Auxiliar #1MA2001-1 Cálculo en Varias Variables. : Espacios Métricos y Normados

Profesor: Marcelo Leseigneur P. Auxiliar: Martín Castillo - Pedro Pérez.

1 Desigualdades importantes

Desigualdad de Hölder: Sean $p,q\in(1,\infty)$ tales que $\frac{1}{p}+\frac{1}{q}=1$, entonces

$$\sum_{i=1}^{n} |x_i| |y_i| \le \left(\sum_{i=1}^{n} |x_i|^p\right)^{1/p} \left(\sum_{i=1}^{n} |y_i|^q\right)^{1/q} \quad \forall x, y \in \mathbb{R}^n$$

Desigualdad de Minkowski: Sean $x, y \in \mathbb{R}^n$ $1 \le p \le \infty$ entonces

$$\left(\sum_{i=1}^{n} |x_i + y_i|^p\right)^{1/p} \le \left(\sum_{i=1}^{n} |x_i|^p\right)^{1/p} + \left(\sum_{i=1}^{n} |y_i|^p\right)^{1/p}$$

2 Problemas

- **P1.** Sea $C^k([0,1],\mathbb{R})$ el conjunto de todas las funciones derivables k-veces y con derivada continua en el intervalo [0,1] a valores en \mathbb{R} .
 - a) Pruebe que las siguiente funciones son métricas en $C([0,1],\mathbb{R})$.
 - $d(f,g) = \int_{0}^{1} |f(t) g(t)| dt$.
 - $d(f,g) = \left(\int_{0}^{1} |f(t) g(t)|^{2} dt\right)^{\frac{1}{2}}$.
 - $d(f,g) = \sup_{t \in [0,1]} e^{-t^2} |f(t) g(t)|.$
 - b) Pruebe que.
 - $||f|| = \sup_{x \neq y \in [0,1]} \frac{|f'(x) f'(y)|}{x y} + |f'(0)| + |f(0)|$ es una norma en $C^2([0,1], \mathbb{R})$.
 - $||f|| = \sup_{t \in [0,1]} |f''(t)| + |f'(0)| + |f(0)|$ es una norma en $C^2([0,1],\mathbb{R})$.
- **P2.** Sean $(E, \|\cdot\|_E)$ y $(F, \|\cdot\|_F)$ dos e.v.n. Pruebe que $\|(x, y)\| = \|x\|_E + \|y\|_F$ y $\|(x, y)\| = \max\{\|x\|_E, \|y\|_F\}$ Son normas en $E \times F$.
- P3. Ejemplos de espacios vectoriales normados:
 - a) Se define $C[a,b]:=\{f:[a,b]\to\mathbb{R}:f\text{ es continua }\}.$ Pruebe que $\|f\|:=\sup\{|f(x)|:x\in[a,b]\}$ es una norma sobre C[a,b].
 - b) Sea $1 \leq p < \infty$, se define $\ell^p := \{(x_n) \subset \mathbb{R} : \sum_{n=0}^{\infty} |x_n|^p < \infty\}$. Pruebe que $\|(x_n)\| := (\sum_{n=0}^{\infty} |x_n|^p)^{1/p}$ es una norma sobre ℓ^p .

1

c) Se define $B_a^b(f) := \sup_{(x_i) \in \mathcal{P}[a,b]} \{ \sum_{i \geq 0} |f(x_{i+1}) - f(x_i)| \}$, como la variación total de una función, se dice que una función es de variación acotada si $B_a^b(f) < \infty$ y denotemos por:

$$BV[a,b] := \{ f : [a,b] \to \mathbb{R} : B_a^b(f) < \infty \text{ y } f(a) = 0 \}$$

Pruebe que B_a^b es una norma en BV[a,b].

- **P4.** Sea $(E, \|\cdot\|)$ un espacio vectorial normado.
 - a) Sea $\ell: E \to E$ una función lineal inyectiva. Pruebe que $\|\cdot\|_1$ definida por $\|x\|_1 = \|l(x)\|$ es una norma sobre E.
 - b) Prueba que $\|(x_1,x_2)\|:=\sqrt{4x_1^2+9x_2^2}$ es una norma en $\mathbb{R}^2.$