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Test coverage

Code coverage is a measure used in software testing
It describes the degree to which source code is tested

Higher a coverage, better tested is your software




EclEmma

EclEmma is a free Java code coverage tool for Eclipse

Feel free to opt for a different tool coverage if you fan
of other programming environment
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Coloring source code

Source lines containing executable code get the

following color code:

green for fully covered lines,

yellow for partly covered lines (some instructions or branches missed)
and

red for lines that have not been executed at all.

The colors for the diamonds have a similar semantic
than the line highlighting colors:

green for fully covered branches,
yellow for partly covered branches and

red when no branches in the particular line have been executed.




EclEmma

Installation

Follow “Option 3” in http://www.eclemma.org/installation.html#updatesite

You should then see the icon l-[35 - © -




Test coverage

Test coverage is often used as a quantitative measure
of quality

Determine the % of the program code is covered by
the test

A software that is well tested iIs commonly associated
with a test coverage of 70%- 80%




Test coverage

It has been recognized that a coverage between 70
and 80% results in a significant decrease of bugs

Audris Mockus, Nachiappan Nagappan, and Trung T. Dinh- Trong. Test
coverage and post-verification defects: A multiple case study. In
Proceedings of the 2009 3rd International Symposium on Empirical
Software Engineering and Measurement, ESEM ’09

Paul Piwowarski, Mitsuru Ohba, and Joe Caruso. Coverage
measurement experience during function test. In Proceedings of the 15th
international conference on Software Engineering, ICSE ’93

A coverage of over 80% is very hard to get




Test coverage with Hapao
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Test coverage with Hapao
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Test coverage with Hapao
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For your tarea 2 and 3

The quality of your test will be considered for your
grade

You should reach a coverage of 70%
Do not write long method, this is harder to test

Branches, if-statement, loops are also harder to test




