
Setup

git clone <repo>
 clone the repository specified by <repo>; this is similar to "checkout" in
 some other version control systems such as Subversion and CVS

Add colors to your ~/.gitconfig file:

 [color]
 ui = auto
 [color "branch"]
 current = yellow reverse
 local = yellow
 remote = green
 [color "diff"]
 meta = yellow bold
 frag = magenta bold
 old = red bold
 new = green bold
 [color "status"]
 added = yellow
 changed = green
 untracked = cyan

Highlight whitespace in diffs

 [color]
 ui = true
 [color "diff"]
 whitespace = red reverse
 [core]
 whitespace=fix,-indent-with-non-tab,trailing-space,cr-at-eol

Add aliases to your ~/.gitconfig file:

 [alias]
 st = status
 ci = commit
 br = branch
 co = checkout
 df = diff
 dc = diff --cached
 lg = log -p
 lol = log --graph --decorate --pretty=oneline --abbrev-commit
 lola = log --graph --decorate --pretty=oneline --abbrev-commit --all
 ls = ls-files

 # Show files ignored by git:
 ign = ls-files -o -i --exclude-standard

Configuration

git config -e [--global]
 edit the .git/config [or ~/.gitconfig] file in your $EDITOR

git config --global user.name 'John Doe'

cheat sheets.$ cheat git

$ cheat git http://cheat.errtheblog.com/s/git

1 of 10 03/07/2012 11:04 AM

git config --global user.email johndoe@example.com
 sets your name and email for commit messages

git config branch.autosetupmerge true
 tells git-branch and git-checkout to setup new branches so that git-pull(1)
 will appropriately merge from that remote branch. Recommended. Without this,
 you will have to add --track to your branch command or manually merge remote
 tracking branches with "fetch" and then "merge".

git config core.autocrlf true
 This setting tells git to convert the newlines to the system's standard
 when checking out files, and to LF newlines when committing in

git config --list
 To view all options

git config apply.whitespace nowarn
 To ignore whitespace

You can add "--global" after "git config" to any of these commands to make it
apply to all git repos (writes to ~/.gitconfig).

Info

git reflog
 Use this to recover from *major* mess ups! It's basically a log of the
 last few actions and you might have luck and find old commits that
 have been lost by doing a complex merge.

git diff
 show a diff of the changes made since your last commit
 to diff one file: "git diff -- <filename>"
 to show a diff between staging area and HEAD: `git diff --cached`

git status
 show files added to the staging area, files with changes, and untracked files

git log
 show recent commits, most recent on top. Useful options:
 --color with color
 --graph with an ASCII-art commit graph on the left
 --decorate with branch and tag names on appropriate commits
 --stat with stats (files changed, insertions, and deletions)
 -p with full diffs
 --author=foo only by a certain author
 --after="MMM DD YYYY" ex. ("Jun 20 2008") only commits after a certain date
 --before="MMM DD YYYY" only commits that occur before a certain date
 --merge only the commits involved in the current merge conflicts

git log <ref>..<ref>
 show commits between the specified range. Useful for seeing changes from
 remotes:
 git log HEAD..origin/master # after git remote update

git show <rev>
 show the changeset (diff) of a commit specified by <rev>, which can be any
 SHA1 commit ID, branch name, or tag (shows the last commit (HEAD) by default)

 also to show the contents of a file at a specific revision, use
 git show <rev>:<filename>
 this is similar to cat-file but much simpler syntax.

git show --name-only <rev>

$ cheat git http://cheat.errtheblog.com/s/git

2 of 10 03/07/2012 11:04 AM

 show only the names of the files that changed, no diff information.

git blame <file>
 show who authored each line in <file>

git blame <file> <rev>
 show who authored each line in <file> as of <rev> (allows blame to go back in
 time)

git gui blame
 really nice GUI interface to git blame

git whatchanged <file>
 show only the commits which affected <file> listing the most recent first
 E.g. view all changes made to a file on a branch:
 git whatchanged <branch> <file> | grep commit | \
 colrm 1 7 | xargs -I % git show % <file>
 this could be combined with git remote show <remote> to find all changes on
 all branches to a particular file.

git diff <commit> head path/to/fubar
 show the diff between a file on the current branch and potentially another
 branch

git diff --cached [<file>]
 shows diff for staged (git-add'ed) files (which includes uncommitted git
 cherry-pick'ed files)

git ls-files
 list all files in the index and under version control.

git ls-remote <remote> [HEAD]
 show the current version on the remote repo. This can be used to check whether
 a local is required by comparing the local head revision.

Adding / Deleting

git add <file1> <file2> ...
 add <file1>, <file2>, etc... to the project

git add <dir>
 add all files under directory <dir> to the project, including subdirectories

git add .
 add all files under the current directory to the project
 WARNING: including untracked files.

git rm <file1> <file2> ...
 remove <file1>, <file2>, etc... from the project

git rm $(git ls-files --deleted)
 remove all deleted files from the project

git rm --cached <file1> <file2> ...
 commits absence of <file1>, <file2>, etc... from the project

Ignoring

Option 1:

Edit $GIT_DIR/info/exclude. See Environment Variables below for explanation on
$GIT_DIR.

$ cheat git http://cheat.errtheblog.com/s/git

3 of 10 03/07/2012 11:04 AM

Option 2:

Add a file .gitignore to the root of your project. This file will be checked in.

Either way you need to add patterns to exclude to these files.

Staging

git add <file1> <file2> ...
git stage <file1> <file2> ...
 add changes in <file1>, <file2> ... to the staging area (to be included in
 the next commit

git add -p
git stage --patch
 interactively walk through the current changes (hunks) in the working
 tree, and decide which changes to add to the staging area.

git add -i
git stage --interactive
 interactively add files/changes to the staging area. For a simpler
 mode (no menu), try `git add --patch` (above)

Unstaging

git reset HEAD <file1> <file2> ...
 remove the specified files from the next commit

Committing

git commit <file1> <file2> ... [-m <msg>]
 commit <file1>, <file2>, etc..., optionally using commit message <msg>,
 otherwise opening your editor to let you type a commit message

git commit -a
 commit all files changed since your last commit
 (does not include new (untracked) files)

git commit -v
 commit verbosely, i.e. includes the diff of the contents being committed in
 the commit message screen

git commit --amend
 edit the commit message of the most recent commit

git commit --amend <file1> <file2> ...
 redo previous commit, including changes made to <file1>, <file2>, etc...

Branching

git branch
 list all local branches

git branch -r
 list all remote branches

git branch -a

$ cheat git http://cheat.errtheblog.com/s/git

4 of 10 03/07/2012 11:04 AM

 list all local and remote branches

git branch <branch>
 create a new branch named <branch>, referencing the same point in history as
 the current branch

git branch <branch> <start-point>
 create a new branch named <branch>, referencing <start-point>, which may be
 specified any way you like, including using a branch name or a tag name

git push <repo> <start-point>:refs/heads/<branch>
 create a new remote branch named <branch>, referencing <start-point> on the
 remote. Repo is the name of the remote.
 Example: git push origin origin:refs/heads/branch-1
 Example: git push origin origin/branch-1:refs/heads/branch-2
 Example: git push origin branch-1 ## shortcut

git branch --track <branch> <remote-branch>
 create a tracking branch. Will push/pull changes to/from another repository.
 Example: git branch --track experimental origin/experimental

git branch --set-upstream <branch> <remote-branch> (As of Git 1.7.0)
 Make an existing branch track a remote branch
 Example: git branch --set-upstream foo origin/foo

git branch -d <branch>
 delete the branch <branch>; if the branch you are deleting points to a
 commit which is not reachable from the current branch, this command
 will fail with a warning.

git branch -r -d <remote-branch>
 delete a remote-tracking branch.
 Example: git branch -r -d wycats/master

git branch -D <branch>
 even if the branch points to a commit not reachable from the current branch,
 you may know that that commit is still reachable from some other branch or
 tag. In that case it is safe to use this command to force git to delete the
 branch.

git checkout <branch>
 make the current branch <branch>, updating the working directory to reflect
 the version referenced by <branch>

git checkout -b <new> <start-point>
 create a new branch <new> referencing <start-point>, and check it out.

git push <repository> :<branch>
 removes a branch from a remote repository.
 Example: git push origin :old_branch_to_be_deleted

git co <branch> <path to new file>
 Checkout a file from another branch and add it to this branch. File
 will still need to be added to the git branch, but it's present.
 Eg. git co remote_at_origin__tick702_antifraud_blocking
 /...nt_elements_for_iframe_blocked_page.rb

git show <branch> -- <path to file that does not exist>
 Eg. git show remote_tick702 -- path/to/fubar.txt
 show the contents of a file that was created on another branch and that
 does not exist on the current branch.

git show <rev>:<repo path to file>
 Show the contents of a file at the specific revision. Note: path has to be

$ cheat git http://cheat.errtheblog.com/s/git

5 of 10 03/07/2012 11:04 AM

 absolute within the repo.

Merging

git merge <branch>
 merge branch <branch> into the current branch; this command is idempotent
 and can be run as many times as needed to keep the current branch
 up-to-date with changes in <branch>

git merge <branch> --no-commit
 merge branch <branch> into the current branch, but do not autocommit the
 result; allows you to make further tweaks

git merge <branch> -s ours
 merge branch <branch> into the current branch, but drops any changes in
 <branch>, using the current tree as the new tree

Cherry-Picking

git cherry-pick [--edit] [-n] [-m parent-number] [-s] [-x] <commit>
 selectively merge a single commit from another local branch
 Example: git cherry-pick 7300a6130d9447e18a931e898b64eefedea19544

Squashing

WARNING: "git rebase" changes history. Be careful. Google it.

git rebase --interactive HEAD~10
 (then change all but the first "pick" to "squash")
 squash the last 10 commits into one big commit

Conflicts

git mergetool
 work through conflicted files by opening them in your mergetool (opendiff,
 kdiff3, etc.) and choosing left/right chunks. The merged result is staged for
 commit.

For binary files or if mergetool won't do, resolve the conflict(s) manually
and then do:

 git add <file1> [<file2> ...]

Once all conflicts are resolved and staged, commit the pending merge with:

 git commit

Sharing

git fetch <remote>
 update the remote-tracking branches for <remote> (defaults to "origin").
 Does not initiate a merge into the current branch (see "git pull" below).

git pull
 fetch changes from the server, and merge them into the current branch.
 Note: .git/config must have a [branch "some_name"] section for the current

$ cheat git http://cheat.errtheblog.com/s/git

6 of 10 03/07/2012 11:04 AM

 branch, to know which remote-tracking branch to merge into the current
 branch. Git 1.5.3 and above adds this automatically.

git push
 update the server with your commits across all branches that are *COMMON*
 between your local copy and the server. Local branches that were never
 pushed to the server in the first place are not shared.

git push origin <branch>
 update the server with your commits made to <branch> since your last push.
 This is always *required* for new branches that you wish to share. After
 the first explicit push, "git push" by itself is sufficient.

git push origin <branch>:refs/heads/<branch>
 E.g. git push origin twitter-experiment:refs/heads/twitter-experiment
 Which, in fact, is the same as git push origin <branch> but a little
 more obvious what is happening.

Reverting

git revert <rev>
 reverse commit specified by <rev> and commit the result. This does *not* do
 the same thing as similarly named commands in other VCS's such as "svn
 revert" or "bzr revert", see below

git checkout <file>
 re-checkout <file>, overwriting any local changes

git checkout .
 re-checkout all files, overwriting any local changes. This is most similar
 to "svn revert" if you're used to Subversion commands

Fix mistakes / Undo

git reset --hard
 abandon everything since your last commit; this command can be DANGEROUS.
 If merging has resulted in conflicts and you'd like to just forget about
 the merge, this command will do that.

git reset --hard ORIG_HEAD or git reset --hard origin/master
 undo your most recent *successful* merge *and* any changes that occurred
 after. Useful for forgetting about the merge you just did. If there are
 conflicts (the merge was not successful), use "git reset --hard" (above)
 instead.

git reset --soft HEAD^
 forgot something in your last commit? That's easy to fix. Undo your last
 commit, but keep the changes in the staging area for editing.

git commit --amend
 redo previous commit, including changes you've staged in the meantime.
 Also used to edit commit message of previous commit.

Plumbing

test <sha1-A> = $(git merge-base <sha1-A> <sha1-B>)
 determine if merging sha1-B into sha1-A is achievable as a fast forward;
 non-zero exit status is false.

$ cheat git http://cheat.errtheblog.com/s/git

7 of 10 03/07/2012 11:04 AM

Stashing

git stash
git stash save <optional-name>
 save your local modifications to a new stash (so you can for example
 "git svn rebase" or "git pull")

git stash apply
 restore the changes recorded in the stash on top of the current working tree
 state

git stash pop
 restore the changes from the most recent stash, and remove it from the stack
 of stashed changes

git stash list
 list all current stashes

git stash show <stash-name> -p
 show the contents of a stash - accepts all diff args

git stash drop [<stash-name>]
 delete the stash

git stash clear
 delete all current stashes

Remotes

git remote add <remote> <remote_URL>
 adds a remote repository to your git config. Can be then fetched locally.
 Example:
 git remote add coreteam git://github.com/wycats/merb-plugins.git
 git fetch coreteam

git push <remote> :refs/heads/<branch>
 delete a branch in a remote repository

git push <remote> <remote>:refs/heads/<remote_branch>
 create a branch on a remote repository
 Example: git push origin origin:refs/heads/new_feature_name

git push <repository> +<remote>:<new_remote>
 replace a <remote> branch with <new_remote>
 think twice before do this
 Example: git push origin +master:my_branch

git remote prune <remote>
 prune deleted remote-tracking branches from "git branch -r" listing

git remote add -t master -m master origin git://example.com/git.git/
 add a remote and track its master

git remote show <remote>
 show information about the remote server.

git checkout -b <local branch> <remote>/<remote branch>
 Eg git checkout -b myfeature origin/myfeature
 Track a remote branch as a local branch.

$ cheat git http://cheat.errtheblog.com/s/git

8 of 10 03/07/2012 11:04 AM

git pull <remote> <branch>
git push
 For branches that are remotely tracked (via git push) but
 that complain about non-fast forward commits when doing a
 git push. The pull synchronizes local and remote, and if
 all goes well, the result is pushable.

git fetch <remote>
 Retrieves all branches from the remote repository. After
 this 'git branch --track ...' can be used to track a branch
 from the new remote.

Submodules

git submodule add <remote_repository> <path/to/submodule>
 add the given repository at the given path. The addition will be part of the
 next commit.

git submodule update [--init]
 Update the registered submodules (clone missing submodules, and checkout
 the commit specified by the super-repo). --init is needed the first time.

git submodule foreach <command>
 Executes the given command within each checked out submodule.

Removing submodules

 1. Delete the relevant line from the .gitmodules file.
 2. Delete the relevant section from .git/config.
 3. Run git rm --cached path_to_submodule (no trailing slash).
 4. Commit and delete the now untracked submodule files.

Updating submodules
 To update a submodule to a new commit:
 1. update submodule:
 cd <path to submodule>
 git pull
 2. commit the new version of submodule:
 cd <path to toplevel>
 git commit -m "update submodule version"
 3. check that the submodule has the correct version
 git submodule status
 If the update in the submodule is not committed in the
 main repository, it is lost and doing git submodule
 update will revert to the previous version.

Patches

git format-patch HEAD^
 Generate the last commit as a patch that can be applied on another
 clone (or branch) using 'git am'. Format patch can also generate a
 patch for all commits using 'git format-patch HEAD^ HEAD'
 All page files will be enumerated with a prefix, e.g. 0001 is the
 first patch.

git format-patch <Revision>^..<Revision>
 Generate a patch for a single commit. E.g.
 git format-patch d8efce43099^..d8efce43099
 Revision does not need to be fully specified.

git am <patch file>
 Applies the patch file generated by format-patch.

$ cheat git http://cheat.errtheblog.com/s/git

9 of 10 03/07/2012 11:04 AM

git diff --no-prefix > patchfile
 Generates a patch file that can be applied using patch:
 patch -p0 < patchfile
 Useful for sharing changes without generating a git commit.

Tags

git tag -l
 Will list all tags defined in the repository.

git co <tag_name>
 Will checkout the code for a particular tag. After this you'll
 probably want to do: 'git co -b <some branch name>' to define
 a branch. Any changes you now make can be committed to that
 branch and later merged.

Archive

git archive master | tar -x -C /somewhere/else
 Will export expanded tree as tar archive at given path

git archive master | bzip2 > source-tree.tar.bz2
 Will export archive as bz2

git archive --format zip --output /full/path master
 Will export as zip

Git Instaweb

git instaweb --httpd=webrick [--start | --stop | --restart]

Environment Variables

GIT_AUTHOR_NAME, GIT_COMMITTER_NAME
 Your full name to be recorded in any newly created commits. Overrides
 user.name in .git/config

GIT_AUTHOR_EMAIL, GIT_COMMITTER_EMAIL
 Your email address to be recorded in any newly created commits. Overrides
 user.email in .git/config

GIT_DIR
 Location of the repository to use (for out of working directory repositories)

GIT_WORKING_TREE
 Location of the Working Directory - use with GIT_DIR to specifiy the working
 directory root
 or to work without being in the working directory at all.

$ cheat git http://cheat.errtheblog.com/s/git

10 of 10 03/07/2012 11:04 AM

