f3w0QÞ
ð1þ f3w0T Þ

oT
oQn < 0 ð39Þ
where oQ/oQn < 0 comes from the fact that 1 + f3w
0T > 0 and f1p3 + f2 � f3w 0Q < 0 from f1 < 0,

f2 < 0, f3 < 0, p3 > 0 and w 0 < 0 as well as oT/oQn > 0 from Eq. (36). This shows that the conges-
tion externality certainly deteriorates the service quality and drops the customer demand for taxi.
As a result, even possibly gaining additional revenue from the delay-based fare charge, taxi firms
also face the threat of losing customers in the presence of congestion effects, which would drop
their revenue in return. Therefore, the presence of congestion externality in the taxi market makes
an intriguing issue of regulating price and setting service standard. Both the taxi firms and the
regulator should figure out their preferred solutions respectively by balancing the hourly delay
charge and taxi fleet size by properly taking into account the congestion level associated with
the various normal traffic demand and taxi fleet size.

2.4. Synchronous relationship among variables

Based on the qualitative analysis developed in the previous section, Fig. 1 illustrates the com-
plicated interrelationships among the exogenous and endogenous variables. A few major observa-
tions from the figure and the previous analysis are worthwhile to mention.

Firstly, recalling the assumption mentioned above, the increase in taxi fleet size has positive im-
pacts on in-vehicle travel time and total fare per taxi ride charged for a given fare charge structure.
The figure also indicates that the increase in taxi fleet size enhances the taxi availability at the same
time. Thus the change in customer demand for taxis is a joint consequence of the positive impact
of the increased vacant taxi-hour and the negative impact of the increased in-vehicle travel time
and increased fare as well. As described in Eq. (32), the customer demand could increase or de-
crease as the taxi fleet size increases, depending on the net effect of the two opposite forces (or
the current level of congestion and taxi availability).

Secondly, it is obvious, if we assume a vacant and an occupied taxi inflicts the same marginal
impact on traffic flow, that raising the fixed taxi fare component and/or the delay-based taxi
charge rate will only reduce the customer demand as shown in Eqs. (30) and (31). Increase in nor-
mal vehicle demand will make congestion more severe and thus definitely result in a decline in cus-
tomer demand as well, as described in Eq. (39).

Thirdly, keeping all exogenous variables fixed, it is interesting to note that there is an internal
cycle among the customer demand, vacant taxi-hour and customer waiting time. It is this internal
cycle of interaction or internal market force which drives the market to a stable equilibrium for
fixed exogenous variables. For example, suppose there is a small amount of increase in customer
demand from the current equilibrium point, then the vacant taxi time will decrease due to in-
creased customer demand, and as a result average customer waiting time will increase. Increase
in waiting time will in turn lead to a decrease in customer demand. This means that the market
force will pull down the demand to the original level and stabilize the equilibrium.

The above observations show how the regulatory variables of taxi fleet size and fare structure
affect the endogenous variables or demand–supply equilibrium in the taxi market, including the
customers� in-vehicle travel time, total taxi fare per ride, service quality, demand for taxis and thus
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congestion effects.

H. Yang et al. / Transportation Research Part A 39 (2005) 17–40 27
the taxi firms� profit and social welfare. The regulator, therefore, may achieve various objectives
by effectively regulating taxi fare structure and fleet size with proper consideration of congestion
externality.

Before concluding this section, we note that at the equilibrium points, with or without regula-
tions, the combination of the initial flag-fall charge, the distance-based charge and the hourly de-
lay-charge is indeterminate in giving the same total fare charge per taxi ride. Hence it is reasonable
to first fix the sum of the initial flag-fall charge and distance-based charge for the various repre-
sentative solutions in the subsequent sections, when we ignore the congestion externalities or when
there is no congestion effect. The hourly delay-charge rate is then determined when the congestion
effect is built into the model, in addition to the predetermined congestion-free initial and distance-
based charges. This two-stage fare determination is carried out in the latter sections.
3. Social optimum

Now we consider the choice of taxi fleet size and fare structure to maximize the social welfare.
Assume that the full price for a taxi trip is given as q = P + sT + jW, where s and j are the values
of customers� in-vehicle travel time and waiting time, respectively. The demand function is as-
sumed to be a decreasing function of the full price given as Q = f(q) where f 0 < 0. As mentioned
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previously, Pf is predetermined as the corresponding price charged in the absence of congestion
effects.

Assuming a constant hourly operation cost c (HKD per taxi-hour) for both vacant and occu-
pied taxis and defining the social welfare as the sum of the consumer surplus and the producer
surplus (profit of taxi firms) minus the additional congestion delay cost of normal traffic, then
the social welfare maximization problem is given below:
max Sðbt;NÞ ¼
Z 1

q
f ðxÞdx þ PQ� cN � sQnðT � T 0Þ ð40Þ
where, as assumed before, the normal traffic demand, Qn, is treated with the same trip length as
those made by taxis, for simplicity. The same value of in-vehicle travel time is assumed for both
taxi and normal vehicle users.

Consider maximizing S with respect to bt and N. From oS/obt = 0, we have
sðQþ QnÞ oT
obt þ jQ

oW

obt ¼ P
oQ

obt
From oS/oN = 0, we obtain
cþ sðQþ QnÞ oT
oN

þ jQ
oW
oN

¼ P
oQ
oN
From Eqs. (23) and (24), we obtain:
ðsðQþ QnÞ � jw0Q2Þ oT
obt ¼ ðP þ jw0QT Þ oQ

obt ð41Þ

ðP þ jw0QT Þ oQ
oN

¼ cþ jw0Qþ ðsðQþ QnÞ � jw0Q2Þ oT
oN

ð42Þ
From Eqs. (25), (31) and (41), we have
P ¼ �jw0QT ð43Þ
This in turn means that the left-hand side of Eq. (42) is zero. In view of oT/oN > 0 from Eq. (26),
Eq. (42) leads to:
c ¼ ðjw0Q2 � sðQþ QnÞÞ oT
oN

� jw0Q ð44Þ
Therefore,
P � cT ¼ ðsðQþ QnÞ � jw0Q2ÞT oT
oN

ð45Þ
Eq. (45) is the central result of the social optimum regulation of the taxi market with congestion
externalities. The equation implies that if oT/oN = 0, namely, if there is no congestion effect at the
social optimum, we in effect have P = cT. In this case PQ = cTQ, implying that the total revenue
just equals (or just covers) only the total cost of occupied taxi-hours and, in the aggregate, the
taxis operate at a loss equal to the cost of vacant taxi-hours. We thus arrive at the same results
examined by Arnott (1996), who concluded that the first-best solution is located in the negative
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profit region and taxi services at the social optimum should be subsidized. If the congestion effect
cannot be ignored, (oT/oN > 0 from Eq. (26)), then P > cT comes about as a result of
T(s(Q + Qn) � Q2jw 0)oT/oN > 0 (note that w 0 < 0). This means that the taxi firms� loss is relaxed;
the aggregate loss is less than the cost of vacant taxi-hours due to P > cT > cT 0 = Pf, where Pf is
the corresponding optimal price charged in the absence of congestion effects at the first-best solu-
tion. As a result, we conclude that the price charged is higher at the first-best solution 3 in the
presence of congestion externality.

Naturally, one question arises from the above observation. Can the taxi firms� profit be en-
hanced sufficiently so that the first-best solution is located in the non-negative profit region? To
answer this question, we now look at the total profit of the taxi firms at the social optimum. From
Eqs. (43) and (44) we have
3 St
conge
PQ� cN ¼ jw0QðN � QT Þ þ NðsðQþ QnÞ � jw0Q2Þ oT
oN

ð46Þ
In view of w 0 < 0 and N � QT being the total vacant taxi-hour, we must have N(s(Q + Qn) �
jw 0Q2) > 0 and jw 0Q(N � QT) < 0. Therefore, a sufficient condition for obtaining positive profit
at the social optimum is
oT
oN

P � jw0QðN � QT Þ
NðsðQþ QnÞ � jw0Q2Þ

ð> 0Þ ð47Þ
or alternatively, with the assumption of t1 = t2 = t3 in the congestion characterization equation
(6), the following condition is met:
t1 P Qn þ NQ
N � QT

þ sNðQþ QnÞ
kw0QðN � QT Þ

� ��1

ð48Þ
Eq. (47) or (48) implies that a profitable first-best social optimum emerges in a severely congested
taxi market, where the entry of additional taxis into the market makes a large marginal congestion
effect (and thus entry should be highly controlled at the social optimum).
4. Monopoly solution

In a monopoly market, a single taxi firm operates all taxis to maximize its profit. The profit per
unit time is given by
P ¼ PQ� cN ¼ P f þ bt T � T 0
� �� �

Q� c N v þ Noð Þ ð49Þ
Maximizing profit P with respect to hourly delay charge rate bt and taxi fleet size N yields the
following first-order conditions:
oP

obt ¼ Q
oP

obt þ P
oQ

obt ¼ 0 ð50Þ
rictly speaking, here it is more appropriate to use the term ‘‘quasi-first-best solution’’ due to the unpriced external
stion effect in the taxi market.
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oP
oN

¼ Q
oP
oN

þ P
oQ
oN

� c ¼ 0 ð51Þ
Combining Eqs. (28), (31) and (50) gives,
P ¼ �ð1þ f3w0T ÞQ
f1

ð52Þ
Substituting Eqs. (29), (32) into (51) leads to
c ¼ � f3w0Q
f1

� t1ðf2 � f3w0QÞQ
f1ð1� t3Q

nÞ ð53Þ
In view of Eq. (26), fk < 0, tk > 0 (k = 1, 2, 3) and w 0 < 0, we obtain
P � cT ¼ �Q
f1

þ t1ðf2 � f3w0QÞTQ
f1ð1� t3Q

nÞ ¼ �Q
f1

þ ðf2 � f3w0QÞTQ
f1

oT
oN

> �Q
f1

> 0 ð54Þ
Eq. (54) is the monopoly price markup formula in the presence of congestion externalities. It
is interesting to note that when oT/oN equals zero or there is no congestion effect, Eq. (54)
reduces to
P � cT ¼ �Q=f1 ð55Þ

This is exactly the same result obtained by Cairns and Liston-Heyes (1996) when the congestion
effect is ignored. The price markup formula (55) shows the monopoly power of the single taxi firm
to set the taxi fare above its marginal cost in equilibrium. Moreover, from Eq. (54) the taxi fare
will exceed marginal cost per trip by a greater amount when there is congestion effect in the
monopoly market.

We now further examine the monopoly markup price. In view of the full price q = P +
sT + jW, we essentially have f1 = oQ/oq. With Q ¼ � o

oq

R1
q f ðxÞdx, we obtain
�Q
f1

¼ o

oq

Z 1

q
f ðxÞdx

� �
oQ
oq

� ��1

¼ o

oQ

Z 1

q
f ðxÞdx ð56Þ
where o
oQ

R1
q f ðxÞdx is the marginal consumer surplus (net willingness-to-pay) for a taxi ride.

Thus, Eq. (54) can be rewritten as
P � cT ¼ 1� ðf2 � f3w0QÞT oT
oN

� �
o

oQ

Z 1

q
f ðxÞdx >

o

oQ

Z 1

q
f ðxÞdx ð57Þ
In the absence of congestion effect, Eq. (57) simplifies to:
P � cT ¼ o

oQ

Z 1

q
f ðxÞdx ð58Þ
Eq. (58) implies that, in an effort to extract as much profit as possible, the monopolist would
charge a price in excess of marginal cost per ride by an amount equal to the consumer�s marginal
net willingness-to-pay for a ride. Eq. (57) shows that this markup will be further increased in the
presence of congestion effect. This observation is consistent with the results of the private road
pricing examined in Lindsey and Verhoef (2001). Therefore, we can conclude that previous studies
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ignored congestion effects and as a result underestimated the price charged at the monopoly
solution.
5. Competitive solution

Assuming that the market is comprised of owner-operated taxis, with one taxi per owner or
firm, then in this competitive free entry market, the resultant supply will satisfy the market equi-
librium, where the marginal revenue obtained by the last unit of taxi service just covers its cost
(profit is nil). It is at this point that the individual incentive to join the taxi industry disappears.
Hence equilibrium occurs at
PQ� cN ¼ 0 ð59Þ

Note that the solutions to the above non-linear equation form a closed zero-profit curve (roughly
smoothed right-angled triangular shape to be demonstrated later in a numerical example) in the
two dimensional space of taxi fare and fleet size. The equilibrium, at smaller fleet size, is unstable
and inferior from a welfare perspective, and thus the lower fleet size equilibrium can seldom
emerge in reality. Two special cases of the competitive solution along the zero-profit curve deserve
our attention: the stable competitive solution in a fully unregulated taxi market and the second-
best social optimum solution when the first-best solution is located in the negative profit region.

First, as pointed out in Yang et al. (2003), under a free entry taxi market, the taxi fleet size will
self-adjust to an equilibrium level for a given taxi fare, and it is sufficient to regulate taxi fare alone
to obtain a specific competitive solution. When the taxi market is fully uncontrolled or unregu-
lated, there exists a stable equilibrium point at which taxi fleet size reaches a maximum, and
the incentive for all individual firms to change fare and/or for the number of taxis in service to
change disappears. The total market revenue also reaches a maximum as a result of PQ � cN = 0
and N = Nmax. The necessary condition for a stable maximum fleet size and thus maximum rev-
enue requires Q + PoQ/oP = 0 or the price elasticity of customer demand eP = (oQ/oP)
P/Q = �1.0. This simply means that the maximum competitive taxi fleet size and hence the max-
imum total market revenue occur at the unit elasticity of the customer demand at which the in-
crease in the revenue with a higher ride fare is cancelled out with the loss due to the reduced
customer demand.

As observed in the previous section, the ‘‘quasi-first-best solution’’ can be located in the positive
or negative profit domain depending on the congestion level in the market. The second-best solu-
tion in a competitive market is of particular interest from a sustainable market regulatory perspec-
tive when the first-best solution does entail an aggregate loss. Namely, the first-best solution lies in
the negative profit region when the inequality (47) is reversed to:
oT
oN

< � jw0QðN � QT Þ
NðsðQþ QnÞ � jw0Q2Þ

ð60Þ
In this case the second-best solution can be obtained from the following welfare maximization
problem with a zero-profit constraint:
max Sðbt;NÞ ¼
Z 1

q
f ðxÞdx þ PQ� cN � sQnðT � T 0Þ ð61Þ
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subject to the zero-profit constraint (59), where, as mentioned before, P = Pf + bdL + bt(T � T0)
with Pf being the zero-profit fare associated with N, in the absence of congestion effects.

To obtain the efficient regulated taxi fare, we use the Lagrange multiplier k to incorporate the
zero-profit constraint (59) into the objective function (61) to form the following Lagrangian:
max Sðbt;NÞ ¼
Z 1

PþsTþjW
f ðxÞdx � sQnðT � T 0Þ þ ðk þ 1ÞðPQ� cNÞ ð62Þ
Then,
oS
obt ¼ sðQþ QnÞ oT

obt þ jQ
oW
obt � kQ

oP
obt � ðk þ 1ÞP oQ

obt ¼ 0 ð63Þ

oS
oN

¼ sðQþ QnÞ oT
oN

þ jQ
oW
oN

� kQ
oP
oN

� ðk þ 1Þ P
oQ
oN

� c
� �

¼ 0 ð64Þ
Substituting Eqs. (25), (34) and (28) into Eq. (63) gives rise to:
P ¼ �kQð1þ f3w0T Þ � f1jw0QT
ðk þ 1Þf1

ð65Þ
Similarly, from Eq. (64) and Eqs. (24), (26) and (32), we obtain
c ¼ � kf3w0Qþ jw0f1Q
ðk þ 1Þf1

� t1ðkðf2 � f3w0QÞQþ f1ðsðQþ QnÞ � jw0Q2ÞÞ
ðk þ 1Þf1ð1� t3Q

nÞ ð66Þ
Therefore,
P � cT ¼ � kQ
ðk þ 1Þf1

þ kðf2 � f3w0QÞTQ
ðk þ 1Þf1

oT
oN

þ ðsðQþ QnÞ � jw0Q2ÞT
ðk þ 1Þ

oT
oN

ð67Þ
From Eq. (56), Eq. (67) then becomes
P � cT ¼ k
k þ 1

1� ðf2 � f3w0QÞT oT
oN

� �
o

oQ

Z 1

q
f ðxÞdx þ 1

k þ 1
ðsðQþ QnÞ � jw0Q2ÞT oT

oN

ð68Þ
where the Lagrange multiplier k > 0 when the first-best solution is associated with a negative
profit or when inequality (47) is met.

By comparison of Eq. (68) with Eqs. (45) and (57), it is interesting to observe that, in the pres-
ence of congestion externality with at least a level of marginal congestion effect given by inequality
(47), the markup price above the marginal cost at the second-best solution is in effect a weighted
average of the first-best markup price (the second term of the right-hand side of Eq. (68)) and the
monopoly markup price (the first term of the right-hand side of Eq. (68)), with a weighting factors
of 1/(k + 1) and k(k + 1) ascertained by the Lagrange multiplier. This observation is consis-
tent with the Ramsey pricing result in the presence of external costs (Oum and Tretheway,
1988; Arnott and Kraus, 1993).
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When there is no congestion effect, Eq. (68) reduces to:
P � cT ¼ k
k þ 1

o

oQ

Z 1

q
f ðxÞdx ð69Þ
By comparing Eqs. (69) and (58), we can further observe that the second-best markup price is a
portion of the marginal consumer surplus in contrast with that the monopoly markup price is ex-
actly equal to the marginal consumer surplus in the absence of congestion externality. This dis-
crepancy reflects the use of different decision rules by the market regulator and the monopolist:
the objective of the regulator is to balance the benefits to both the consumers and the taxi firms,
whereas the monopolist is to simply maximize the total profit by fully exploiting the consumers�
marginal willingness to pay for taxi rides.

Finally, two comments on the competitive solution are deduced. First, the stable competitive
solution with a maximum taxi fleet size is associated with a marginal cost of taxi-hour in excess
of marginal social value, resulting in wasteful competition among firms, due to the competitive
fare above the efficient level. In contrast, the second-best solution leads to a more efficient utili-
zation (higher time occupancy rate) of taxis, with a higher demand served by a smaller taxi fleet
size and a lower fare. Second, as observed later, the presence of congestion effects will result in
a shrunken competitive taxi market with a smaller taxi fleet size and less customer demand.
The positive profit domain demarcated by the zero-profit curve becomes smaller.
6. A numerical example

To elucidate the discussion and results obtained so far, we now present a numerical example
with the following specific negative exponential demand function used in Yang et al. (2002):
Q ¼ Q expð�aðP þ sT þ jwÞÞ

¼ Q exp �a P 0 þ bdLþ btðT � T 0Þ þ sT þ j
c

N � QT

� �� �
ð70Þ
With reference to the calibrated data of Hong Kong (Yang et al., 2002), we take L = 20 (km),
s = 35 (HKD/h), j = 60 (HKD/h), a = 0.03 (1/HKD), c = 400.0 (vehh). The potential customer
demand is assumed to be Q ¼ 1:0	 104 (trip/h). To characterize the congestion effects, we employ
a linear speed–density function: v = a � bk where k ¼ ðNn þ NÞ=L ¼ QnL=Lvþ N=L from Eq. (7)
and L (km) is the total length of the roads in the network. The parameter values are assumed to be
a = 100 (km/h), b = 0.67 (km2/vehh), L ¼ 500 (km). In addition, we have T = L/v and T0 = L/a.
With these inputs and considering only the normal flow regime, the average running speed of all
vehicles (taxis and normal vehicles) on the network is given by
v ¼ 1

2
a� bN

L
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a� bN

L

� �2

� 4
bQnL

L

s0@ 1A ð71Þ
Our central concern in the numerical example is about the impact of traffic congestion on the
market equilibrium. Figs. 2–8 depict the changes of the first-best solution, the stable competitive
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solution and the monopoly solution with respect to the level of normal traffic demand (level of
congestion) respectively, in terms of taxi fleet size, hourly delay charge rate, total price charged
per taxi ride, customer waiting time, customer demand, total taxi profit and social welfare.

As seen from Fig. 2, taxi fleet size for all three representative solutions declines in response to
the level of congestion. In particular, the fleet size for the first-best solution declines more quickly,
because the regulator, with a concern about the total community benefit including the normal
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vehicle users, would like to reduce traffic congestion caused by both occupied and vacant taxi
movements as well as normal vehicular traffic.

Fig. 3 plots the change of the degree of congestion with normal vehicle demand in terms of the
ratio of the congested to the free-flow average taxi ride times. Because of the larger taxi fleet size in
comparison with those associated with the first-best and monopoly solutions, the average ride
time at the unregulated competitive stable equilibrium is longer, its sharper increase with normal
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vehicle demand is largely due to the fact that the marginal travel time is greater at high flows than
at low flow levels.

Fig. 4 shows that the hourly delay charge rate increases gradually with the level of normal vehi-
cle demand for the first-best and competitive solutions, but decreases for the monopoly solution.
The two opposite changes reflect the different behaviors of the monopolist and the social regula-



-1.0

0.0

1.0

2.0

3.0

4.0

5.0

0 1 2 3 4 5

Normal Vehicular Demand (10 4 trip/h)

Pr
of

it 
(1

05  H
K

D
)

First-best solution First-best solution without congestion

Competitive solution Competitive solution without congestion

Monopoly solution Monopoly solution without congestion

Fig. 8. Variation of social welfare with respect to normal vehicle demand.

H. Yang et al. / Transportation Research Part A 39 (2005) 17–40 37
tor. The single monopolist tries to attract customers by lowering the hourly delay charge due to
congestion and he is able to seize the profit effect of such action in the whole market. Whereas the
social regulator takes account of the benefit effect of his price decision on the whole society includ-
ing the customers, taxi firms and the normal vehicle users. The total price charge per taxi ride for
all three representation solutions, as displayed in Fig. 5, becomes higher in the presence of con-
gestion externality and increases with the level of congestion. The sharper increase in the total
price charge associated with the first-best solution comes out of the double effect of increased ride
time and increased hourly delay charge rate. The increase in total monopoly price reflects the fact
that the price effect of increased ride time outweighs that of reduced hourly delay charge rate.

Both the service quality in terms of customer waiting time shown in Fig. 6 and the customer
demand shown in Fig. 7 decline, as traffic becomes more congested. A sharper decline of the cus-
tomer demand under the first-best solution reflects the regulator�s preference to diminish the de-
mand for taxis by reducing taxi fleet size (Fig. 2) and increasing taxi fare (Figs. 4 and 5) with a
hope of mitigating overall traffic congestion.

As shown in Fig. 8, the profits associated with the first-best and the monopoly solution exhibit
an opposite trend of change with the level of normal vehicle demand (note that the competitive
solutions with or without congestion are always associated with zero-profit as per its definition,
and hence their corresponding (zero) profit curves coincide with each other in the figure). As
found in previous studies, taxi services at the first-best social optimum are associated with a neg-
ative profit and should thus be subsidized. This is indeed true in the absence of congestion exter-
nality or when the congestion effect is mild. Nevertheless, as the level of normal vehicle demand
increases, the total profit at the social optimum increases and eventually becomes positive. This is
because, as proved earlier, the socially optimal price charged per taxi ride exceeds the correspond-
ing marginal cost and goes up with increasing level of congestion. Note that, in spite of higher
markup pricing over marginal cost in the monopoly market, as shown earlier, the total monopoly
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profit decreases with increasing level of congestion due to reduced customer demand. The social
welfare, as depicted in Fig. 9, decreases with increasing level of congestion in all three cases. This
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decrease can mainly be attributed to both the increased journey time of normal vehicle users and
the reduced customer surplus (reduced customer demand for taxi services shown in Fig. 7). It is
also observed that the monopoly yields a higher social surplus than the competitive market, with
or without congestion. Without congestion, the difference in social welfare between the two mar-
kets is small. As congestion level (normal vehicle demand) increases, social welfare in the compet-
itive market declines faster, because there are too many competing taxis in the market that make
congestion even worse.

Finally, as we expected, Fig. 10 demonstrates that the positive profitable domain (the area with-
in the closed zero-profit curve) shrinks in the presence of congestion effects. In particular, the sta-
ble competitive taxi fleet size shrinks most. Without including congestion externality, we actually
overestimate the feasible size of the taxi market. The figure also points out that the first-best solu-
tion gives rise to a negative profit when there is no congestion or when there is light congestion
associated with a normal vehicle demand of 1.0 · 104 (veh/h). In this case, a sustainable sec-
ond-best solution can be identified along the zero-profit curve as shown in the figure. When the
normal vehicle demand rises to 4.0 · 104 (veh/h), resulting in a high level of congestion, the
first-best solution entails a positive profit which is made by a smaller taxi fleet size. In this case,
the second-best solution becomes meaningless and thus does not appear in the figure.
7. Conclusions

We have examined the equilibrium mechanisms of the taxi market under various market set-
tings with congestion externalities. Previous analytical results were generalized by adopting a real-
istic distanced-based and delay-based taxi fare structure and explicitly taking into account the
negative impacts of traffic congestion on the taxi firms, the consumers and the whole society.
Table 2 summarizes the major theoretical findings made in our study together with a comparison
Table 2
Comparison of the representative solutions with and without congestion externalities

Without congestion effects With congestion effects

Monopoly solution eP � cT 0 ¼ � eQ
~f 1
¼ o

oQ

R1
~q f ðxÞdx P � cT ¼ 1� ðf2 � f3w0QÞT oT

oQ

� � R1
q QðxÞdx; P > eP

(Cairns and Liston-Heyes, 1996)

Social optimum eP � cT 0 ¼ 0 P � cT ¼ sðQþ QnÞ � jw0Q2
� �

T oT
oN ; P > eP

(Arnott, 1996)

Stable competitive solution eP eQ � ceN ¼ 0, eP ¼ ePeQ oQ
oP ¼ �1:0 PQ� cN ¼ 0; ep ¼ P

Q
oQ
oP ¼ �1:0; N < eN

Second-best solution eP eQ � ceN ¼ 0 PQ � cN = 0eP � ceT ¼ ~k
~kþ1

o
oQ

R1
~q f ðxÞdx > 0 P � cT ¼ k

kþ1 1� ðf2 � f3w0QÞT oT
oN

� �
o
oQ

R1
q QðxÞdxþ

1
kþ1 ðsðQþ QnÞ � jw0Q2ÞT oT

oN

ð~k > 0Þ ¼ k
kþ1 ðP � cT Þat monopoly þ 1

kþ1 ðP � cT Þat social optimum

for oT
oN < � jw0QðN�QT Þ

NðsðQþQnÞ�jw0Q2Þ ðk > 0Þ
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with existing results. In contrast with previous observations, the most interesting finding here has
been that the loss to the taxi firm at the first-best solution is less than the cost of vacant taxi-hour.
In fact, as proved theoretically and confirmed numerically the profit at the first-best solution can
become positive when traffic congestion rises to a certain level.
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