Just to warm up (15 minutes)

1 - Define a class Student, Person, PostgradStudent
and PregradStudent

2 - Define a way to compare Person

3 - Show me that you understand what /s and
super are

Dealing with objects
Part Il

Alexandre Bergel
abergel@dcc.uchile.cl
09/08/2012

Goal of this lecture

Understanding some of the design rules that govern
inheritance

See a bit of theory

See practical problems of class inheritance

Recommended Texts

Agile Software Development, Principles, Patterns,
and Practices

Robert C. Martin “Uncle Bob”, 2002

Outline

1.Liskov principle

1.theory

2.concrete applications
2.Inheritance examples
3.Examplel: Swing and AW

4.Example2: The Smalltalk collection class hierarchy

Outline

1.Liskov principle

1.theory

2.concrete applications
2.Inheritance examples
3.Example1: Swing and AW

4.Example2: The Smalltalk collection class hierarchy

Liskov substitution principle

Initially introduced in 1987 by Barbara Liskov

Formulated in 1994 with Jeannette Wing as follows:

Let q(x) be a property provable about objects x of type T.
Then g(y) should be true for objects y of type S where § is a
subtype of T.

Liskov principle vulgarized

Subtypes must be substitutable for their base types

void f (B object) { A

}

Liskov principle vulgarized

Liskov principle vulgarized

void f (B object) { Zﬁ&

}

If £f(new B())

behaves correctly, D
f(new D()) hasto

correctly behave as
well

Fragile class

void £ (B object) {

}
if £f(new B())

behaves correctly and
f (new D()) not, then

we say that D is fragile
In the presence of £

Some practical illustrations

Procedural coding style
Object initialization

Access privileges cannot be weakened

Procedural coding style

public static long sumShapes(Shape[] shapes) {
long sum = 0;
for (int i=0; i<shapes.length; i++) {
switch (shapes[i].kind()) {
case Shape.RECTANGLE: // a class constant
sum += shapes[i].rectangleArea();
break;
case Shape.CIRCLE:
sum += shapes[i].circleArea();

break;

}

return sum;

Shape

e

Rectangle Circle r? f? r?

T T

Colored
Rectangle

ColoredCircle

Procedural coding style

public static long sumShapes(Shape[] shapes)

long sum = 0;

for (int i=0; i<shapes.length; i++) {

switch (shapes[i].kind()) {

case Shape.RECTANGLE:
sum += shapes[i].rectangleArea();

break;

case Shape.CIRCLE:

sum += shapes[i].circleArea();

break;

}

return sum;

// a class constant

Shape

e

Rectangle

Circle

T

T

Colored
Rectangle

ColoredCircle

{

Simple

violation of the
Liskov principle

P07

Object initialization

JComponent

accessibleContext
listenerList

2\

AbstractButton

itemListener
changeEvent

JAN

JButton

JButton

AbstractButton
itemListener
changeEvent, ...

JComponent
accessibleContext
listenerList

Object initialization

JComponent
accessibleContext
listenerList AbstractButton
itemListener
changeEvent, ...
JAN
JComponent
AbstractButton accessibleContext
itemListener listenerList
changeEvent
JAN —> order of object
JBution initialization, enforced by the

super(...) at the beginning of

each constructor

Object initialization

JComponent
accessibleContext
listenerList AbstractButton
itemListener
changeEvent, ...
JAN
JComponent
AbstractButton accessibleContext
itemListener listenerList
changeEvent
JAN —> order of object
JBution initialization, enforced by the

super(...) at the beginning of

each constructor

Privilege access

Modifier Class Package Subclass World

public Y Y Y Y
protected Y Y Y N
no modifier Y Y N N
private Y N N N

Access privileges apply to class definition
and class members (e.g., field, method, inner class)

More on http://docs.oracle.com/javase/tutorial/java/javaO0/
accesscontrol.html

Access privileges can only be

widened
class A {
private void foo () { A
} } -foo()

class B extends A {
protected void foo () {

B

) #foo()

) N\
class C extends B {
public void foo () { C

y +foo()

Would it be okay to have this”?

class A {
public void foo () {
}

}

class B extends A {
protected void foo () {

}
}

class C extends B {
private void foo () {

}

Access privileges can only be
widened

A protected method may be overridden as public

A private method cannot be overridden in Java

a private method is statically bound

a message send toward a private method is not looked up along
the class hierarchy

Tips on Choosing an Access Level

If other programmers use your class, you want to
ensure that errors from misuse cannot happen.

Access levels can help you do this

Use the most restrictive access level that makes sense for a
particular member. Use private unless you have a good reason not

to.

Avoid public fields except for constants. Public fields tend to link
you to a particular implementation and limit your flexibility in
changing your code.

http://docs.oracle.com/javase/tutorial/java/javaO0O/accesscontrol.html

Private methods cannot be

overridden
class A {
private void foo () { A
} } -foo()

class B extends A {
protected void foo () {
super.foo();

B

} #foo()

: Ja\
class C extends B {

public void foo () { C
super.foo();

y +foo()

Private methods cannot be
overridden

class A {
private void foo () {

}

|
Error
at compilation

}

class B extends A {
protected void foo () {
super.foo();

} #too()
) N\
class C extends B {

public void foo () { C
super.foo();

} +foo()

Remember that private methods are
statically bound!

class A {

public String callFoo () ({
return this.foo();

}

private String foo () { new C().callFoo()
return “A";

}

returns ??7?

}

class B extends A {
protected String foo () {
return “B";
}
}

class C extends B {
public String foo () {
return “C";

}

Remember that private methods are
statically bound!

class A {
public String callFoo (){
return this.foo();

}
private String foo () { new C().callFoo()

} return “A"; returﬂS uAn

}

class B extends A {
protected String foo () {

What happens if
return “B"; A.foo Is turned as
public?

}
}

class C extends B {
public String foo () {
return “C";

}

Outline

1.Liskov principle

1.theory

2.concrete applications
2.Inheritance examples
3.Examplel: Swing and AW

4.Example2: The Smalltalk collection class hierarchy

Virtual Classes
A powerful mechanism in object-oriented programming

Ole Lebhrmann Madsen
Computer Science Department, Aarhus University
Ny Muskegade, DK-$000 Anzhus C, Denmark
TH: 4456 12 71 35 - E-mail: olmadsenBdaimidk

Abstract

The notions of class, subelass and virtual procedure are
fairly well understood and recognized as some of the key
concepis in object-oriented programming. The poasibil-
ity of modifying a virtual procedure in a subclass is a
powerful technique for specialising the general proper-
ties of the superclass.

In most object.oriented languages, the aliributes of
an object may be references to objects and (viztual) pro-
cedures. In Simula and BETA it is also possible to have
class attributes. The power of class attributes has not
yet been widely recognized. In BETA a class may also
have wirtual class attridutes. This makes it possible to
defer part of the specification of & class attribute to &
subclass. In this sense virtual classes are analogous to
virtual procedures. Virtual classes are mainly interest-
ing within strongly typed languages where they provide
a mechanism for defining general parameterized classes
such as set, vector and list. In this sense they provide
an alternative to generics.

Although the notion of virteal class originates ftom
BETA, it is presented as a general language mechanism.
Keywords: languages, virtual procedure, virtual class,
strong typing, parameterited class, genmerics, BETA,
Simula, Eiffel, C++, Smalltalk

1 Introduction

The notions of class and subclass are some of the key
language concepts associated with object.oriented pio-

Permiasarm & copy without foe a8 or part of Da matenad n graseed provided
1hat e Copey we Pk made o Sedrieied G Gt comemerowd misantage.
e MM cog mghs memscr and the stle of (N robde stare avd i date spwwer
—l.u-.t-'wnlhlm-hmdumh

y. Yo copy ot rogeen o fex

el o e peTTamae
© 1980 ACM (9 W1 AT 9 0000 NT 51 9

Blrger Moller-Pedorsen
Norwegian Computing Center
PO, Box 114, Blindern, N-0314 Oudo 3, Novway
TH: 447 245 35 00 - E-enail: bizger@ne unimett.no

gramming. Classes support the classification of objects
with the same properties, and subclassing supports the
specialisation of the general properties. A class defines
a set of attributes associated with each instance of the
class. An attribute may be either an object reference
(ot just reference for short) or a procedure.

In & subclass it is possible to specialize the g 1
properties defined in the superclass. This can be done
by adding refe and/or procedures. However, it is
also possible to modify the procedures defined in the su-
perclass. Modification can take place in different ways.
In Simula 87 (4] a procedure attribute may be declared
virtual. A virtual procedure may then be redefined in o
subclass. A mon-virtual procedure cannot be redefined®.
This is essentially the same scheme adapted by Co+ 4
(16] and Eiffel [13]. In Smalltalk [6] aay procedure is
virtual in the sense that it can be redefined in & sub
class, and even the parameters of a procedure may be
redefined.

In BETA [8] s virtual procedure cannot be redefined
in & subclass, but it may be further defined by an ea.
tended definition. The extended procedure is a “sub-
procedure” (in the same way as for subelass) of the pro-
cedure defined in the superclass. This implies that the
actions of & virtual procedure definition are antomat.
ieally combined with the actions of the extended pro-
cedure in & subclass. This is the case for all levels of
subclasses that farther defines a virtual procedure. In
Smalitalk and C4+4 it is the responsibility of the pro-
®t to bine a redefined visteal procedure with
the cotresponding virtual procedure of the superclass,
This is of course more flexible, since the programmer
can ignote the procedure in the superclass. However, it
is also & potential source of esror since the programmer
may forget to execute the virtusl procedure from the
saperclass.

Using the terminology from [18] a class in BETA

"Iz Simula & subclass may deck

e @OOPSLA'SY

Window: class Stream
(# UppexLeft,LowerRight: @ Point;
Label: = Text;
Move: proc (% ... #);
Display: virtual proc (# ... #);
#)

Figure 2: Example of class declaration

“In Figure 2 an example of a class is given. Class Window is
described as a subclass of class Stream. ...”

Window: class Stream
(# UppexLeft,LowerRight: @ Point;
Label: = Text;
Move: proc (% ... #);
Display: virtual proc (# ... #);
#)

Figure 2: Example of class declaration

“In Figure 2 an example of a class is given. Class Window is
described as a subclass of class Stream. ...”

Do you think a window can be considered as a stream?

SMALLIALK-80

THE LANGUAGE AND ITS MPLEMENIATION

Adele Godbeng and David Robeon

Probably a semaphore can be seen as a collection, but is it

Collection

T

Link

LinkedList

JAN

2\

Process

Semaphore

worth subclassing LinkedList in that case?

Outline

1.Liskov principle

1.theory

2.concrete applications
2.Inheritance examples
3.Example1: Swing and AWT

4.Example2: The Smalltalk collection class hierarchy

Presentation of AWT

java.awt
Component
4 ‘V\
. Container Button
Window
Frame ~

In the AWT framework:

Widgets are components (i.e., inherit from Component)

A frame is a window (Frame is a subclass of Window)

Swing at the top of AWT

java.awt
Comzp;nent
<
V\
7 Window V| Container Button
Fr};ne A A
javax.sying
JComponent
JFrame JWindow AV.X o

Problem #1: Brocken Inheritance

java.awt
Comzp;nent
<
V\
7 Window V| Container Button
Fr};ne A A
javax.sying
JComponent
JFrame JWindow AV.X o

Are not subclasses of JComponent

Problem #1: Brocken Inheritance

java.awt
Component L\
i Butt
Frame ¥ Window Container utton
javax.spving
JComponent ‘
* JWindow
rame JButton

Missing inheritance link between JFrame and JWindow

Problem #2: Code Duplication

setLayout()

setlLayout()

Code Duplication
java.awt
Component
4 1&
: Button
Window ﬂ Container
Frame V A
javax.sying
— JComponent
N
JFrame J ow accessibleCont
accessibleContext accessibleContext update() JButton
rootPane .I’Q%T.Eﬁ%ﬁ

Problem #3: Explicit Type Checks
and Casts

public class Container extends Component {
Component components|[] = new Component [0];
public Component add (Component comp) {...}

}

public class JComponent extends Container ({
public void paintChildren (Graphics g) {
for (; i>=0 ; i--) {

Component comp = getComponent (1);
isJComponent = (comp instanceof JComponent);

((JComponent) comp) .getBounds();

H}

Supporting Unanticipated Changes

AWT couldn’t be enhanced without risk of breaking
existing code

Swing is, therefore, built on the top of AWT using
subclassing

As a result, Swing is a big mess internally!

Why do we care to have a messy
Swing 7

Swing appeared in 1998, and has not evolved since!

Swing is too heavy to be ported to PDA,
cellphones, ...

SWT is becoming a new standard.

Either a system evolves, or it is dead. [Lehmans74]

Outline

1.Liskov principle

1.theory

2.concrete applications
2.Inheritance examples
3.Example1: Swing and AWT

4.Example2: The Smalltalk collection class
hierarchy

the Stream framework In Squeak

Example of a library that has been in use for almost
20 years

Contains many flaws in its design

the Stream framework In Squeak

FileStream

WriteStream

writeLimit

contents
flush

next
nextPut:
nextPutAll:

Positionable
Stream
collection
Stream position
atend readLimit
close atEnd
contents contents
do: isEmpty
flush next:
next peek V\
next: position
next:put: position: ReadStream
nextPut: reset next
nextPutAll: setToEnd next:
upToEnd skip: AextPut:
skipTo: size
upTo: upTo:
upToEnd upToEnd

position:
reset
setToEnd
size
space

cr

rwmode
name
filelID
buffer1

ReadWriteStream

close
contents
next
next:

aténd
close
flush
fullName
next
next:
nextPut:
nextPutAll:
peek
position
position:
reset
setToEnd
size

skip:
upTo:
upToEnd

Methods too high

FileStream

rwmode
name
filelID
buffer1

_

nextPutAll: aCollection
aCollection do: [:v| self nextPut: v].
A aCollection

Positionable V\(rlte.St.ream
Stream writeLimit
collection contents
i flush
Stream position
- next
atend readLimit nextPut:
close atend nextPutAll:
contents contents osition: '
do: isEmpty feset '
flush next:
next peek sgtToEnd
next: . size
i position: ReadStream iface
nextPut: reset next
nextPutAll; setToEnd next:
skip: nextPut: ReadWriteStream
skipTo: size close
uala. uala. nnv\+f\r]ts
4)

aténd
close
flush
fullName
next
next:
nextPut:
nextPutAll:
peek
position
position:
reset
setToEnd
size

skip:
upTo:
upToEnd

Methods too high

The nextPut: method defined in Stream allows for
element addition

The ReadStream class is read-only

It therefore needs to “cancel” this method by
redefining it and throwing an exception

Unused state

Positionable
aam

Stream
atEnd
close e
contents contents
do: isEmpty
flush next:
next <]_ peek
next: position
next:put: position:
nextPut: reset
nextPutAll: setToEnd
upToEnd skip:
skipTo:
upTo:
upToEnd

collection
position
readLimit

flush

next
nextPut:
nextPutAll:

ReadStream

next
next:
nextPut:
size
upTo:
upToEnd

position:
reset
setToEnd
size
space

cr

FileStream

rwmode
name
filelID
buffer1

ReadWriteStream

close
contents
next
next:

aténd
close
flush
fullName
next
next:
nextPut:
nextPutAll:
peek
position
position:
reset
setToEnd
size

skip:
upTo:
upToEnd

Unused state

State defined in the super classes are becoming
Irrelevant in sulbclasses

FileStream does not use inherited variables

Positionable
Stream
collection
Stream position
atend readLimit
close atEnd
contents contents
do: isEmpty
flush next:
next peek
next: position
next:put: position:
nextPut: reset
nextPutAll: setToEnd
upToEnd skip:
skipTo:
upTo:
upToEnd

Multiple Inheritance Simulation

FileStream

WriteStream

writeLimit

contents
flush

next
nextPut:
nextPutAll:

size
upTo:
upToEnd

position:
reset
setToEnd
size
space

cr

rwmode
name
filelID
buffer1

ReadWriteStream

close
ntents

aténd
close
flush
fullName
next
next:
nextPut:
nextPutAll:
peek
position
position:
reset
setToEnd
size

skip:
upTo:
upToEnd

Multiple Inheritance Simulation

Methods are duplicated among different class
hierarchies

Class schizophrenia”

Too many responsibilities for classes

object factories

group methods when subclassing

Class schizophrenia”

Too many responsibilities for classes

object factories => need for completeness

group methods when subclassing => need to incorporate
incomplete fragments

What you should know!

What is the Liskov principle?

How the Liskov principle affects the design of a
programming language

Why a good class hierarchy is not easy to obtain and
requires experience

Defining a subclass should be driven by the IS-A
relation

Can you answer to these gquestions?

Why a class Window should not be defined as a
subclass of Stream?

What makes class inheritance so difficult to use?

Is there a definitive answer on what a good class
hierarchy is?

License

http://creativecommons.org/licenses/by-sa/2.5

@creative
commons

COMMONS DEED

Attribution-ShareAlike 2.5
You are free:
+ to copy, distribute, display, and perform the work
+ to make derivative works
+ to make commercial use of the work

Under the following conditions:

@ Attribution. You must attribute the work in the manner specified by the author or licensor.

@ Share Alike. If you alter, transform, or build upon this work, you may distribute the resulting
work only under a license identical to this one.

+ For any reuse or distribution, you must make clear to others the license terms of this work.
+ Any of these conditions can be waived if you get permission from the copyright holder.

Your fair use and other rights are in no way affected by the above.

