lest coverage

Alexandre Bergel
abergel@dcc.uchile.cl
23/04/2013

Test coverage

Code coverage is a measure used in software testing
It describes the degree to which source code is tested

Higher a coverage, better tested is your software

EclEmma

EclEmma is a free Java code coverage tool for Eclipse

Feel free to opt for a different tool coverage if you fan
of other programming environment

www.eclemma.org

8 O 0 [5] Java - TicTacToe-v6/src/tictactoe/AbstractBoardGame.java - Eclipse SDK - /Users/alexandrebergel/Documents/Workspace/Eclipse
[i=its | G35 O Qv | CY | & | [#-51- v v Yy %5 Debug ajjava‘
mjz Ty“ 5 Na | ﬁj ‘ = B[[J) GomokuTest.java [m Player.java | [J] BoardGame.java ‘ AbstractBoardGame.java % = Hllo % = B
5~ t -
P & assert inRange(col, row); 5
”;Jc!w gameState[col][row] = mark; B 13 |/ W
b= CityExample .
b]b"ExampIeHierarchy ® X
» 125 MoneyBag a e public char get(int col, int row) jﬁ tictactoe
PETicTacToe-vo > = import dec
» 22 TicTacToe-v1 @ assert inRange(col, row); v ©* AbstractBo
» (=2 TicTacToe-v2 return gameState[col][row]; SFX - int
PIbJTicTacToe—VS ¥ £F0:int
b]bjTicTacToe-M . Jax & rows @i
”?JT'CT“T“'VS * The game is not over as long as there is no winner ¢ c?ls : in
Vi TicTacToe-v6 * and somebody can still make a move ... @ winning
v (& src */ < gameSt
¥ 3 tictactoe a @ public boolean notOver() { < winner
b [J) AbstractBoardGame.java ® return this.winner().isNobody() o player
b [J] AbstractBoardGameTest.java @ 8& this.squaresLeft() > 0; < turn :in
> m BoardGame.java ¥ < . squares.
» [J) GameDriver.java o %%] AAbstrac
> (1] Gomoku.java * A plain gscii representation of the game, ©7init0 : v
» [J] GomokuTest.java * mainly for debugging purposes. a setint,
» [J] NullOutputStream.java */ @ . get(int,
» [J] Player.java a = public String toString() { @ . notOver
» [J) Runner.java StringBuffer rep = new StringBuffer(); @ atoString
P |J] TicTacToe.j . . @ ~inRange
H fc ac oejava‘ ® for (int row=this.rows-1; row>=0; row--) { “
b [J) TicTacToeTest.java FepYanpend (I NEow) @ .. move(St
» =)\ JRE System Library [JavaSE-1.6] 0 (e =) ’ a getCol(®
» =), JUnit 4 ——— A getRow!
El console 22 - ® &I ;| @|@H =7 E.9=0 © . update(
<termi d> Gi kuTest [JUnit] /System/Library/Java/JavaVirtualMachines/1.6.0.jdk/Contents/Home/bin/java (Oct 2, 2012 2:21:23 PM) @ acurrentl
@ ~winner(
@ asquares
< swapTu
' Problems |(@ Javadoc ‘@ Declaration ':* Call Hierarchy |(Q/'J Search ‘B Coverage b mo X% o= = E|
L 1]
J 1) tictactoe.AbstractBoardGame.java - TicTacToe-v6/src J

Wwww.eclemma.org

[*! Problems I @ Javadoc I@ Declaration | .2® Call Hierarchy I % Search

Element
v B TicTacToe-v6
v #Bsrc
v i tictactoe

> [J] AbstractBoardGame.java
» [J) Runner.java
» [J] GameDriver.java
> [J] TicTacToeTest.java
» [J] AbstractBoardGameTest.java
> [J] Player.java
» [J] GomokuTest.java
> [J] TicTacToe.java
» [J] Gomoku.java
» [J] NullOutputStream.java

Coverage Covered Instructions Missed Instructions v]

38.3%
383%
383%
46.0 %
0.0%
15.3%
0.0%
38.9%
50.7 %
78.5%
0.0%
100.0%
100.0 %

449
449
449
244
0
18
0
28
38
102

15

=, X% B v =0

Total Instructions

724 1173
724 1173
724 1173
286 530
117 117
100 118
97 97
44 72
37 75
28 130
15 15

0 15

0 a4

Coloring source code

Source lines containing executable code get the

following color code:

green for fully covered lines,

yellow for partly covered lines (some instructions or branches missed)
and

red for lines that have not been executed at all.

The colors for the diamonds have a similar semantic
than the line highlighting colors:

green for fully covered branches,
yellow for partly covered branches and

red when no branches in the particular line have been executed.

EclEmma

Installation

Follow “Option 3” in http://www.eclemma.org/installation.html#updatesite

You should then see the icon l-[35 - © -

Test coverage

Test coverage is often used as a quantitative measure
of quality

Determine the % of the program code is covered by
the test

A software that is well tested iIs commonly associated
with a test coverage of 70%- 80%

Test coverage

It has been recognized that a coverage between 70
and 80% results in a significant decrease of bugs

Audris Mockus, Nachiappan Nagappan, and Trung T. Dinh- Trong. Test
coverage and post-verification defects: A multiple case study. In
Proceedings of the 2009 3rd International Symposium on Empirical
Software Engineering and Measurement, ESEM ’09

Paul Piwowarski, Mitsuru Ohba, and Joe Caruso. Coverage
measurement experience during function test. In Proceedings of the 15th
international conference on Software Engineering, ICSE ’93

A coverage of over 80% is very hard to get

Test coverage with Hapao

C1
0O
Legend for methods (inner boxes)
calling methods
fe—
d c complexityI # executions
<— invocation on self

C2 / red = not executed
blue = abstract

o4

OBJECT
PROFILE

Test coverage with Hapao

oo

DD DD
0§

00

Version 2.2
27.27%

o4

OBJECT
PROFILE

5

oo

Version 2.3
54 .54%

Y

oo

0
10
il

Version 2.4
87.71%

5

(]

(]
00

il
Version 2.5
100%

Test coverage with Hapao

Moose-Test-Core.13 Moose-Test-Core.48
Moose-Core.313 Moose-Core.326

o T
n ‘
' r
n-‘ 21.42% um- 100%
0 Gooa
]
BU\U_
: |

Uulluuuﬁtl

- 56.86% T —— 100%
\
!J ooeas 0 omooo

aoees
e
ol 73.58% - 100%
z Saaass 999900 Eaazase ; RRETTITT
=ge= e il B aTagy yoms =sadiy 3332820
| U LELLT) [1m0n
Iqu-uqu M‘\]} {m-[]n [II]
A =0 0 geee b
s o u []‘ unuuu\ & ,,—»—*‘"‘T—"‘Y‘V" Yo uo r\l uuu\ e)
VAR Y 0guTD pesposs IR iy 0 oee
kbbbl g Wi R, WAL BIT7 AT o
--luﬂnnnl]é'l]h WA | -'IIJ"““UDHM" | H‘ ! ‘ ‘H“ /
68.25%) ﬁ‘f.] “h N A 96.66%) I] “‘:1h‘ T i
— esmogasdeapganfesd 6. 78% e ;innanuﬁauannnéan‘.‘.{
5 e e PR—— 64.55%
2oy oy
0A_— 100%| o=

o4

OBJECT
PROFILE

For your tarea 2 and 3

The quality of your test will be considered for your
grade

You should reach a coverage of 70%
Do not write long method, this is harder to test

Branches, if-statement, loops are also harder to test

