Auxiliar 12: Teoría de la Medida

Profesor: Jaime San Martín Auxiliares: Avelio Sepúlveda - Felipe Subiabre 23 de octubre de 2012

- **P1.** En este problema se presenta una condición necesaria y suficiente para que el mapeo $g \mapsto T_g$ entre $L^{\infty}(\mu)$ y $(L^1(\mu))^*$ definido por $T_q(f) = \int f g d\mu$ sea una isometría.
 - a) Muestre que para todo $g \in L^{\infty}(\mu)$ el funcional lineal $T_g(f) = \int fg d\mu$ es continuo en $L^1(\mu)$, y tal que $||T_g|| \leq ||g||_{\infty}$.
 - b) Considere un conjunto no vacío X y la medida definida en cada subconjunto de X por $\mu(\varnothing)=0,\ \mu(A)=+\infty$ si $A\neq\varnothing$. Muestre que $L^1(\mu)=\{0\}$ y $L^\infty(\mu)=\{f:X\to\mathbb{R}:f$ es acotada en $X\}$ y concluya que $g\in L^\infty(\mu)$ satisface $\|T_g\|=\|g\|_\infty$ si y sólo si $g\equiv 0$.
 - c) Un espacio de medida se dice *semifinito* si todo conjunto medible de medida infinita posee un subconjunto de medida finita estrictamente positiva. Pruebe que en un espacio de medida $(X, \mathcal{F}, \mu), g \mapsto T_g$ es una isometría si y sólo si el espacio es semifinito.

P2. Desigualdad de Minkowsky para integrales

Sean (X, τ, μ) y (Y, \mathcal{F}, ν) dos espacios de medida σ -finitos y $f: X \times Y \to \mathbb{R}$ una función $\tau \otimes \mathcal{F}$ -medible. Pruebe que si $f \geq 0$ y $1 \leq p < \infty$, entonces

$$\left[\int_X \left(\int_Y f(x, y) d\nu(y) \right)^p d\mu(x) \right]^{\frac{1}{p}} \le \int_Y \left[\int_X f(x, y)^p d\mu(x) \right]^{\frac{1}{p}} d\nu(y)$$

Indicación: Considere q el índice conjugado de p y estudie la aplicación

$$g \in L^q \to T(g) = \int_X \left[\int_Y f(x,y)^p d\nu(y) \right] g(x) d\mu(x)$$

P3. a) Sea (X, \mathcal{T}, μ) un espacio de medida tal que existen conjuntos medibles E_1, E_2, \ldots, E_n tales que $0 < \mu(E_i) < \infty$, $i = 1, \ldots, n$, $X = \bigcup_{i=1}^n E_i$, y cada E_i no contiene ningún subconjunto propio no vacío y medible. Muestre que $(L^{\infty}(\mu))^* = L^1(\mu)$, es decir, la función

$$T: L^1(\mu) \rightarrow (L^{\infty}(\mu))^*$$

$$g \mapsto T(g)(f) = \int_X f(x)g(x)dx$$

es sobreyectiva.

- b) Sea X = [0, 1], dotado de los Borelianos y de la medida de Lebesgue. Probaremos que en este contexto $L^1 \subseteq (L^{\infty})^*$. Para ello:
 - (i) Suponga lo contrario. Pruebe que $\exists h \in L^1$ tal que $\forall f$ continua, $f(0) = \int_0^1 f(x)h(x)dx$.
 - (ii) Pruebe que $\forall 0 < a < b < 1, \int_a^b h(x) dx = 0.$
 - (iii) Pruebe que $\int_0^1 h(x)dx = 1$. Concluya.
- c) Sea μ una medida σ -finita, $1 \leq p < \infty$, q el exponente Hölder-conjugado de p. Sea f una función medible tal que $fg \in L^1(\mu)$, $\forall g \in L^q(\mu)$. Demuestre que $f \in L^p(\mu)$.

1