Chapter 8
Queueing Theory

v

8.1. Introduction

In this chapter we will study a class of models in which customers arrive in
some random manner at a service Tacility. Upon arrival they are made to
wait in queue until it is their turn 10 be served. Once served they- are
-generaily assumed to leave the system. For such models we will be interested
in determining, among other things, such quantities as the average number
of customers in the system (or in the queue) and the average time a customer
spends in the system (or spends waitink in the queue). : '

In Section 8.2 we derive a Series of basic queuneing identities which are of
great use-in analyzing queueing models. We also introduce three different
sets of limiting probabilities which cotrespond to what an arrival sees, what

- & departure sees, and what an outside ‘Pbservef would see.

In Section 8.3 we dea] with queuging; systems in which all of the defining

probability. distributions are assumed to be exponential. For instance,
 the simplest such model is to assume ﬁhat customers arrive in accordance
with a Poisson process (and thus the interarrival times are exponentially
distributed) and are served one at a tine by a single server who takes an
exponentially distributed length of time for each service. These exponential
queueing models: are special examples of continuous-time Markov chains
and so can be analyzed as in Chapter 6. However, at the eost of a (very)
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In Section 8.4 we consider models in which customers move randomly
among a network of servers. The'model of Section 8.4.1is an open system
int which customers are allowed to enter and depart the system, whereas the

-one studied in Section 8.4.2 is closed in the sense that the set of customers -

in the system is constant over time. )

In Section 8.5 we study the model M/G/1 » which while assuming Poisson
arrivals, allows the service distribution to be arbitrary. To analyze this
model we first introduce in Section 8.5.1 the concept of work, and then use
this concept in Section 8.5.2 to help analyze this system, In Section 8.5.3 we
derive the average amount of time that a server remains busy bétween idle
periods, :

In Section 8.6 we consider some variations of the model M/G/1. In
particular in Section 8.6.1 we suppose that bus loads of customers arrive
according to a Poisson process and that each bus contains a random
number of customers. In Section 8§.6.2 we suppose. that there are two
different classes of customers—with type 1 customers receiving service
priority over type 2. ‘ . :

In Section 8.7 we consider a model with exponential service times but
where the interarrival times between customers is allowed to have an
drbitrary distribution. We analyze this model by use of an appropriately
defined Markov chain. We also derive the mean length of a busy period and
of an idle period for this model.

In the finai section of the chapter we talk about multiservers systems. We
start with Ioss systems, in which arrivals, finding all servers busy, are

assumed to depart and as such are lost to the system. This leads to the

famous result known as Erlang’s loss formula, which presents a simple

. formula for the number of busy servers in such a model when the arrival
process in Poisson and the service distribution is general, We then discuss
multiserver systems in which queues are allowed. However, except in the
case where exponential service times are assumed, there are very few explicit
formulas for these models. We end by presenting an approximation for the
average time a customer waits in queue in a A-server model which assumes
Poisson arrivals but allows for a general service distribution.

8.2. Preliminaries

In this section we will derive certain identities which are valid in the ereat
majority of queusing models.

8.2.1. Cost Equations

Some fundamental quantities of interest for queueing models are
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L., the average number of customers in the system;

L, the average number of customers waiting in queue;

W, the average amount of time a customer spends in the system;
Wa . the average amount of time a customer spends waiting in queue.

A large number of interesting and useful relationships 'betWeen the
proceding and other quantities of interest can be obtained by making use of
the following idea: Imagine that entering customers are forced to pay

'mo_ney (according to some rule) to the system. We would then have the
following basic cost identity

ES

average rate at which the system earns
= 4, X average amount an entering customer pays 8.1

where 4, is defined to be average arrival rate of entering customers. That is,
If N(£) denotes the number of customer arrivals by time ¢, then

2, = im Y9

\ f=o

We now present an heuristic proof of Equation (8.1).

Heuristic Proof of Equation (B.Tj Let T be a fixed large number. In
two different ways, we will compute%the'average amount of money the

approximately A, T'), ‘Hence, both sides of Equation (8.1) when multiplied

by T are approximately equal to the faverage amount earned by 7. The
result then follows by letting 7 — o0, ¥

By choosing appropriate cost: rules, many useful formulas can be

" obtained as special cases of Equation (8.1). For instance, by supposing that

each customer pays $1 per unit time while in the system, Equation 8.1
yields the so-called Little’s formula,

L=AW (8.2)

* This can be made into g rigorous proof provided we assume that the queucing process is

including all the ones in this chapter,

regenerative in the sense of Section 7.5. Most models,
satisfy this condition,
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This follows since, under this cost rule, the rate at which the system earns
“is just the number in the system, and the amount a customer pays is just
equal to its time in the system.
Similarly if we suppose that each customer pays $1 per unit time while in
Queue, then Equation®(8.1) yields '

By'supposing the cost rule that each customer pays $1 per unit time while in
service we obtain from Equation (8.1) that the

average number of customers in service = A, E[S] . ‘ 8.4

where F[S] is defined as the average amount of time a customer spends in
service,

It should be emphasized that Equations (8.1) through (8.4) are valid for
almost all queueing models regardless of the arrival process, the number of
servers, or queue discipline.

8.2.2. Steady-State Probabilities

Let X{(¢) denote the iumbér of customers in the system at time ¢ and define
P.,n=0,by.
N B, = lim P{X(¢) = n}
I— 00 .

where we assume the above limit exists. In other words, P, is the limiting
or long-run probability that there will be exactly # customers in the system,
It is sometimes referred to as the steady-state probability of exactly n
customers in the system: It also usually turns out that P, equals the (long-
run) proportion of time that the system contains exactly # customers. For
example, if £, = 0.3, then in the long-run, the system will be empty of
customers for 30 percent of the time. Similarly, P, = 0.2 would imply that
for 20 percent of the time the system would contain exactly one customer. *

Two other sets of limiting probabilities are {a,, n = 0} and {d,,nz0}, -

where
@, = proportion of customers that find n
in the system when they arrive, and

d, = proportion of customers leaving behind
in the system when the depart

* A sufficient condition for the validity of the dual interpretation of F, is that the queneing
process be regenerative.

Example 8.1 Consider a
service times equal to 1

ao = dG = 1
However,

By=]

as the system is not always empty of customers, 4

hIt was: however, noe accident that a, equaled d, in the previous e}éample.
That arrivals ang departures always see the same number of customers ig

always true as is shown in the Next proposition,

Proposition 8.1 1y in whi '
n 8. any systern in which custorners arrive one at g ti
and are served one at a time : Teta e
|

ﬂ',.,'—_-dn,' rz=0

from a higher State (namely, 3).] Hence, the rate of transitions from # to

n+ 1 eqyals the rate from » + | to n; or, equivalently, the rate at which
arrivals f'md 7 equals the rate at which departures leave . The result now
follows since the overall artival rate must equal the overall departure rat

(what goes in eventuaily goes out.) ¢ e

Hence, on the average, arrivals and departures alwg
number of customers, However, as Example 8.1 iitustrat

general, see the time averages. One important exception
the case of Poisson arrivals, -

¥s see the same
es, they do not, in
where they do is in
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Proposition 8.2 Poisson arrivals always see time averages. In
particular, for Poisson arrivals, -

B =a,

-To understand why Poisson arrivals always see time averages, consider an
* arbitrary Poisson arrival, If we knew that it arrived at time #, then the
conditional distribution of what it sees upon arrival is the same as the
unconditional distribution of the system state at time z. For knowing that an
arrival occurs at time ¢ gives us no information about what occurred prior

to f. (Since the Poisson process has independent increments, knowing that'

an event occurred at time ¢ does not affect the distribution of what occurred
prior to £.) Hence, an arrival would just see the system according to the
limiting probabilities. '

Contrast the foregoing with the situation of Example 8.1 where knowing
that an arrival occurred at time ¢ tells us a great deal about the past; in
particular it tells us that there have been no arrivals in (¢t — 1, ), Thus, in
this case, we cannot conclude that the distribution of what an arrival at time
{ observes is the same as the distribution of the system state at time 7.

‘For a second argument as to why Poisson arrivals see time averages, note

“that the total time the system is in state n by time T is (roughly) P, 7". Hence,
as Poisson arrivals always arrive at rate A no matter what the system state,
it follows that the number of arrivals in [0, T'] that find the system in state

© . nis (roughly) AP, T. In the long run, therefore, the rate at which arrivals

find the system in state n is AP, and, as A is the overall arrival rate, it follows
that AP, /4 = P, is the proportion of arrivals that find the system in state n.

8.3. Exponential Models
8.3.1. A_ Single-Server Exponential Queueing System

Suppose that customers arrive at a single-server service station in accord-
ance with a Poisson process having rate Ai. That is, the times between

successive arrivals are independent exponential random variables having

mean 1/4. Each customer, upon arrival, goes directly into service if the
server.is free and, if not, the customer joins the queue. When the server
finishes serving a customer, the customer leaves the system, and the next
customer in line, if there is any, enters service. The successive service
‘times are assumed to be independent exponential random variables having
‘mean 1/, . _

The above is called the M/M/1 queue. The two Ms refer to the fact that

both the interarrival and service distributions are exponential (and thus
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memoryless, or Markovian), and the 1 to the fact that there is a single
ser've{. To analyze it, we shall begin by determining the limiting prob-
abilities P,, for n = 0,1,.... To do so, think along the following lines.
Suppose that we have an infinite number of rooms numbered 0,1, 2, ...,
and suppose that we instruct an individual to enter room n whenever there
are n customers in the system. That is, he would be in room 2 whenever
there are two customers in the system; and if another were to arrive, then he
would leave room 2 and enter room 3. Similarly, if a service would take
place he would leave roont 2 and enter room 1 (as there would now be only
one customer in the system),

Now suppose that in the long-run our individual is seen to have entered
room 1 at the rate of ten times an hour. Then at what rate must he have left
room 1?7 Clearly, at this same rate of ten times an hour. For the total

- number of times that he enters room 1 must be equal to (or one greater

than) .the total number of times he Jeaves room 1. This sort of argument
thus YIB.]FI§ the general principle which will enable us to determine the state
probabilities, Namely, for each n = 0, the rate at which the process enters

state O is P,, it follows that the rate at which the process leaves state 0 is
AP,. On the other hand; state ¢ can only be reached from state 1 via a
depar_tur_e.-That is, if there is a single customer in the system and he
completes service, then the system becqmes empty. Since the service rate is
u and the proportion of time that the system has exactly one customer is P,
it follows that the rate at which the process enters state 0 is uP,.

Hence, from our rate-equality principle we get our first equation,

APy = I:UPI

Now consider state 1. The process can leave this state either by an arrival
(which occurs at rate 1) or a departure (which occurs at rate ). Hence,
when in state 1, the process will leave this state at a rate of 2 + 2.* Since the
proportion of _time the process is in sltate-l is P, the rate at which the
process leaves state 1is (4 + H)P; . On the other hand, state 1 can be entered
either from state 0via an arrival or from state 2 via a departute. Hence, the
rate at which the process enters state 1 is APy + uP, . Because the reasoning

* If one event ocours at rate A and another occurs at rate u, then the total rate at which either

- eventoceursis A + u. Suppose one man earns $2 per hour and another carns $3 per hour; then
- together they clearly earn 35 per howur, =
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for other states is similar, we obtain the following set of equations:;

State " Rate at which the process leaves = rate at which it enters
0 : AP, = uP,
ozl (A + WP, = AP,_, + uP,,, (8.5)

The set of Equations (8.5) which balances the rate at ‘which the process

enters each state with the rate at which it leaves that state is known as
balance equations.

In order to solve Equations (8.5), we rewrite them to obtain

A
= 2P,

i i
Pn+1;=;Ri+<Rz—;;Pn-l): n=1

Solving in terms of P, vields

P0=P0,
i
P =_p,
1 MO
P—AP.+(P—AP)«_£P%(£>2P
2 ”1 1 .,.uO )ul u (X
' yl A i ,1)3
Py==P+(P-=P}=2p=(2)p,
3#2(2#“)#2(#”
2 A i AN
Py=-P+ (P -ZpP)=Lp = —)P,
A4 'u3 3 uz) #3 (,U 1]
i

A ,
Pn+1 =EPH+ (Pn_

)L A "+1
P_i)==P=(2) P
u 1) i n (”) o

or

(8.6)

i~
il
=
\._<
TN
|

GRS
N

=

v

—_

- limited ‘probabilities to exist in

o
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Notice that for the

A/pt to be less than 1. For otherwise ¥
the B, would be 0. H

! essive services would be
independent exponentials having mean 1/ #. Hence, the expected number of

customers served by time ¢ is no greater than #t; and, therefore, the
expected number in the systemn at time ¢ is at least

At — puf = (A ~',u)t_

Now if 4 > g, then the above number goes to infinity at ¢ becomes large.
That is, 2/u > 1, the queue size increases without limit and there will be no
limiting probabilities, Note also that the condition 1/y < 1 is equivalent to
the condition that the mean service time be less than the mean time between
successive arrivals, This is the general condition that must be satisfied for
most: single-server gueueing systems.

Now let us attempt to express the quéntities L, Ly, W, and Wy in terms
of the limiting probabilities B, Since P, is the long-run probability that the

system contains exactly n customers, the average number of customers in
the system clearly is given by

L

) 3 (8.7)

where the last equation followed upon application of the algebraic identify

- n X
L, TR

The guantities #, Weo, and Lg ndw can be obtained with the help of
Equations (8.2) and (8.3). That is,

since A, = 4, we have from Equation (8.7)
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that

It

¥
I
i

T = A
12

_ _ 8
e — A) ®8

- Example 8.2 Suppose thdt customer's arrive at a Poisson rate of one per
. every 12 minutes, and that the service time is exponential at a rate of one
service per 8 minutes. What are L and w7 .

Solution: Since A = &, 4 = %, we have

L=2, - W=24
Hence, the average nuinber of customers in the system-is two, and the
-average time a customer spends in the system is 24 minutes,

Now suppose that the arrival rate increases 20 percent to A = 1. What

is the corresponding change in I, and W? Again using Equations (8.7);
we get - ) _

L=4, W=40
Hence, an increase of 20 percent in the arrival rate doubled the average

number of customers in the system.
To understand this better, write Equations (8.7) as

Al
1 - A/’

1/u
W= 1~ Au

From these equations we can see that when /y is near 1, a slight increase
in A/p will lead to a large increase in £ and W. 4
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A Technical Remark We have used the fact that if one event occurs at
an exponential rate A, and another independent event at an exponential rate
4, then together they occur at an exponential rate 1 + . To check this
formally, let 7} be the time at which the first event occurs, and T, the time

at which the second event occurs. Then
Pilystj=1-—¢™
PIT,<st}=1-¢™

?

Now if we are interested in the time until either 7, or T, oceurs, then we are

interested in T = min(7;, T;). Now
P{T<t=1-P[T> 1
=1~ Pmin(%}, ) > 1)

However, min(7;, T,) > ¢ if and only if both T; and T, are greater than ¢;
hence,

PiT=t}=1-P{T,>1t, >t
1 - P[T; > t)PIT, > 1}

=1 - g™Mg#

=1 — _e“(hﬂdt

Thus, T has an exponential distrjbution with rate 1 + u, and we are

justified in adding the rates. @
. i
Let W* denote the amount of tirhe an arbitrary customer spends in the
system. To obtain the distribution of W*, we condition on the number in
the system when the customer arrives. This yields *

PW*=al= Y PW* < a|'n in the system when he arrives}
r=0 |

|
X P{n in the syl‘stem when he arrives) 8.9

Now consider the amount of time!that our customer must spend in the
system if there are already n customers present when he arrives. If n = 0,
then his time in the system will just be his service time, When # = 1, there
will be one customer in service 'and » ~— 1 waiting in line ahead of our
arrival. The customer in service might have been in service for some time,
but due to the lack of memory of the expozential disiribution (see Section
5.2), it follows that our arrival would have to wait an exponential amount
of time with rate 1 for this custormer to complete service. As he also would
have to wait an exponential amount of time for each of the other n ~ 1
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customers in line, it- follows, upon adding his own service time, that the
amount of time that a customer must spend in the system _if there are
already 7 customers present when he arrives is the sum of 1 + I mdependex}t
and identically distributed exponential random variables with rate u. But it

is known (see Section 5.2.3) that such a random variable has a gainma
 distribution with parameters (# + 1, 4). That is,

PW* < ginin the system when he arrives}
a t n
= S ,ue_m _(‘u ) df
0 n!
Because _
" Pfn in the system when he arrives) = P,

-6

we have from Equation (8.9) and the preceding that

Y (i (i)( _i)
ngogoﬁ_‘e n! @ 1y H

{(since Poisson arrivals)

PW* = a)

’ (n — Ve .E g1%a’t- (by interchanging)
o © - om=p M

= j (1 — A)e~reM d
.
= j (u — Ne™ e Mgy
: ]

1

—(r—Na

In other wor.ds, W*, the amount of time a customer spends in the system,
is an exponential random variable with rate g — A. (As a ch;ck, we r}ote
that E[W*] = 1/(u — %) which . checks with Equation (8.8) since
W = E[W*].) ' .

Remark Another argument as to why W* is exponential with rate g — 1
is as follows, If we let NV denote the number of customers in the system as
seen by an arrival, then this arrival will spend N + 1 service times in the
system before departing. Now,

PIN+1==PWN=j- )=/~ i/w, j=1

k
it
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» 0 matter how long the customer
has already spent in the system, the probability he wil depart in the next

fi time units is uh + 0(#), the probability that a service ends in that time,
multiplied by 1 -- A/u4. That is, the customer will depart in the next A time
units with probability (z — AYt + o(h); which says that the hazard rate
function of W* is the constant # — A. But only the exponential has a

constant hazard rate, and so we can conclude that W* is exponential with
rate 4 — A. ' '

8.3.2. A Single-Server Exponential Queueing System
Having Finite Capacity

In the previous model, we assumed that there was no limit on the number
of customers that could be in the system at the same time. However, in
reality-there is always a finite system capacity , in the sense that there can
be no more than N customers in the system at any time. By this, we mean
that if an arriving customers finds. that there are already N customers
present, then he does not enter the system. '

As before, we let P,, 0 < n < N, denote the limiting probability that -

there are n customers in the system.f The rate-equality principle vields the
following set of balance equations: |

-

State _ Rate at which the pi:f'ocess leaves = rate at which it enters
0 | APy = up,
l=n=N-1 A+ WP, = AP,_( + uP,,
N . I Py = AP N-1

The argument for state 0 is exact]jy as before. Namely, when in state 0,
the process will leave only via an a_rriyal (which occurs at rate 1) and hence
the rate at which the process leaves state 0 is AP,. On the other hand, the
Process can enter state 0 only from state 1 via a departure; hence, the rate
at which the process enters state 0 is £#P; . The equation for states n, where
l =5 < N, is the same as before. The equation for state N is different
because now state N can only be left via a departure since an arriving -
customer will not enter the systemn when it is in state NV; also, state N can

now only be entered from state N — 1 (as there is no longer a state N + D
via an arrival.
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. To solve, we again rewrite the preceding system of equations:

7
P] =i;P03

A A N
.P,,+I = EP" + (P,, —EP,H), l=n=N-1

A
Py =.; Pr_y
which, solving in terms of P, yields
. .
P = ;Po,

A - ‘L) . . 8.10)
=2p =[=] P (8.
PN — PN ( [1]

By using the fact that ¥%_, P, = 1, we obtain

L

u

n=0
1""‘ }./ N+1
_ PO[_(_“L}
1 -A/u
) |
° (1 = i/

and hence from Equation (8.10) we obtain
e = A
W

Note that in this case, there is no need to impose the condition tifa’f /.ll,u < .1 .
The quene size is, by definition, bounded so there is no possibility of its
increasing indefinitely,

n=0,1,...,N @.11)
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As before, L may be expressed in terms of P, to yield

N
L=% npP,

n=0

L U= X
R aR ”(,,,)

which after some algebra vields

1 = MLE NG — N + Do
- (u - DA - W™

In deriving W, the expected amount of time a customer spends in the
System, we must be a little careful about what we mean by a customer,
Specifically, are we including those “‘customers’’ who arrive to find the
system full and thus do not spend any time in the system? Or, do we just
want the expected time spent in the system by a customer that actually
entered the system? The two guestions lead, of course, to different answers.
In the firsi case, we have A, = A; wheress in the second case, since the

fraction of arrivals that actually enter the system is | — L, it follows that

A, = A1 — P,). Once it is clear what we mean by a customer, W can be
obtained from P

(8.12)

"=

‘Example 8.3 Suppose that it cos?s cu dollars ber hour to provide service

at a rate 4. Suppose also that we incur a gross profit of 4 dollars for each
customer served. If the system has a capacity N, what service rate u

maximizes our total profit? :

Solution: To solve this, suppos.% that we use rate 4. Let us determine
the amount of money coming in per hour and subtract from this the
amount going out each hour. This will give us our profit per hour, and we
can choose u so as to maximize this. . -

Now, potential customers arrive ‘at a rate A, However, a certain
proportion of them do not join the system; hamely, those who arrive
when there are NV customers alreacliy in the system. Hence, since Py is the
proportion of time that the system is full, it follows that entering
customers arrive at a rate of il = Py, Since each customer pays $4, it
follows that money comes in at an hourly rate of A(1 ~ Py)A and sinee

it goes out at an hourly rate of ¢y, it follows that our total profit per
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hour is given by

Profit per hour =" 1(1 — P4 —cu

W1 - M)
= ﬁA[l - W] G
AAL — /]
Y i

For instance if N = Zl=1,4= 16, ¢ = 1, then
1001 -~ (1/w?)
1 — (1/up
_ 1048 — w) _
-1
in order to maximize profit we differentiate to obtain
@ -3+ 1)
-1y

The {fa}ue of u thét rﬁaximizes our profit now can be obtained by
equating to zero and solving numerically. 4

Profit per hour =

4 [Profit per hour] = 10
du

In the previous two models, it has been qu_ite easy to define the state of
the systémn. Namely, it was defined as the number of peo;_;le in the systen?.
Now we shall consider some examples where a more detailed state space is
necessary,

8.3.3. A Shoeshine Shop

Consider a shoeshine shop consisting of two chairs. Suppose that an
entering customer first will go to chair 1. When his work is completéd %n
- chair 1, he will go either to chair 2 if that chair is empty or else wait in
chair 1 until chair 2 becomes empty. Suppose that a potential customer will
‘enter this shop as long as chair 1 is empty. (Thus, for instance, a potential
‘customer might enter even if there is a custormer in chair 2).

If we suppose that potential customers arrive in accordance with a
Poisson process at rate A, and that the service times for the two chairs are
independent and have respective exponential rates of u; and u,, then

(2) what proportion of potential customers enters the system?
{b} what is the mean number of customers in the system?
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(c) what is the avera
in the system?

ge amount of time that an entering customer spends

To begin we must first decide u
at the

person in chair 2 to finigh,
s, the following state space, consisting of the five

states, (0, 0), (1, 0, (0, D, (1, D, and (b, 1), will be used. The states have the
following interpretation: :

State Interpretation

©,0)  There are no customers in the system.

(£,0)  There is one customer in the system, and he is in chair 1. -

{0,1)  There is one customer in the system, and he is in chair 2,

(1, 1) There are two customers in the system, and both are
presently being served. :

(b, 1)  There are two customers in the system, but the customer in
the first chair has completed his work in that chair and is
waiting for the second chair to become free.

: . | .
- It should be noted that when the system is in state (b, 1), the person in

chair 1, though not being served, is nevertheless “blocking”” potential
arrivals from efitering the system, | -

As a prelude to writing down the balance equations, it is usually worth-

an_oflher.

" model is shown in Figure 8.1, The explanation for the diagram is as follows:

The arrow from state (0, 0) to stat;e (1, 0) which is labeled A means that

‘when the process is in state {0, 0), that is, when the systemn is empty, then it

goes to state (1, 0) at a rate 1, that isi via an arrival. The arrow from (0, 1)
to (1, 1) is similarly explained, oo _

When the process is in state (1, 0), it will go to state (0, 1) when the
customer in chair 1 is finished and this occurs at a rate u, ; hence the arrow
from (1, 0) to (0, 1) labeled 4. The arrow from (1, 1Yto (b, 1) is similarly
explained. : ' :

When in state (b, 1) the process will 80 to state (0, 1) when the customer
in chair 2 completes his service (which occurs at rate #3) hence the arrow
from (b, 1) to (0, 1) labeled g,. Also when in state (1, I} the process will
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{1,1)

Hyq

Ha ‘ H
¥} )

Figure 8.1. A transition diagram,

£0 to state (1, 0) when the man in chajr 2 finishes and hence the arrow from
(1,1) to (1, 0) labeled g, . Finally, if the process is in state (0, 1), then it will
g0 to state (0, 0) then the man in chair 2 completes his service, hence the
arrow from (0, 1} to (0, 0) labeled 1. _

Because there are no other possible transitions, this completes the
transition diagram,

To write the balance equations we equate the sum of the arrows -

" (multiplied by the probability of the states where they originate) coming
into a state with the sum of the arrows {multiplied by the probability of the
state) going out of that state. This gives :

State Rate that the process leaves = rate that it enters

(©,0 APy = 1, Py

Lo . Py = APy + u Py,

©, 1) _ U+ Py = Py + U Py
(@1, D (41 + )Py = APy,

b, D Mo Py = Py

- These along with the equation

Poo + Pyp + Py + P+ Py =1

may be solved to determine the litniting probabilities. Though it is easy to
solve the preceding equations, the resulting solutions are quite involved and
hence will not be explicitly presented. However, it is easy to answer our
questions in terms of these limiting probabilities. First, since a potential
customer will enter the system when the state is either (0, 0) or (0, 1), it
follows that the proportion of customers entering the system is Py, + P,,.
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Secondly, since there is One customer in the system whenever the state is
(0, ) or (!, 0) and two customers in the system whenever the state is (I, 1
or (b, 1}, it follows that L, the average number in the system, is given by

L=P,+ P, + 2(Py + Pyy)
To derive the average amount of time that an entering customer spends in -

th_e system, we use the relationship W = L/2,. Since a potentia] customer
will enter the system when in state (0, 0) or (0,1), it follows that

A = APy + Py;) and hence

W_Pm + Py + 2Py + By
=—— 10 7“7 T Tp)
APy + Pyy)

Exarr)pIe 84 @Ifi= Ly =1,u, =2, then calcﬁlate the preceding
quantities of interest,

®)IFA =1, 41 = 2, p, = 1, then caloulate the preceding,

Solution: (a) Solving the balance equationg yields

= 12 — L :
P00—37s Pm-??“: Pu-_"'s%" £

s P01="§T,' Pb1=§%

_ 238
L“'%‘?‘s Wz'%g—

(b) Solving the balance equatiops yields

Foo=1n  Py=4, Py=+, P,=4%, Poy = &
|

Hence, ‘

L=1, W='L6l“’

8.34. A Queueing System with ;Bulk Service
In this model, we consider a single-server exponeﬁtial qﬁeueirig system in

the same time, However, if there 1s only one customer in Iihe, then he

serves that customer. by himself. We shali assume that his service time is -

bassengers at any time.

It would seemn that the state of the system would have to tell us not only
how many customers there are in the System, but also whether oile or two
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@0 2 9 2 6 < 0 .
s w&’
: B 3 M )
-Figure 8.2,

are presently being served. However, it turns out that we can solve the

problem easier not by concentrating on the number of customers in the
system, but rather on the number in guewe. So Iet us define the state as
the number of customers waiting in queue, with two states when there is no

.one in queue. That is, let us have as a state space 0V, 0,1, 2, ..., with the

interpretation
State - Interpretation
O No one in service
0 Server busy; no one waiting
‘n, >0 n customers waiting

The transition diagram is shown in Figure 8.2 and the balance equations are

State Rate at which the process leaves = rate at which it enters
o APy = ub,
0 . A+ Py = APy 4 uP; + P,
nuz=l A+ WP, = AP,y + ubBy,s

Now the set of equations
A+ WP, = AP+ uP,,, n=1,2,... (8.13)

‘has a solution of the form _
Pn = a"Pn'
To see this, substitute the precediﬁg in Equation (8.13) to obtain

@ + a"Py = La" Py + ua™P,
or ] )
(A + o = 4 + po?

Solving this for « yields the three roots:

. -1 -1+ 44/u =1+ N1+ 43/
a=1, a=—x" T a5 =T TWH

2 2
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L:: As the first two are clearly not possible, it follows that
_Vl Ay - g
= P TAN ]
.. . 2
Hence,

Pl‘t = a"PO s
; I

Fo= 3R

ignore the second balance ¢ ig
redundant.) To obtain P), we use

Bo+Py+ ¥ P =1

r=1
or
Pol:l‘f‘g"l- Eoz”:, =]
;{ n=%
or
1 4
Bl —— iy #1 _
0[1 —Ot+}.] 1
or
pon_’}_l“_“)_
(S
and thus
= a”i(1 —.a)
" Atul L MEO _
8.14
Py = _H - &1
A+l = o)
where | _
_ NI+ 8y
_— e ————_—— -

2

Note that for the preceding to be vaiid we
- A/u < 2, which Is-intuitive since the maximum
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leaves

we first mote that the rate at which customers are served alone is
" APy + pPy, since when the system is empty a customer will be served alone
upon the next arrival and when there is one customer in gqueue he will be
served alone upon a departure. As the rate at which customers are served is

system
A, it follows that Figure 8.3. A tandem queye,
; . . APOI + MP]_ . : . o
proportion of customers that are served alone = — The balance equations are
State Rat .
P EP 0.0 e that the process leaves = rate thay it enters
. v 1, 0; ;z >0 oo =iy,
Also, 0. moo G+ u)P, o= pp, | + AP,
® 1 A+ e, = :
Ly= Y np, n,m;nm > () fl o = he o + 4 s
e ( +nul +u2)Pn,m =ﬂ2‘&,m+! +ﬂ1.P"+1 Im__l
M-y & . + AR im (8.15).
= no”  from Equation (8.14) Rather thap ’
T+ al—m,2, direct]

(along with the equation
th_en verify that it indeed
atl.on at server 1 is just ag

_ Ao
T -+l - o)

and

_.a
(1 -

by algebraic identity ¥ no” =
1

! isson process with rate J, jt
fIver 2 faces jis algo an M/ ce, 1
. ol b} M/1 queye, Hence,

o - _ig, brobability that there are n customers ajzt server. 1 is , the
1 (AN a
W%.WQ-!-;’ | ‘ Pln at server I}_(Z)(l—”—
and, similarly, ' ! ]

L =AW ;

Eim at server 2} = (i)m(l _4
: o, )

Now if the timbers

8.4. Network of Queues
o . andom variables, the

8.4.1. Open Systems

Consider a two-server system in which customers arrive at a Poisson rate 4

: . : . S 0 veri
E at server 1. After being served by server 1 they then join the queue in front umber:fg ft(f]att By i indeed equal to the Preceding (and thus tha the
; of server 2. We suppose there is infinite waiting space at both servers. Each T customers at server [ i5 inde

SCIVEr Serves one customer at a time with server taking an exponential all we feed do is verify that
: - time with rate #; for a service, § = 1, 2. Such a system is called a tandem or
. - sequential system (sce Figure 8.3).

" To analyze this system we need to keep track of the number of custormers
at server 1 and the number at server 2. So let us define the state by the pair.
(n, m)—meaning that there are » customers at server 1 and m at server 2:

nm A€ the unique sohition of

8.15), ] . .
(8.15) Now, for nstance, if we consider the first €quation of

we need to show that

i) - ml- D)~ 2)
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which is easily verified. We leave it as an exercise to show that the 2, ,,, as
given by Equation (8.16), satisfy all of the Equations (8.15), and are thus
the limiting probabilities. -

. From the preceding we see that L, the average number of customers in the
system, is given by :

L=Y (n+mP,,
Ry ! )
AN AN AN A
- 2o (-0 - 2 - 2)
T h A\ Hy m Ha Ha
I
) _ CHy A A ]
and from this we see that the average time a customer spends in the system is
' L .1 1

Remarks - (i) The result {Equation 8.15) could have been obtained as a
direct consequence of the time reversibility of an M/M/1 (see Section 6.6).
For not only does time reversibility imply that the output from server 1is a
~ Poisson process, but it also implies (Exercise 26 of Chapter 6) that the

‘number of customers at server 1 is independent of the past departure times
from server 1. As these past departure times constitute the arrival process to
server 2, the independerice of the nhumbers of customers in the two systems
follows. - -

(i) Sincea Poisson arrival sees time averages, it follows that in a tandem
queue the numbers of customers an arrival (to server 1) sees at the two servers
are independent random variables. However, it should be noted that this does
not imply that the waiting times of a given customer at the two servers are
independent, For a counter example suppose that A is very small with respect
to yy = fy; and thus almost all customers have zero wait in queue at both

servers, However, given that the wait in queue of a customer at server 1is

positive, his wait in queue at server.2 also will be positive with probability
at least as large as 4 (why?). Hence, the waiting times in queue are not
independent. Remarkably enough, however, it turns out that the total times
(that is, service time plus wait in queue) that an arrival spends at the two
servers are indeed independent random variables.

The preceding result can be substantially generalized. To do so, consider a
system of k servers. Customers arrive from outside the system to server i,
i =1,...,k,in accordance with independent Poisson process at rate r;; they
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then join _the queue at / until their turn at service comes, Once a customer is
se;ved by server.#, he then joins the queue in front of server j, j =1, ... k
with probability P;. Hence, )22 By resents

b =1, and 1 — 5., P, represents
the p;c_ubab111ty that a customer departs the systemn afterj beinug served by
server i.

If we let A; denote the total arrival rate of customers to server J, then the
4; can be obtained as the solution of '

k .
W=y BAR =tk @17
- 1= .
Equation (8.17) follows since r; is the arrival rate of S
‘ . : : custome:
from outside the system an d, S 1s to j coming

as 4; is the rate at which customers depart

server / (rate in must equal rate out), A, P; is the arri f
o1 ! APy ival rate to j of t
coming from setver ;, e / hose

It turns out that the number of cu
- stomers at each of the servers i
independent and of the form ' "E

n
Pln customers at server j} = (ﬁ> ( - ﬁ), n=1
iy &y
:the i i‘s the exponential service rate at server J and the 4, are the solution
0 EBquation (8.17). Of course, it is_necessaFy that A,/u; < 1 for all j,

To prove 1Ehis, we first note that it is equivalent, to asserting that the limiting
probabilities P(n;, n,, ..., 1) = Pln; at server j, j = 1, ..., k} are given by

k :nj-
Plny,my, ..., m) = 1I (%f) (1 - ij) (8.18)

J=1 \H -y

_The average number of custorers in thé system js

k

L = } average number at server j
i=1

k Aj
J=1 = 4

-

The average time a c,:istomer spends in the system can be obtained from
L =AW with 4 = T%_,r,. (Why not 2 = T¥-14,7) This yields

k
W= Ej:ﬁji(ﬂj )

i=1%;
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Remarks The result embodied in Equation (8.18) is rather remarkable
in that it says that the distribution of the number of customers at server i
is the same as in: an M/M/1 system with rates A, and ;. What is
- remarkable is that in the network model the arrival process at node { need
not be a Poisson process. For if there is a possibility that a customer
may visit a server more than once (a situation called feedback), then the
arrival process will not be Poisson. An easy exaniple illustrating this is to
suppose that there is a single server whose service rate is very large with
respect to the arrival rate from outside. Suppose also that with probability
2 = 0.9 a customer upon completion of service is fed back into the system.

Hernce, at an arrival time epoch there is a large probability of another

arrival in ‘a short time (namely, the feedback arrival); whereas at an
arbitrary time point there will be only a very slight chance of an arrival
occurring shortly (since A is so very small). Hence, the arrival process does
not possess independent increments and so cannot be Poisson. In fact even
though it is straightforward to verify Equation (8.18) there does
not appear to be, at present, any simple explanation as to why it i3, in
fact, true. )

Thus, we see that when feedback is allowed the steady-state probabilities
of the number of customers at any given station have the same distribution
as in an M/M/1 model even though the model is not M/M/1, (Presumably
_ such quantities as the joint distribution of the number at the station at two
. different time points will not be the same as for an M/M/1)

- Example 8.5 Consider a system of two servers where customers from

outside the system arrive at server 1 at a Poisson rate 4 and at server 2

at a Poisson rate 5. The service rates of 1 and 2 are respectively 8 and 10.
A customer upon completion of serviee at server 1 is equally likely to go to
* server 2 or to leave the system (i.e., Pj; = 0, P, = £); whereas a departure

from server 2 will go 25 percent of the time to server 1 and will depart

the system otherwise (i.e., Py =}, Py = 0). Determine the limiting
probabilities, L, and W.

Solution: The total arrival rates to servers 1 and 2—call them Ay and
Ay—can be obtained from Equation (8.17). That is, we have
j‘l = 4 + %_'A.z,

implying thai ' :
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Hence, >
Pfn at server 1, m at server 2} = i

= Hayer
and '

8.4.2, Closed Systems

The queuei_ng systems described in Section 8.4.1 are called open systems
since custoiners are able to enter and depart the system. A system in which

new customers never enter and existing ones never depart is called a closed

system. _ .
Let us suppose that we have m customers moving among a system of &

_servers. When a customer completes service at server i, she then joins the

queue in front of server j, j = 1, ..., k, with probability Py, where we now
k& : . . N

suppose that ¥7_ | Py = 1 foralli=1,.,., k. Thatis, P = [B;] is Markov

transition probability matrix, which we shall assume is irreducible. Let

7 = (7, ..., m;) denote the stationary probabilities for this Markov chain;

that is, = is the unique positive solution of

. -
;= '21 7By,
e (8.19)
E i = 1
i=1 _ .
If we denote the average arrival rate (or equivalently the average service

completion rate) at server ; by AndS), j =1, ..., k then, analogous to
Equation (8.17), the 4,,(/) satisfy

ik
lm(.n") = E /‘Lm(i)Pij
. i=1
Hence, from (8.19) we can conclude that

J"Ln'l(j)=.A'r.v1‘7":;v" j=192:'--sk ) (8.20)
where :

. . .
A = )31 AmJ) (8.21)
i
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From Equation (8.21), we see that A, is the average service completion rate
of the entire systern; that is, it is the system throughput rate.*
If we let B, (ny, 1y, ..., i) denote the limiting probabilities

P.(n, Ry, vees ng) = Pln; customers at server 7, j = 1, ..., k]

that
o Tk
: - VK T Gy, i ¥ ny=m
Rn(nlsn:h-r':nk)z mj=1 " ! J=1 !
0, otherwise
" But from Equation (8.20) we thus obtain that
k . k
C (m;/u;)Y, if ), ny=m
Polity, My ooy i) = ij=11 o -§1 ! (8.22)
0, otherwise

where

-1

: k
x 11 (m; /)
By gt f=1
En;:m

Cn

Equation (8.22) is not as useful as one might suppose, for in order to utilize
it we must determine the normalizing constant C,, given by Equation (8.23)

which requires summing the products H}-Z 1 (7;/u;)Y over all the feasible -

) . m+ k-1
vectors (ny, ..., Ay): E}‘:l n; = m. Hence, since there are ' )

m
vectors this is only computationally feasible for relatively small values
of m and k. ' _

We will now present an approach that will enable us to determine
‘recursively many of the quantities of interest in this model without first
computing the normalizing constants. To begin, consider a customer who
has just left server i and is headed to server J, and let us determine thé_
probability of the system as seen by this customer. In particular, let us

_determine the probability that this customer observes, at that moment;
;. customers at server /, [=1,...,k, Yf_,m =m — 1. This is done

* We are-using the notation of A,(/) and 4, to indicate the dependerice on the number,
of customers in the closed system. This will be used in recursive relations we will develop.’

then, by verifying that they satisfy the balance equation, it can be shown

(8.23) -
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as follo;vs:-
Pleustomer observes #, at server /,
I'=1,.., k|customer goes from / to j]
- Plstateis(ny, ..., m, +1, wos By -5 M), customer goes from ; toj}
Plcustomer goes from i to j }
Bulrte, oy 1, s My e P

En:zn_;:mﬁlpm(nli veey Bl o+ 1’ ey nk)”i‘Pi}'

— (7; /1)) Hf:l (/Y
T from 8.22)
k

=C H (/)
i1

where C does not depend on n,, .

| C : «» M. But becayse t i
probablllty density on the set of vectors (nys.coom) 'E'? henétiov'e o
it follows from (8.22) that # must equal £, ,(n,, ...k .';,,) J‘ITI:an:re_ me b

Pleustomer observes n, at server I, )
I=1,.., klcustomgr goes from i to j)
| k
=F, i, ..., nk)ja E =m—1 (8.24)

i=1

As (8.24) is true for al] ; we th :
’ us have . .
o B8 ¢ arival thores. 8 ave! proven the followmg Proposition,

Theorem?. In the closed network system
en by;arnvals to server j is distributed ag .
ame network system when there are only

ith m Customers, the system as se
he stationary distributiop in the s
— 1 customers.

e pend ver j when there are i customers i
‘r_vnet_w];)rk. Upc_:n conditioning on ‘the number of customers foundS Htl
€r J by an arrival to that server, it follows that !

W, () = 1 + E, [number at server j as seen by an arrival]
Hy

R )

Hy (8.25)




»

440 8 Queueing Theory

where the last equality follows from the arrival theorem. Now when there
are m — 1 customers in the system, then, from Equation (8.20), Ape1(J),
the average arrival rate to server J;. satisfies :

imml(j) I= Am—lnj
Now, applying the'basic cost identity Equation (8.1) with the cost rule being

that each customer in the network system of m — 1 customers pays one unit -

time while at server j, we obtain.

- Ly (F) = im—lnj Woi(i) (8.26)
Using Equation (8.23), this yields _
W) = A1 i W () (8.27)

H;
Also using the fact that $%_, L, _,(/) = m — 1 (why?) we obtain, from
Equation (8.26):

: 3
m—1=2p 1 Y m;Wu ()
S i=1

Ji=

or
m -1
Aoy = mp———r (8.28) -
met E:FflEin—l(l)
Hence, from Equation (8.27), we obtain the recursion
: 1 - D)x; f
Wm(.f) = + (m )EJWm—I(J) (8.29)

Mty D T Wy ()
Starting with the stationary probabilities #;, / = L koand W) = 1/
we can now use Equation (8.29) to deiermine recursively W5(/),

- W), ..., W, (/). We can then determine the throughput rate A,, by using

Equation (8.28), and this will determine.L,,(j) by Equation (8.26). This
recursive approach is called mean value analysis.

- Example 8.6 Consider a k-server network in which the customers move

in a cyclic-permutation. That is, .
 Bya=1, i=12,.,k~1, B =1

Let us determine the average number of customers at server J when there
are two customers in the system. Now, for this network

;= 1/k, i=1,..,k
and as

W) =

7
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s

we obtain from Equation (8.29) that

1 (1/7kX1/u)
W) = 4 4 WRA/p)
2(/) _u,- + L (7R (1 u)
1 1

+ ——
- B M Tl Un
Hence, from Equation (8.28), '
_ . 2 2k

i A = —1

) 2 i 1W(l) i(l 1
- — s
=1k 2 I=1 \Hj #?Efﬂl/ﬂi)

and finally, using Equation (8.26),

L)) = Aoz W5()

1 1
A=t e
M M7 Liea Vg,

k71 1

1§1 (u; TR, I/H:)

Another approach to learnin
by Equation (8.22), which
computing the constant C,,, is to use the
generate a Markov chain having these st
note that since there are always a ‘total
Equation (8.22) may equivalently be {Nritte
numbers of customers at cach of the serv

. k-1
Fnlityy s M) = G/ y™=2m ] (/)
i =

. j=.1
where g; = (ﬂ.{ﬂk)/(ﬂk,uj), J=1,...0k—1. Now, if N = Ny, .
has the preceding joint mass function then,

PiN; = "|N1 = Ry, ---.sNi—l = niv«l)Ni-!-l. =n

Pm(nl, cees 1, R, Mitis voey nk_l)
LBty sy i, rm

Caf,

ir1s ees Fg_1)

n=Em— an
jei

[l

i1y eees Ny = ey}
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g about the stationary probabilities specified
finesses the computational difficulties of
Gibbs sampler of Section 4.9 to
ationary probabilities. To begin,
of m customers in the system,
N as a joint mass function of the
ers L, ...,k — 1, as follows:

s N
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It follows from the preceding that we may use .tl_.1e Gibbs sgx_npler to
generate the values of a Markov chain whose limiting probability mass
function is P, {n,, ..., #,_y) as follows:

“1.-Let (ny, ..., ng_y} be arbitrary nonnegative integers satisfying
Yi-ln. = m. . o
2. Génerajte a random variable I that is equally likely to be any of
1,...,k—1, _ ‘ .
3. f f =1, sel's = m — L;.;#, and generate the value of a random
variable X having probability mags function

PX=n=Cal,, n=0,..5s
4. Let n; = X and go to step 2.

The successive values of the state vector (nl,...,nk_},m — E_}; ;.nj)
© constitute the sequence of states of a Markov chain .w1t_h the llrmtm_g
distribution P,,. All quantfities of interest can be estn'nated frgm this
sequence. For instance, the average of the values of the jth coordinate of

these vectors will converge :to the mean number of individuals at station J, .

the proportion of vectors whose jth coordinate is less than r wi!l converge
to the limiting probability that the number of individuals at station jis less
than », and so on. '

8.5. The System M/G/1

8.5.1. Preliminaries: Work and Another Cost Identity

Fbr an arbitrary E;ueueing system, let us define the work in the system at any -

time # to be the sum of the remaining service times of all customers 'in the
system at time ¢, For instance, suppose there are three cu.stomel:s in t.he
system—the one in service having been there for three of h{s reguu'ed fn_fe
units of service time, and both people in queue having service times of six

units. Then the work at that time is 2 + 6 + 6 = 14, Let ¥V denote the .

(time) average work in the system. ‘ .
Now recall the fundamental cost Equation (8.1), which states that the

average rate at which the system earns

= A, X average amount a customer pays

- but not always the case),’ then we have from E
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and c_':onsider the following cost ruje: Each customer pays at a rate of
Y/ unit time when his remaining service i

_ i i e lime is y, whether he is in gueue or
in service. Thus, the rate at which the system earns js just the work in the
system; so the basic identity yields thas

V = A, E[amount paid by a customer]
Now, let § and W& denote respectively the service tinte and the time a given
customer spends waiting tn queue. Then, since the customer pays at a con-

stant rate of S per unit time while he waits in queue and at a rate of § —
,» we have

after spending an amount of time x in service

5

Elamount paid by a customer] = & [SW&“ + j S -x dx]
. 0

and thus

2
V= A.E[SW3] + }%5_1 (8.30)

It shqu]d be noted that the preceding is a basic queueing ideﬁtity [like
.Equatlons,(8.2)—(8.4)] and as such valid in almost all models. In addition,
if a customer’s service time is independent of his wait in queue (as is usually,

quation (8.30) that

. : E[8§?
V= ALESIW, o A—“——“ Z[S 1 (8.31)

8.5.2. Application of Work to M/G/1
|

The M/G/1 model assumes (i) Poisson arrivals at rate A; (i) a general
service distribution; and (iii) a single server. In addition, we will suppose
that customers are served in the order of their arrival.

Now, for an arbitrary customer in an M/G/1 system,

Customer’s wait in queue = work iﬁ the system when he arrives (8.32)

this follows since there is only a single server (think about it!). Taking
expectations of both sides of Equation (8.32) yields

Wy = average work as seen by an arrival

But, due to Poisson arrivals, the average wor_k as seen by an arrival will
equal ¥V, the time average work in the system. Hence, for the model M/ G/ 1,

WQ =V

! For an example where it is not true, see Section §8.6.2,
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The preceding in conjunction with the identity

© Now it is easy to see that the L, I, ... are independent and identicatly

_ IE[S?] distributed as are the By, B,,.... Hence, by dividing the numerator and the
V= AE[S]Wy + 5 denominator of the right side of the above by n, and then applying the
_ _ S strong law of large numbers, we obtain
yields the so-called Pollaczek-Khintichine f;ormuia, P = lim - R YAY
_ . AEIS? (8.33) M= R R S, B, + -+ B)n
Q _— e — * : .
2(1 — AE[S]) E[I]
where E[S] and E{S?] are the first two moments of the service distribution. “EMN T E[B] - _ (8.35)

The quantities L, Ly, and W can be obtained from Equation (8.33) as

where I and B represent idle and busy time random variables.

L= i = APE[SH Now I represenis the tithe from when 2 customer departs and leaves the
Q 720 - AEIST)’ system empty until the next arrival. Hence, from Poisson arrivals, it follows
AE[S?] . that I is exponential with rate A, and so
W= Wy + E[S} = -———— + E[S], (8.34) - R
30— AESh ey =L ' (8.36)
L=)W= VEIS + AE[S] ' *
= T2l < AE 5D To compute Py, we note from Equation (8.4) (obtained from the funda-

mental cost equation by supposing that a customer pays at a rate of one per

~Remarks (i) For the preceding quantities - to be finite, we need unit time while in service) that

AE[S] < 1. This condition is intutitive since we know from renewal theory _
that if the server was always busy, then the departure rate would be 1/E[S]

(see Section 7.3), which must be larger than the arrival rate A to keep things
. finite. ' '

average number of busy servers = 1E[S]
However, as the left-hand side of the above equals 1 — P, (why?),

we have

|
(ii) Since E[8%] = Var(S) + (E{S1)*, we see from Eqﬁations (8.33) and . Po=1 _‘ AE.IS] (8.37)
(8.34) that, for fixed mean service time, L, Lq, W, and Wy all increase as . and, from Equations (8.35)-(8.37), *
the variance of the service distribution increases. 174
(ili) Another approach to obtain W4 is presented in Exercise 34, 1~ }‘E_ (8] =

1/A + E[B]
8.5.3.  Busy Periods

_ i EIS]
ElB] = 1 - AE[S]

The system alternates between idle periods (when there are no customers in
the system, and so the server is idle) and busy periods (when there is at least -
one customer in the system, and so the server is busy). _
Let us denote by 1, and B,,, respectively, the lengths of the nth idle and
.the nth busy period, # = 1. Hence, in the first Y7<1{I; + B;) time units the .
server will be idle for a time ¥ ¥-11;, and so the proportion of time that the

Anofher quantity of interest is C, tl!le number of customers served in a
busy period. The. mean of_ C can be computed by noting that, on the
average, for every E[C] arrivals exactly one will find the system empty

(namely, the first customer in the busf/ period). Hence,

1
server will be idle, which of course is just F;, can be expressed as % = E[C]
Py = proportion of idle time and,as gy =Py =1 - AE[S] because of Poisson arrivals, we see that
. I+ e+ T '
= lim L il 1

""“Il-+"'+In+Bl+"'+Bn E[C]

=71z AE[S]
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8.6. Variations on the M/G/1
8.6.1, The M/G/1iwith Random-Sized Batch Arrivals

Suppose.that, as in the A/ G/1, arrivals occur in'accordance with a Poisson

" process having rate'l. But now suppose that each arrival consists not of a

single customer but 6f a random number of customers. As before thereis a
single servet whose service times have distribution G. _

Let us denote by o ;»J = 1, the probability that an arbitrary batch consists

of j customers; and let N denote a random variable representing the size of

a batch and so PN = j} = o;. Since A, = AE(N), the basic formula for.

work [Equation (8.31)] becomes

o 2
V= AE[N][E(S)WQ + E(zS )] - (8.38)

To obtain a second equation relating V' to W, consider an average -

customer. We have that

his wait in quene = work in system whefi he arrives
+ his waiting time due to- those in his batch

Taking expectations and using the fact that Poisson arrivals see time .-

“averages yields
: Woa=V+E [waiting time due to those in his batch]
=V + E[Wy] - _ . (8.39)

Now, E(Wg) can be computed by conditioning on the number in the batch,
but we must be careful. For. the probability that our average customer
comes from a batch of size j is not «;. For o is the proportion of batches
which are of size j, and if we pick a customer ai random, it is more likely
" that he comes from a larger rather than a smaller batch. (For instance,

Suppose a; = gy = %, then half the batchies are of size 1 but 100/ 101 of -

the customers will come from a batch of size 1001)

To determine the probability that our average customer came from a

" batch of size j we reason as follows: Let M be a large number. Then of the
. first M batches approximately Mo will be of size 7, / = 1, and thus there
would have been approximately JMcy customers that arrived in a batch of
size j. Hence, the proportion of arrivals in the first M batches that were
from batches of size j is approximately Mo/}, 74Mee;. This proportion
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becomes exact as M — oo, and 80 we see that

-

proportion of customers from batches of size j = —«—Ja{'
7%
E[N]

We are now ready to compute E(Wy), the expected wait in queue due to
others in the batch:

EWs] = ¥ EfW, | batch of size j]-2%
28 ? 1 .Bi ch o srzeJ]E[N]
Now if there are j customers in his batch, then our custorer would have to

wait for j — 1 ofj th_em to be served if he was ith in line among his batch
members. As he®is equally likely to be ejther 1st, 2nd, ..., or jth in line

(8.40)

© we see that

. i
E[Wy | batch is of size A=Y (- I)E(S)i,
i=1 J

.,_ J -1 ’
) E[S]._
Substituting this in Equation™(8.40) vields
I
E[S) i,
EWy] = ——| - 1) je; =
Wzl 2BV |)J: (/ — Dje;

|
_ EISIEIN?] - EIN])
2E[N]

|
and from Bquations (8.38) and (8.39) we obtain

w. . EISIEIN?] - E[_N].)?/ZE[N] + AE[NIE[S?/2
Q 1 < AE[NIE[S]

Remarks (i) Note that the condition for Wq, to be finite is that

-1

which again says that the arrival rate must be less than the service rate
{when the server is busy).
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(ii) For fixed value of E[N], W, is increasing in Var[N], again indicating
that ‘‘single-server queues do not like variation,”’ _
(ili) The other quantities L, Ly, and W can be obtained by using

W = Wqy + EIS],
L = i, W = AE[NW,
Lo = AEIN]W,

8.6.2. Priority Queues

Priority queuing systems are ones in which customers are classified into-

types and then given service priority according to their type. Consider the
situation where there are two types of customers, which arrive according to
independent Poisson processes with respective rates 4, and A,, and have
service distributions G; and G,. We suppose that type 1 customers are given
service priority, in that service will never begin on a type 2 customer if a type
1 is waiting. However, if a type 2 is being served and a type 1 arrives, we
assume that the service of the type 2 is continued until completion, That is,
there is no preemption once service has begun.
Let WQ denote the average wait in queue of a type i customer, i = 1, 2.
Our objective is to compute the WQ
First, note that the total work in the system at any time would be exactly
_ the same no matter what priority rule was employed (as long as the server
is always busy whenever there are customers in the system). This is so since
the work will always decrease at a rate of one per unit time when the

server is busy {(no matter who is in service) and will always jump by the -
service time of an arrival. Hence, the work in the system is exactly as .

it would be if there was no priority rule but rather a first-come, first-served

(called FIFQO) ordering, However, under FIFO the above model is just
M/G/1 with

A.=/1,1+A.2

Glx) = %‘Gl(x) + %Gz(x) ' : (8.41)

_which follows since the combination of two independent Poisson processes
/s itself a Poisson process whose rate is the sum of the rates of the
component processes. The service ‘distribution G can be obtained by
conditioning on which priority class the arrival is from—as is done in
Equation (8.41).
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Hence, from the results of Section 8.3, it follows that ¥, the average work
in the priority queuemg systern, is given by
_AE[sY
" 2(1 - AEIS])
__ MAYNEST] + (A/DESE)
2[1 = A(A/DELS] + A2/ NE[S:])]
_ __ MEIST + LE[S])
201 — A, E[S] - LEIS:])

(8.42)

where §; has distribution G;, i = 1, 2.
Continuing in our quest for Wq, let us note that § and W, the service

~and wait in queue of an arbitrary customer, are not mdependent in the

priority model since knowledge about § gives us information as to the type
of customer which in turn gives us information about W* To get around
this we will compute separately the average amount of type 1 and type 2
work in the system. Denoting V¢ as the average amount of type i work we
have, exactly as in Section 8.5.1,

,IE{S]

Vi= LE[SIWE + = P=1,2 (8.43)
If we define
Vi = LEISIWY,
2
pi = MELS]]

2 _
then we may interpret VQ as the average amourit of type / work in queue,

and ¢ as the average amount of type {| work in service (why?).

Now we are ready to compute WQ To do so, consider an arbitrary type
1 arrival. Then }
his .delay = amount of type 1 work:in the system when he arrives

+ amounts of type 2 work in service when he arrives

- Taking expectatlons and using the fact that Poisson arrivals see time

averages yields

Wéf—*V1+V52

A E[S?] + A E[S]

= MESIWE + == 5

(8.44)
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or
L AMEISH + 1,E[82)
WQ =

Al ~ L E[S])

To obtain WE we first note that since ¥ = V! + V2, we have from
Equations (8.42) and (8.43) that

WLE[S2) + LE[S]] 1 \
: = A, E[S,|Ws + A E[S,1W,
20— MBS - iLELS) - MESIWe + LEISIW,

(8.45)

ME[SE]  1,E[S3]
+ 2 + 2

= Wi+ LE[S,IWE  [from Equation (8.44)]
Now, using Equation (8.45), we obtain

A E[S] + 2, E[SH] 1 e 1 }
2 1~ 24, B[S} - L,E[S,] 1~ AE[S)]

M E[SIWE =

or .
_ A EIS3 + A,E{S2]
T 21 - LEIS)] — LEISIN — A E[S;])

3 (8.46)
Remarks (i) Note that from Equation (8.45), the condition for Wé to

" be finite is that 4, E[§;] < 1, which is independent of the type 2 parameters.
(Xs this intuitive?) For Wé to be finite, we need, from Equation (8.46), that

LE[S] + LE[S,] < 1

Since the arrival rate of all customers is 4 = A, + Az, and the average
service time of a customer is (A,/A)E[S;] + (A,/A)E[S,], the preceding
condition is just that the average arrival rate be less than the average
service rate. )

(ii) If there are n types of customers, we can solve for Vii=1,...,n
in a similar fashion. First, note that the total amount of work in the system
of customers of types 1, ...,/ is independent of the internal priority rule
concerning types 1, ...,/ and only depends on the fact that each of them is
given priority over any customers of types j + 1, ooy . (Why is this?

Reason it outl) Hence, V' + .-+ + ¥ is the same as it would be if types.

Ay...,J were considered as a single type 1 priority class and types
J+.1,...,n as a single type II priority class, Now, from Equations (8.43)
and (8.45), .

_ MES] + L AgE[SIEISE
a 2(1 — LE[S])

'VI
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11 =Al o -+ Aj,
A= Apy oo + A,

5o,
Elst= ¥ TEIS),
i=111
o "
Elsi) = X 5AEISH,
Ci=1M
a2 - )l,- 2
ElSil = YL THEISH
I

i=j+1

Hence, as V' = V' + ... + ¥, we have an expression for V! & ... + VY,
for each j=1;...,n, which then can be solved for the individual
V1, ¥ ..., V" Wenow can obtain W§ from Equation (8.43). The result of
all this (which we leave for an exercise) is that

: MEST] + -+ + A,E[S2) .
o =5— : , =1,..,n (8.47
¢ 2 (- LES] - - = LESD n 847

8.7. The Model G/M/1 |
The model G/M/1 assumes that the !times between successive arrivals have
an arbitrary distribution G. The sefvice times are exponentially distributed
with rate 4 and there is a singIe-servi:r. . _

The immediate difficulty in analyzing this model stems from the fact that
the number of customers in the system is not informative enough to serve as
a state space. For in summarizing what has occurred up-to the present we
would need to know not only the number in the system, but also the amount
of time that has elapsed since the last arrival (since G is not memoryless).
{Why need we not be concerned with the amount of time the person being
served has already spent in service?) To get around this problem we shall

only look at the system when a customer arrives; and soslet us define X,
nzl, by

' X, = the number in ihe system as seen by the snth arrival

It is easy to see that the process {X,, n = 1} is a Markov chain. To
compute the transition probabilities B, for this Markov chain let us first .
neie that, as long as there are customets to be served, the number of services

.in any length of time fis & Poisson random variable with mean #t. This is
. true since the titne between successive services is exponential and, as we
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know, this imples that the number of services thus constitutes a Poisson
process. Hence, . :

Py = j eI 46w, =01,
. o !
which follows since if an arrival finds / in the system, then the next arrival
will find / + 1 minus the number served, and the probability that j will be
served is easily seen to equal the right side of the above (by conditioning on
the time between the successive arrivals). :

The formula for Py is a little different (it is the probability that af least
i + 1 Poisson events occur in a random length of time having distribution
G) and can be obtained from .. :

: i
Fo=1- E Pi,:‘+’1—j
j=0
The limiting probabilities 7, £k = 0, 1, ..., can be obtained as the unique
solution of '
=L Py, k=0

!
L e =1
k

o ] £ i+1-k
= L rz,-j e‘*“——gﬁwl——1d6(r), k=1
. ! e (8.48)
Yo =1
) 0
(We have not included the equation my = ¥ 7, Py since one of the equations
is always redundant.) _ .

_To solve the above, let us try a solution of the form 7, = ¢8*. Substi

tution into Equation (8.48) leads to : ‘

. L= ; 0 ut ('ut)i+1‘k
Cﬁ —l(_'. E_lﬁ So e “de(t)

It

0 I=k—1(i+‘1__k)
However,
v _(Buny*t S (Bury
i=k-1 U+ 1 -0 ;5 JI

= eﬂ#f

o . o i+1-k -
CS eMgk=1 Y Jﬂ‘”)—1d(;(;) (8.49)
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and thus Equation (8.49) reduces to
4]

Bt = ﬁ""‘j e M-8 4G5

ﬁ:j Ry (€0 "~ (8.50)
G

The constant ¢ can be obtained from i 7ty = 1, which implies that
ey B =1
o .

c=1-—-4p

As the m, is the unigue solution to Equation (8.48), and n, = (1 — BDpt
satisfies, it follows that

me=0-pp5 k=0,1,...

wherewﬁ is the solution of Equation (8.50). [It can be shown that if the mean
of G is greater than the mean service time 1/u, then there is a unique value
of # satisfying Equation (8.50) which is between.0 and 1.] The exact value
of # usually can only be obtained by numerical methods.

As ;. is the limiting probability that an arrival sees & customers, it is just

the g, as defined in Section 8.2. Hence,

@ = (1 — !ﬁ)ﬁ", k=0 (8.51)

We can obtain W by conditioning on the number in the system when a

customer arrives. This yields I :
W = ¥ E[time in system | arrivai sees K](1 — B)B*
2 ' P
> k+1 A ~ BBt (Since if an arrival sees &, then he sperids
Y U k + 1 service periods in the system.)
1

) _ S
W= B) (orame L= 25)
and '
Wo=w-1a_F
e wd =
S
ul — gy’
Lo=AW, = —C
° T w1 = p)

L =W
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where 1 is the reciprocal of the mean interarrival time. That is,

1 o
1= L x dG(x)

In fact, in exactly.the same manner as shown for the M/M/1 in Section
8.3.1 and Exercise 4 we can show that

W* is exponential with rate g(1 — ),

' 0 with probability 1 ~ g
exponential with rate p(1 ~ f) with probability g

where- W* and W3 are the amounts of time that a customer spends in
system and queue, respectively (their means are W and Wol
Whereas a, = (1 — §)8* is the probability that an arrival sees % in the
system, it is not equal to the proportion of time during which there are kin
.-the system (since the arrival process is not’ Poisson). To obtain the P, we
‘first note that the rate at which the number in the system changes from
k — 1to k must equal the rate at which it changes from & to & — 1 (why?).
Now the rate at which it changes from &k — 1 to k& is equal to the arrival rate
A multiplied by the proportion of arrivals finding & — 1 in the system.
That is, : ' _
rate number in- system goes from &k — 1 to & = Aay_;

Similarly, the rate at which the number in the system changes from k to
_k — 1is equal to the proportion of time during which there are & in the
system multiplied by the (constant) service rate. That is,

rate number in system goes from kto k — 1 = P.u

' Equating these rates vields
A

P =—ap, k=1
k= py
and so, from Equation (8.51),

'&=£u—ﬁmbt k=1

and, as Py = 1 ~ Y2, P,, we obtain
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" Remark In the foregoing analysis we guessed at a solution. of the

stationary probabilities of the Markov chain of the form 7, = ¢f*, then
verified such a solution by substituting in the stationary Equation (8.48).
However, it could have been argued directly that the stationary probabilities
of the Markov chain are of this form. To do so, define §; to be the expected
number of times that state / + 1 is visited in the Markov chain between two
successive visits to state 7, i = 0. Now it is not difficult to see {(and we will
let the reader argue it oyt for him or herself) that

ﬂ0=ﬁ1=ﬁ2=...=ﬁ
Now it can be shown by using renewal reward processes that

E[number of visits to state i + 1 in an i — i cycle]

Ty = ———— ——
f+1 E[number of transitions in an ¢ — i cycle]
_ B
I/TC!'
and so, -

Tt = fim; = Bn;, i=0

implying, since T n; = 1, that

m=pf01-f, i=zo0

8.7.1. The G/M/1 Busy and IdI;e Periods

Stppose that an arrival has Jjust fou:nd the system empty—and so initiates a
busy period—and let N denote the number of customers served in that busy
period. Since the Mth arrival (after the initiator of the busy period) will also
find the system empty, it follows that N is the number of transitions for the
Markov chain (of Section 8.7 to £0 from state 0 to state 0, Hence, 1/E[N]
is the proportion of transitions that take the Markov chain into state 0; or

equivalently, it is the proportion of arrivals that find the system empty.
Thereflore, ' ;
' 1 1
E[N] = —=_—"_
[V - w6 T=F

Also, as the next busy period begiﬁs after ‘the Nth interarrival, it follows
that the cycle time (that is, the sum of a busy and idle period) is equal to the

time until the Nth interarrival, In other words, the sum of a busy and idle

period can be expressed as the sum of N interarrival times. Thus, if 7;is the -
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ith interarrival time after the busy period begins, then
N
E[Busy] + Elldle] = E [ h) T}]
X i=1 .
= E[N]E[T] {(by Wald’s equation)
_ i
Al -/

For a second relation between E[Busy] and E[Idlel, we can use the same
‘argument as in Section 8.5.3 to conclude that

_ . E[Busy]
 E[Idle] + E[Busy]

and since Py = 1'— A/u, we obtain, upon combining this with (8.53), that

(8.33)

1- P,

1
Ty )
-4
Eldel = 25

8.8. Multiserver Queues

By and large, systems that have more than one server are much more
difficult to analyze than those with a single server. In Section 8.8.1 we start
first with a Poisson arrival system in which no queue is allowed, and then
- consider in Section 8.8.2 the infinite capacity M/M/k system. For both of

these models .we are able to present the Hmiting probabilities. In Section

8.8.3 we consider the model G/M/k. The analysis here is similar to that of
the G/M/1 (Section 7) except that in place of a single quantity § given as the
solution of an integrai equation, we have & such quantities. We end in
Section 8.8.4 with the modél AM/G/k for which unfortunately our previous
technique (used in M/G/1) no longer enables us to. derive Wa, and we
content ourselves with an approximation. :

8.8,1. Erlang’s Loss System

A loss system is a queueing system in which arrivals that find all servers
busy do not enter but rather are lost to the system. The simplest such system
is the M/M/k loss system in which customers arrive according to a Poisson
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process having rate 4, enter the system if at ieast one of the & servers is free,
and then spend an exponential amount of time with rate y being served.
The balance equations for this system are
State . Rate leave = rate enter

0 APy = puP, :

1 (A + WP = 2uP, + AP,

2 A + 2P, = 3uP; + AP,

Lo<i<k A+ 4P, = (( + DuPyy + AP,
' k kubP, = AP, _, '
Rewriting gives .
APy = uby,

. A'Pl = Z:UPZ’
A‘PZ = 3MP3)

APy = kuP,

and using Y4 P = 1, we obtain
Wi
Lo Q/wy/it

Since E[S] = 1/, where E [S] is the mean service time, the preceding can
be written as

i

- __GEISHYil

T Yl GESY 1 T Lk @54




458 8 ' Queuelng Theory

Consider now the same system except that the service distribution is

. general—that is, consider the M/G/k with no queue allowed. This model is

© sometimes called the Erlang loss system. It can be shown (though the proof

is -advanced) that Equation (8.54) (which is called Erlang’s loss formula)
remains valid for this more general system. . : '

8.8.2. The MW/M/k Queue

The M/M/k infinite capacity Queue can be analyzed by the balance equation -

technique, We leave it for the reader to verify that

*/ny
i <k
; N 1<
pel T W Gt ku
N B T ko ku—2
( ikk" .
Whik ’::? - : i>k

We see from the preceding that we need to impose the condition A < ku.

'8.8.3. The G/M/k Queue

. In this model we again suppose that there are k servers, each of which
serves-at an exponential rate 4. However, we now allow the time between

successive arrivals to have an arbitrary distribution G. To ensure that -

a steady-state (or limiting) distribution exists, we assume the condition
1/ug < kp where u is the mean of G.* -
The analysis for this model is similar to that presented in Section 8.7 for
the case £ = 1. Namely, to avoid having to keep track of the time since the
- last arrival, we look at the system only at arrival epochs. Once again, if we
define X, as the number in the system at the moment of the nth arrival, then
{X,, n = 0} is a Markov chain. '

© To derive the transition_ probabilities of the Markov chain, it helps to first
" note the relationship

Xn+1=Xﬁ+1“K,, n=0

* It follows from renewal theory (Proposition 7.1) that customers arrive at rate 1/pg, and

as the maximum service rate is ku, we clearly need that 1/p¢; < ku for limiting probabilities -

to exist.

+
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where Y, denotes the number of departures during the interarrival time

between the nth and {(n 4 1)st arrival. The transition probabilities £; can
now be calculated as follows: :

Case (i) j>i+1.
In this case it easily follows that Py=0.

Case (if) j<i+1=<k .
In this case if an arrival finds # in the system, then as / < £ the new arrival
will also immediately enter service. Hence, the next arrival will find Jif of

the 7 + 1 services exactly { + 1 — j are completed during the interarrival
time. Conditioning on the length of this interarrival time vields

Py = Pli+1~jofi+ 1 services are completed in an interarrival time}

= j Pli 4+ 1 — j of i + 1 are completed | interarrival time is 1 dGH)
1]

B j ) (i P 1)(1 — emFYH ety Gy
Jo J

where the last equality follows since the number of service completions in a
-time £ will have a binomial distribution.

-

Case (i) i+1=2/j=%
To evaluate P; in this case we first note that when all servers are busy, the

departure process is a Poisson process with rate ku (why?). Hence, again
conditioning on the interarrival time we have

Py =P{i + 1 = j departures}

j P{i + 1 ~ j departures in time ¢} dG(?)
)] .

mé_kut (kut)i+1—j:
fTr1-0t

daG(p)

Case(iv) i+1=k>j

In this case since when all servers are busy the départure process is a
Poisson process, it follows that the length of time until there will only be &
in the system will have a gamma distribution with parameters i + 1 — k, ky
(the time until i + 1 — k event of a Poisson process with rate ku occur is
gamma distributed with parameters i + 1 — £, ku). Conditioning first on -
the interarrival time and then on the time until there are only kin the system
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(call this latter randqm variable T,) yie]ds.

By = jm Pii + 1 ~ j departures in time ¢} dG(?)
0.

) . . kﬂs)i-—k
= j urP{z'_ + 1 - j departures in ¢| T = slkue "”‘%m)-fds dG(?)
¢ Jo
4
_ @ L a ___e—#(t—s))kuj(e—,u(t-s))jk'ue~kusM_dS dG(t)
e o\ (i — &)

where the last equality follows since of the & people in. service at time s the
number whose service will end by time 7 is binomial with parameters & and
. I - e-'u’(t_S)‘ . ) » - . -

We now can verify either by a direct substitution into the equations
= Z,- 7;Fy, or by the same argument as presented in the remark E.it the -
e:1d of Section 8.7, that the limiting probabilities of this Markov chain are
of the form .

ﬂkul-l—_,r':CBJ! .].= 0, 1!“--

Substitution into ém’y of the equations z; = ¥, n:.F; when j > k yields that
B is given as the solution of

B = g e kH0-8 ge3(p)
4]
The values ﬁo, Ty, ..vy My, can be obtained by recursively solving t_he f%rst
k — 1 of the Steady—statc equations, and ¢ can then be computed by using
Lo =1 : ‘of ti i dsi cue
If we let W§ denote the amount of time that & customer spends in queue,
then in exactly the same manner as in G/M/! we can show that -

k-1 Cﬁ
0, with probability ¥ #; = 1 - —
Wq* = - ] - w Cﬁ
Exp(ku(I = B with probability };{; M= Vi

where Exp(k,u(l ~ fB)}isan ekponential random variable with rate ku(1 — 8).

8.8.4. Th.e M/G/k Queue

In this section we consider the M/G/k systemy in which customers arrive at .
a Poisson rate A and are served by any of k servers, each of' whom has tl}e
service distribution G. If we attempt to miric the analysis presented in
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Section 8.5 for the M/G/1 systetn, then we would start with the basic identity
- V= AEISIW, + AE[SY/2 (8.55)

and then attempt to derive 4 second equation relating V' and Wy.
Now if we consider an arbitrary arrival, then we have the foillowing
identity;
work in system when customer arrives .
=k x time customer spends in gqueune + R (8.56)

where R is the sum of the remaining service times of all ether custo

mers in
service at the moment when our arrival engers service,

3+ 6+ 7=16. Now the arrival will spend 3 time units in queue, and af the
moment he enters service, the remain:ing times of the other Iwo customers
ar86—3=3and7—3=4. Henc¢,R=3+4=7andasacheekof

Equation (8.56) we sec that 16 = 3 x 3 + 7,

Taking expectations of Equation (8.55) and using the fact that Poisson
arrivals see time averages, we obtain |

V= kW, + E[R]

which, along with Equation (8.55), w}ouid enable us to solve for Wy if we
could compute E[R]. However therejis no known method for computing
E[R] and in fact, there is no known exact formula for Wq. The following
approximation for Wq was obtained in Reference 6 by using the foregoing
approach and then approximating & [R]:

W ESYELs)F-!
o= . T ~ -
~ DIk — 12 GEIS) (AE[S])
A~ e - amisp [m Cal TGS Dk - /LE[S])J

8.57)

The preceding approximation has been shown to be quite close to the Wy

when the service distribution is gamma. Tt is also exact when G is
exponential,
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Exercises

1. - For the M/M/1 gueve, compute

'(a) the expected nuﬁnber of arrivals during a service period and
{b) the probability that no customers arrive during a service period.

Hint: *‘Condition.”

*2, Machines in a factory break down at an exponential rate of six per
hour. There is a single repairman who fixes machines at an exponential rate
of eight per hour. The cost incurred in lost production when machines are
out of service is $10 per hour per machine, What is the average cost rate
incurred due to failed machines? '

3. The manager of a market can hire either Mary or Alice. Mary, who
gives service at an exponential rate of 20 customers per hour, can be hired
at a rate of $3 per hour. Alice, who gives service at an exponential rate of
30 customers per hour, can be hired at a rate of $C per hour. The manager
estimates that, on the average, cach customet’s time is worth §1 per hour
and should be accounted for in the model. If customers arrive at a Poisson
rate of 10 per hour, then :

(ai) what is the average cost per hour if Mary is hired? if Alice is hired?

(b) find C if the average cost per hour is the same for Mary and Alice.
4, For the M/M/1 queue, show that the probability that a customer
spends an amourit of time x or less in queue is given by

l—i, ifx=0
U .

1 - 2 + é(1 — g~ kMxy fx>0
uoopu

5. -Two customers move about among three servers. Upon completion
of service at server i, the customer leaves that server and enters service at
whichever of the othér two servers is free, {Therefore, there are always two
busy servers.) If the service times at server i are exponential with rate Ui,
P=1,2, 3, what proportion of time is server 7 idle?

*8. Show that W is smaller in an M/M/1 model having arrivals at
rate A and service at rate 2u than it is in a two-server M/M/2 model with
arrivals at rate A and with each server at rate 4. Can you give an intuitive
explanation for this result? Would it also be true for Wi?
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7. A group of n customers moves around among two servers. Upon
completion of service, the served customer then joins the queue (or enters
service if the server is free) at the other server. All service times are
exponential with rate u. Find the proportion of time that there are j
customers at server 1, j = 0,..., n.

B. A facility produces items according to a Poisson process with rate .
However, it has shelf space for only & items and so it shuts down production
whenever k items are present. Customers arrive at the facility according
to a Poisson process with rate 4. Bach customer wants one item and will

immediately depart either with the item or empty handed if there is no item
available. i

(a) Find the proportion of customers that g0 away empty handed.
(b) Find the average time that an item is on the shelf.
(c} Find the average number of items on the shelf.

Suppose now that when a customer does not find any available items it joins
the “‘customers’ queue’ as long as there are no more than n —~ 1 other
customers waiting at that time. If there are n waiting customers then the
new arrival departs without an item.

(d) Set up the balance equations.

(e) Tn terms of the sohution of the baI?nce equations, what is the average
number of customers in the system. i '

9. A group of m customers frequepts a single-server station in the
following manner, When a customer arjives, he or she either enters service
if the server is free or joins the queue therwise. Upon completing service

the customer departs the systetn, but then returns after an exponential time
with rate 8. All service times are exponentially distributed with rate u. .

(a) Define states and set up the balanj.ce equations.
In terms of the solution of the balance ‘bquations, find =

(b) the average rate at which customers enter the station, :
> (¢) the average time that a customer spends in the station per visit,

10. Consider a single-server queuie with Poisson arrivals and exponential
service. times having the following variation: Whenever a service is
completed a departure occurs only with probability «. With probability
1 — « the customer, instead of leaving, joins the end of the gqueue, Note

" that a customer may be serviced more than once.

(a) Set  up the balance equations and solve for the steady-state
probabilities, stating conditions for it to exist,
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. {b) Find the expected waiting time of a customer from the time he arrives
until he enters service for the first time. o .
(c) What is the probability that a customer enters service exactly n times,
forn=1,2,...7 . ' '
(d) What,is, the expected amount of time that a cu.st.omf:r s.penr’dS in
service (which does not include the time he spends waiting in line)

- Hint:  Use (c).

| () What is the distribution of the total le_ngth of time a customer spends
being served? :

Hint: Is it memoryless? -

*11. A supermarket has two exponential checkout counters, eac':h
operating at rate y. Arrivals are Poisson at rate A. The counters operate in
the following way: :

i e queue feeds both counters. _ .
(53 8ﬁe gounter is operated by a permanent f:hecker and thﬁ other l?‘; g.
stock ¢lerk who instantancously begins checking whenever there Ere 0
or more customers in the system. The clerk returns to stocklr_ag w efne:ﬁe
he completes a service, and there are fewer than two customers in

systein,

(a) Let P, - proportion of time there are » in the system. Set up

equations for .P, and solve,

(t?) At what rat?é does the number in the system go from 0 to 1? from 2
Cto 17 ) o

(¢) What proportion of time is the stock clerk checking?

Hiﬁt: Be a little careful when there is one in the system.

12. Customers arrive at a single-service facility at a Poisson ra_te of 40 12er
hour. When two or fewer customers are present, a single at_tendant op:r?ﬂ Ts
the facility, and the service time for f:ach customer is expon;n u 1‘y
distributed with a mean value of two minutes. However,. wpe_n t ell;e are
three or more customers at’ the facility, the attendant 1s‘ nged y aré

 assistant and, working together, they reduce the mean service time to on
minute. Assuming a system capacity of four customers,

' i i both servers free?
(a) what proportion of time are : J '
(b) each man is to receive a salary proportional to 'the amount of tlr{;e l;le
is actually at work servicing customers, the rate belpg the same for' ?ot .
If together they earn $100 per day, how should this money be split?
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13. Consider a sequential-service system consisting of two servers, 4 and
B. Arriving customers will enter .this system only if server A is free, If a
customer does enter, then he is immediately served by server 4. When his
service by 4 is completed, he then goes to B if B is free, or if B is busy, he
leaves the system. Upon completion of service at server B, the customer
departs. Assuming that the (Poisson) arrival rate ig two customers an hour,

and that 4 and B serve at respective (exponential) rates of four and two
Customers an hour,

(a) what broportion of customers enter the system?
(t) what proportion of entering customers receive service from B?
(c) what is the average number of, customers in the system?

{a) What is the average time an entering custormer spends in the system?
(b) What proportion of time is server 2 busy?

15.  Customers arrive at a two-server station in accordance with a Poisson
Process with a rate of two per hour. Arrivals finding server 1 free begin
service with that server, Arrivals finding server 1 busy and server 2 free begin
service with server 2. Arrivals finding both servers busy are lost, When a
customer is served by server 1, she then leither cnters service with server 2 if
2 is free or departs the system if 2 is busy. A customer completing service at
server 2 departs the system. The service times at server 1 and server 2 are
cxponential random variables with respeFtive rates of four and six per hour.

(a) What fraction of custonlers do not enter the system?

(b) What is the average amount of time that an entering customer spends
in the system? ‘ :

(c} What fraction of entering customers receive service from server 17
. i : :
16. Customers arrive at a two-server. system'at a Poisson rate A An

arrival finding the System empty is equally likely to enter service with either
server. An arrival finding one custommer i

the idle server. An arrival finding two o
for the first free server. An arrival findj

n the system will enter service with
thers in the system will wait in line
ng three in the system will not enter.




466 8 Queueing Theory

All sei'v_ice times are exponential with rate 4, and once a customer is served
(by either server), he: departs the system,

{2} Define the states. :
(b) Find the long-run probabilities,
(¢) Suppose a customer arrives and finds two others in the system. What
fs the expected time he spends in the system?
" (d) What proportion of customers enter the system?
(¢) What is the average time an entering customer spends in the system?

17. There are two types of customers. Type / customers artive in accord-
ance with independent Poisson processes with respective rate Ay and A,.
There are two servers. A type 1 arrival will enter service with server 1 if that
server is free; if server 1 is busy and server 2 is free, then the type 1 arrival
will enter service with server 2. If both servers are busy, then the type 1
arrival will go away. A type 2 customer can only be served by server 2; if

server 2 is free when a type 2 customer arrives, then the customer enters

+ service with that server. If server 2 is busy when a type 2 arrives, then that
customer goes away. Once a customer is served by either server, he departs
the system. Service times at server i are exponential with rate i, i=1,2.

" . Suppose we want to find the average number of customers in the systent.

{a) Define states.
(b) Give the balance equations. Do not attempt to solve them.

In terms of the long-run probabilities, what is

{c} the average number of customers in the system?
{d) the average time a customer spends in the system?

*18. . Suppose in Exercise 17 we want to find out the proportion of time
there is a type 1 customer with server 2. In terms of the long-run
probabilities given in Exercise 17, what is '

(a) the rate at which a type 1 customer enters service with server 27

. (b) the rate at which a type 2 customer enters service with server 29
(c) the fraction of server 2’s customers that are type 1? :
(d) the proportion of time that a type 1 customer is with server 27

19. Customers arrive at a single-server station in accordance with a Poisson
process with rate 1. All arrivals that find the server free immediately enter
service. All service times arc exponentially distributed with rate z. An
arrival that finds the server busy will leave the system and roam around ““in
orbit” for an exponential time with rate § at which time it will then return.
If the server is busy when an orbiting customer returns, then that customer

20. Consider the M/AMT,
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(@) Define states.
(b} Give the balance equations.

In terms of the solution of the balance equations, find.

(c) the proportiqn of all customers that are eventually served,
(d) the average time that a served customer spends waiting in orbit, -

/1 system in which customers arrive at rate A and

the server serves at rate 4. However, suppose that in any interval of length

& in which the server is
ex]

(a) Df:fine appropriate states,
(b) Give the balance equations.

. In terms of the long-run probabilitiesi,
|

.(c) what is the averag
in the system?

(d) wha_t proportfon of entering cu:stomers complete their service?
(¢) what proportion of customers arrive during a breakdown?

¢ amount of time that an entering customer spends

' 21. Reconsider Exercise 20, but this time suppoée that a customer that is

spends in the system?

22, F:oisson (4) arrivals join a queue in front of two
B, 'havmg exponential service rates Haand g,
arrivals go into server 4 with probability o a
I — o. Otherwise, the head of the queue takes

parallel servers 4 and
When the system is etnpty,
nd into B with probability
the first free server.,

&

Figure 8.4,

——tf—
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{a) Define states and set up the balance equations. Do not solve.

" (b) In terms of the probabilities in part (a), what is the average number
in the system? Average number of servers idle? ' :
(c) In terms of the iprol:aabili_ties in part (a), what is the probability that

“an arbitrary arrival will get serviced in A4?

23. In a gueue with 'un_limite'd waiting space, arrivals’ are Poisson
(parametté_r A) and service times are exponentially distributed (parameter ).
However, the server waits until K people are present before beginning
service on the first customer; thereafter, he services one at a time until all K
units, and-afl sub_sequent arrivals, are serviced. The server is then ““idle”’
until K new arrivals have occurred.

(a) Define an appropriate state space, draw the transition diagram, and
set up the balance equations. _ _

(b} In terms of the limiting probabilities, what is the average time a
custotner spends in queue? )

(c) What conditions on A4 and yu are necessary?

24. Consider a single-server exponential system in which ordinary
customers arrive at a rate A and have service rate u. In addition, there is a
- special customer who has a service rate g, . Whenever this special customer
arrives, it goes directly into service (if anyone else is in service, then this
person is bumped back into queue). When the special customer is not being

“serviced, the customer spends an exponential amount of time (with mean
. 1/8) out of the system. -

(@ What is the average arrival rate of the special customer?
"~ (b} Define an appropriate state space and set up balance equations,
(c) Find the probability that an ordinary customer is bumped # time.

*25. LetD denot_e the time between successive depértures ina stationary
. M/M/1 queue with A < u. Show, by conditioning on whether or not a
departure has left the system empty, that D is exponential with rate 4.

Hint: By conditioning on whether or not the departure has left the
system empty we see that

with probability A/u
.Exponential (1) * Exponential (z), with probability 1 — A/u

Do [ Exponential (u),

“where Exponential (1} * Exponential () represents the sum: of two inde-
pendent exponential random variables having rates x and A. Now use
moment-generating functions to show that D has the required distribution.
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Note that the above does not prove that the departure process is Poisson.
To prove this we need show not only that the interdeparture times are all
exponential with rate A, but also that they are independent.

26. For the tandem queue model .vérify that

Boom = G/u)"(1 - ALy (1 — A1)
satisfies the balance equation (8.'15). -

27. Verify Equation (8.18) for a system of two servers by showing that it
satisfies the balance equations for this model.

28. Consider a network of three stations. Customers arrive at stations 1
2, 3 in accordance with Poisson processes having respective rates 5, 10, 13,
The service times at the three stations are exponential with respective rates
10, 50, 100. A customer completing service at station 1 is equally likely to
(a) go to station 2, (b) go to station 3, or (c) leave the system. A customer
departing service at station 2 always goes to station 3. A departure from

service at station 3 is equally likely to either go to station 2 or leave the
system. i .

() What is the average number of customers in the system (consisting of
all three stations)?

(il) What is the average time a cusj‘,omer spends in the system?

29. Consider a closed queueing nétwork consisting of two customers
moving among two servers, and suppose that after each service completion
the customer is equally fikely to go to either server—that is, P, , = Py =%
Let 4¢; denote the exponential service rate at server i,i=1,2.

(@) Determine the average number| of customers at each server.
(b) Determine the service completion rate for each server.

30. State and prove the equivaler‘n; of the arrival theorem for open

queueing networks.

31. Customers arrive at a single-server station in accordance with a
Poisson process having rate 1. Each customer has a value. The successive
values of customers are independent and come from a uniform distribution
on (0, 1). The service time of a customer having value x is a random variable
with mean 3 + 4x and variance 5. -

(a) What is the average time a customer spends in the system?

(b) What is the average time a customer having value x spends in the
system?
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. _ Exercises 471
*32. Compare the ;M/G/ 1 system for first-come, first-served queue Argue that
discipline with one of last-come, first-served (for instance, in which units
for service are taken from the top of a stack). Would you think that the () q, = Py=1-7 EIS]
queue size, waiting time, and busy-period distribution differ? What about | (b) E[S] = wElS) 4 (1 g wElS o
their means? What if the queue discipline was always to choose at random - ! (¢) Use (a) and (®) to show (;hat ,25*] I\;Vhere §i has distribution G;.
among those waiting? Intuitively which discipline would result in the period, is given by [B], the expected length of a busy

- smallest variance in the waiting time distribution?

: ‘ ' E[s

33, In an M/G/1 queue, E[B] = 1_':1{15*_]:5
2

(a) what proportion of departures leave behind 0 work? _ (d) Find E[C).
‘(b) what is the average work in the system as seen by a departure?

36. Consi -
+ 34. For the M/G/1 queue, let X,, denote the number in the system left onsider a M/G/1 System with AE[S] < 1.

b_ehmd by the nth departure. | = (8) Suppose that service |
(@ If : ‘ customers in the system.
' P {XH—I+Y;,, ifx,=1
n+l = ’ . .
fX, = . " . : i
_ _ (L if X 0 - () What is the expected additional time unti
what does ¥, represent? '
(b) Rewrite the preceding as

Xy =X, =14 Y, 49, (8.58)  of time,
_ : (O Compute £[7{ N, :
where _ _ (i) Compute E[T7]. !
5 {1, ifX,=0
= . i
n 0, ifx, =1 ::C-e 1:(.;,;alrl(J}f;l@ of customers arrive a !a single-server station iy aceord
' . . . . a Po ; A ord-
Take expectations and let # — <o in Equation (8.58) to obtain : exponentially Ic?fs.(;?lb?; l;zfieisit‘}‘:lthtra;g 4 per hour. The service times are
: , _ L rate 20 per hour. If e ;
| El6.] = 1.— AE[S] : either 1, 2, or 3 customers with respective probabilities fhlcaéload contains
: IR . . average customer delay in quene, +2% 4> compute the
(¢) Square both sides of Equation (8.58), takes expeciations, and then let . :
1 — oo to obtain . 38. In the two-class prior o
> Priority queueing mode] of Section 8.6 ;
Epg - BT o | | :E?i ? fhc:w that W s less than it would be under FIRe 17 é[éz]’ s E;I;
< = 5 T2 ESh _ | greater than under FIFQ if EIS|] > E[s,). 1 122
(d) Argue that F[X,], the average number as seen by a departure, is 39, Ing two-class priority queueing mode] suppose that
equal to L. Per unit time is incurred for each t . at a cost of ¢,
! YPE I customer that wait
) ) i=1, aits in qu
"38. Consider an M/G/1.system in which the first customer in a busy (as opjfoszgotw tlllmt type 1 customers should be given priority over ?Y;:E;
- period has service distribution G, and all others have distribution G,. Let © the reverse) if
C denote the number of customers in a busy period, and let § denote the EIS\]  E[s;)
r——— < —_—

service'time of a customer chosen at random. c Vo
. ) 3
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-40. Consider the priority queuing model of Section 8.6.2 but now suppose

- that if a type 2 customer is being served when a type 1 arrives then.the type
2 customer is bumped out of service. This is called the pref:mpﬂvg: case.
Suppose that when a:bumped type 2 customer goes back in service his
service begins at the point where it left off when he was bumped.

(a) Argue that the work in the system at any time is the same as in the
nonprecmptive case.
(b) Derive Wg.

Hint: How do type 2 custdme:s affect type 17s?
- (¢) Why is it not true that
Vs = LE[SIWE
{d) Argue that the work seen by a type 2 arrival is the same as in the
nonpreemptive case, and so . :
W4 = Wi(nonpreemptive) + E[extra time]

where the extra time is due to the fact that he may be bumped.
(¢) Let N denote the number of times a type 2 customer is bumped.
Why is”
NE[S,]
1 — A E[S]

.. Hint: Wheh atype 2 is bumped, relate the time until he gets back in
service to a “*busy period.”’

(f) Let S, denote the service time of a type 2. What is E[N|S,]?
(g) Combine the preceding to obtain

Elextra time | N] =

: . L E[S]E[S;]
2 2 -
Ws .= Wa(nonpreemptive) + 1= 7, BS,]

*41. Calculate explicitly (not in terms of limiting probabilities) the

average time a customer spends in.the system in Exercise 21.

42. In the G/M/1 model if G is exponential with rate A show thai
f = M. '

43. Verify Erlang’s loss formula, Equation'(8.54), when & = 1.

44. Verify the formula given for the P, of the M/M/k,

45. In the Erlang loss system suppose the Poisson arrival rate is 4 = 2,
and suppose there are three servers each of whom has a service distribution
that is uniformly distributed over (0, 2). What proportion of potential
customers is lost?

References 473

46. In the M/M/K system,

(a) what is the probability that a customer will have to wait in queue?
(b) determine Z and .

47. Verify the formula for the distribution of Wg given for the G/M/k
model. ‘

*48. Consider a system where the interarrival times have an arbitrary
distribution F, and there is a single server whose service distribution is G.
Let 72, dencte the amount of time the nth customers spends waiting in
queue. Interpret S,, T, so that

D _ D, +8, -7, f0,+8,-T,20
17 1o, D, +8,-T, <0 _
49. Consider a model in which the interarrival times have an arbitrary
distribution F, and there are k servers each having service distribution G.

What condition on F and G do you think would be necessary for there to
exist limiting probabilities? :
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