MA1102 Álgebra Lineal - Semestre Primavera 2012

Profesor: Alejandro Maass Auxiliares: César Vigouroux, Roberto Villaflor

Auxiliar
$$\# 2$$

Lunes 13 de Agosto

P1. Encuentre, por medio de un escalonamiento, el conjunto de los valores de x_1, \ldots, x_6 que resuelve:

$$\begin{bmatrix} 0 & 1 & -1 & 2 & -2 & 1 \\ -1 & -1 & -2 & 3 & -1 & -1 \\ -1 & 0 & -3 & 5 & -3 & 0 \\ 1 & 0 & 2 & -1 & 2 & -2 \end{bmatrix} \begin{bmatrix} x_1 \\ \vdots \\ x_6 \end{bmatrix} = \begin{bmatrix} -7 \\ 4 \\ -3 \\ 8 \end{bmatrix}$$

P2. Sea $A \in \mathcal{M}_{n \times n}(\mathbb{R})$. El objetivo de este problema es probar el siguiente resultado:

"Si el sistema Ax = 0 posee solución única x = 0, entonces A es invertible."

Para ello se pide demostrar lo siguiente:

(i) Sea $B \in \mathcal{M}_{n \times n}(\mathbb{R})$ un matriz triangular superior con componentes 1 en la diagonal:

$$B = \begin{pmatrix} 1 & b_{1,2} & \dots & b_{1,n-1} & b_{1,n} \\ 0 & 1 & \dots & b_{2,n-1} & b_{2,n} \\ \vdots & \vdots & & \vdots & \ddots \\ \vdots & \vdots & & \ddots & \vdots \\ 0 & 0 & \dots & 0 & 1 \end{pmatrix}$$

Considere $N = B - I_n$. Muestre que $N^{n+1} = 0$. Notando que B = I + N, pruebe que B es invertible y que

$$B^{-1} = I - N + N^2 - \dots + (-1)^n N^n.$$

(ii) Sea $C \in \mathcal{M}_{n \times n}(\mathbb{R})$ una matriz triangular superior:

$$C = \begin{pmatrix} c_{1,1} & c_{1,2} & \dots & c_{1,n-1} & c_{1,n} \\ 0 & c_{2,2} & \dots & c_{2,n-1} & c_{2,n} \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \dots & 0 & c_{n,n} \end{pmatrix}$$

sin ceros en la diagonal, y sea

Pruebe que DC es una matriz triangular superior con coeficientes 1 en la diagonal.

(iii) Pruebe que si Ax = 0 posee como única solución a x = 0, entonces existe una matriz invertible E tal que EA es triangular superior sin ceros en la diagonal. Concluya que A es invertible.

 $\boxed{\text{P3.}}$ Dada una matriz $U \in \mathcal{M}_{n \times n}(\mathbb{R})$, definimos $(\overline{U})_{i,j} = U_{n-i+1,n-j+1}$.

(i) Considere la matriz

Escriba J como producto de matrices elementales, de forma que dichas matrices (elementales) conmuten, y concluya que J es invertible con $J^{-1} = J$.

- (ii) Pruebe que para cualquier $U \in \mathcal{M}_{n \times n}(\mathbb{R})$, $\overline{U} = JUJ$, y concluya que si $\overline{U}U = I$, entonces U es invertible.
- (iii) Pruebe que si n > 1, entonces no existe una matriz $H \in \mathcal{M}_{n \times n}(\mathbb{R})$ tal que $U^t = HUH$ para toda matriz $U \in \mathcal{M}_{n \times n}(\mathbb{R})$.
- (iv) Pruebe que si $U^tU=I$, entonces U es invertible.
- P4. a) Considere los vectores $u, v \in \mathbb{R}^n \setminus \{0\}$. Se define la matriz $A \in \mathcal{M}_{n \times n}(\mathbb{R})$ por $A = uv^t$.
 - (i) Pruebe que $\forall x \in \mathbb{R}^n Ax = 0 \Leftrightarrow v^t x = 0$.
 - (ii) Encuentre el número de variables libres en la resolución del sistema Ax = 0 y estudie si A es o no invertible.
 - b) Considere las matrices cuadradas $A, B \in \mathcal{M}_{n \times n}(\mathbb{R})$. Demuestre que:
 - (i) Si AB = BA y B es invertible, entonces $AB^{-1} = B^{-1}A$.
 - (ii) Sea $K \in M_{n \times n}(\mathbb{R})$ tal que $K^t = -K$ y I K es invertible. Si $B = (I + K)(I K)^{-1}$, demuestre que $B^t B = B B^t = I_n$