MA2001 Cálculo en Varias Variables Semestre 2012-01

Profesor: Natacha Astromujoff

Auxiliar: Simón Piga

Auxiliar 6

P1 Considere las funciones:

$$f(x,y) = xye^{-x^2 - y^2}$$
$$g(x,y) = (1 - 2x^2 - y^2)^2$$

Encuentre máximos y mínimos locales.

P2. Sea $E: \mathbb{R}^n \longrightarrow \mathbb{R}$ de clase C^2 y sea $x_0 \in \mathbb{R}^n$

i Sea $f: \mathbb{R}^n \longrightarrow \mathbb{R}^n$ de clase C^1 . Definimos la función \tilde{E} con el cambio de variables

$$\tilde{E}(x) := E(f(x))$$

Además se sabe que el punto $\bar{x} = f^{-1}(x_0)$ es punto crítico de \tilde{E} . Demuestre que si $J_f(\bar{x})$ es invertible, entonces x_0 es un punto crítico para E. Encuentre además f, E y x_0 que sirvan de contraejemplo para cuando el jacobiano no es invertible (Evite los casos triviales).

- ii Suponga ahora que $f: \mathbb{R} \longrightarrow \mathbb{R}^n$, de clase C^2 y que x_0 es minimo local de E. Suponga que existe $\bar{t} \in \mathbb{R}$ tal que $f(\bar{t}) = x_0$. Demuestre que \bar{t} es mínimo de \tilde{E} (Definido deforma análoga a la parte [i])
- iii En física, considere la siguiente ecuación de energía potencial elástica:

$$U(x_1, x_2) = \frac{1}{2}Kx_1^2 + \frac{1}{2}Kx_2^2 + \frac{1}{2}K_2(x_2 - x_1)^2$$

(¿Qué situación podría física representar?)

- a Demuestre que alcanza un mínimo en (0,0) y que no tiene máximos locales.
- b Suponga soluciones del tipo $x_i(t) = A_i sen(\omega t + \delta)$ para $i \in \{1, 2\}$. Concluya que la función $\tilde{U}(t) = U(x_1(t), x_2(t))$ tiene un mínimo local en cada \bar{t} tal que $x_1(\bar{t}) = x_2(\bar{t}) = 0$. Además pruebe que \tilde{U} sí posee máximos locales (Encuentre al menos uno)