
Just to warm up (15 minutes)

 1 - Define a class Student, Person, PostgradStudent
and PregradStudent

 2 - Define a way to compare Person

 3 - Show me that you understand what this and
super are

Dealing with objects
Part III

Alexandre Bergel
abergel@dcc.uchile.cl

09/08/2012

Goal of this lecture

 Understanding some of the design rules that govern
inheritance

 See a bit of theory

 See practical problems of class inheritance

Recommended Texts

 Agile Software Development, Principles, Patterns,
and Practices

 Robert C. Martin “Uncle Bob”, 2002

Outline

1.Liskov principle
1.theory

2.concrete applications

2.Inheritance examples

3.Example1: Swing and AWT

4.Example2: The Smalltalk collection class hierarchy

Outline

1.Liskov principle
1.theory

2.concrete applications

2.Inheritance examples

3.Example1: Swing and AWT

4.Example2: The Smalltalk collection class hierarchy

Liskov substitution principle

 Initially introduced in 1987 by Barbara Liskov

 Formulated in 1994 with Jeannette Wing as follows:

 Let q(x) be a property provable about objects x of type T.
Then q(y) should be true for objects y of type S where S is a
subtype of T.

Liskov principle vulgarized

 Subtypes must be substitutable for their base types

Liskov principle vulgarized

B

D

void f (B object) {
 ...
}

Liskov principle vulgarized

B

D

void f (B object) {
 ...
}

if f(new B())
behaves correctly,

f(new D()) has to
correctly behave as

well

Fragile class

B

D

void f (B object) {
 ...
}

if f(new B())
behaves correctly and
f(new D()) not, then
we say that D is fragile
in the presence of f

Some practical illustrations

 Procedural coding style

 Object initialization

 Access privileges cannot be weakened

Procedural coding style
public static long sumShapes(Shape[] shapes) {
! long sum = 0;
! for (int i=0; i<shapes.length; i++) {
! ! switch (shapes[i].kind()) {
! ! case Shape.RECTANGLE:!! ! // a class constant
! ! ! sum += shapes[i].rectangleArea();
! ! ! break;
! ! case Shape.CIRCLE:
! ! ! sum += shapes[i].circleArea();
! ! ! break;
! ! }
! }
! return sum;
}

???

Shape

Rectangle Circle

ColoredCircleColored
Rectangle

Procedural coding style
public static long sumShapes(Shape[] shapes) {
! long sum = 0;
! for (int i=0; i<shapes.length; i++) {
! ! switch (shapes[i].kind()) {
! ! case Shape.RECTANGLE:!! ! // a class constant
! ! ! sum += shapes[i].rectangleArea();
! ! ! break;
! ! case Shape.CIRCLE:
! ! ! sum += shapes[i].circleArea();
! ! ! break;
! ! }
! }
! return sum;
}

???

Simple
violation of the
Liskov principle

Shape

Rectangle Circle

ColoredCircleColored
Rectangle

Object initialization

JButton

AbstractButton
itemListener

changeEvent, ...

JComponent
accessibleContext

listenerList

...

accessibleContext
listenerList

JComponent

...

itemListener
changeEvent
...

AbstractButton

...
JButton

Object initialization

JButton

AbstractButton
itemListener

changeEvent, ...

JComponent
accessibleContext

listenerList

...

accessibleContext
listenerList

JComponent

...

itemListener
changeEvent
...

AbstractButton

...
JButton

order of object
initialization, enforced by the
super(...) at the beginning of

each constructor

Object initialization

...

accessibleContext
listenerList

JComponent

...

itemListener
changeEvent
...

AbstractButton

...
JButton

JButton

AbstractButton
itemListener

changeEvent, ...

JComponent
accessibleContext

listenerList

order of object
initialization, enforced by the
super(...) at the beginning of

each constructor

Privilege access

Modifier Class Package Subclass World
public Y Y Y Y
protected Y Y Y N
no modifier Y Y N N
private Y N N N

Access privileges apply to class definition
and class members (e.g., field, method, inner class)

More on http://docs.oracle.com/javase/tutorial/java/javaOO/
accesscontrol.html

Access privileges can only be
widened

class A {
 private void foo () {
 }
}

class B extends A {
 protected void foo () {

 }
}

class C extends B {
 public void foo () {

 }
}

-foo()

A

#foo()

B

+foo()

C

Would it be okay to have this?

class A {
 public void foo () {
 }
}

class B extends A {
 protected void foo () {

 }
}

class C extends B {
 private void foo () {

 }
}

Access privileges can only be
widened

 A protected method may be overridden as public

 A private method cannot be overridden in Java

 a private method is statically bound

 a message send toward a private method is not looked up along
the class hierarchy

Tips on Choosing an Access Level

 If other programmers use your class, you want to
ensure that errors from misuse cannot happen.

 Access levels can help you do this

 Use the most restrictive access level that makes sense for a
particular member. Use private unless you have a good reason not
to.

 Avoid public fields except for constants. Public fields tend to link
you to a particular implementation and limit your flexibility in
changing your code.

http://docs.oracle.com/javase/tutorial/java/javaOO/accesscontrol.html

Private methods cannot be
overridden

class A {
 private void foo () {
 }
}

class B extends A {
 protected void foo () {
! super.foo();

 }
}

class C extends B {
 public void foo () {
! super.foo();

 }
}

-foo()

A

#foo()

B

+foo()

C

Private methods cannot be
overridden

class A {
 private void foo () {
 }
}

class B extends A {
 protected void foo () {
! super.foo();

 }
}

class C extends B {
 public void foo () {
! super.foo();

 }
}

-foo()

A

#foo()

B

+foo()

C

Error
at compilation

Remember that private methods are
statically bound!

class A {
public String callFoo (){
 return this.foo();
}

 private String foo () {
 return “A”;

 }
}

class B extends A {
 protected String foo () {
! return “B”;

 }
}

class C extends B {
 public String foo () {
 return “C”;

 }
}

new C().callFoo()
returns ???

Remember that private methods are
statically bound!

class A {
public String callFoo (){
 return this.foo();
}

 private String foo () {
 return “A”;

 }
}

class B extends A {
 protected String foo () {
! return “B”;

 }
}

class C extends B {
 public String foo () {
 return “C”;

 }
}

new C().callFoo()
returns “A”

What happens if
A.foo is turned as

public?

Outline

1.Liskov principle
1.theory

2.concrete applications

2.Inheritance examples

3.Example1: Swing and AWT

4.Example2: The Smalltalk collection class hierarchy

@OOPSLA’89

“In Figure 2 an example of a class is given. Class Window is
described as a subclass of class Stream. ...”

“In Figure 2 an example of a class is given. Class Window is
described as a subclass of class Stream. ...”

Do you think a window can be considered as a stream?

Semaphore

LinkedList

Collection

...

Process

Link

Probably a semaphore can be seen as a collection, but is it
worth subclassing LinkedList in that case?

Outline

1.Liskov principle
1.theory

2.concrete applications

2.Inheritance examples

3.Example1: Swing and AWT

4.Example2: The Smalltalk collection class hierarchy

Presentation of AWT

 In the AWT framework:

 Widgets are components (i.e., inherit from Component)

 A frame is a window (Frame is a subclass of Window)

java.awt

Component

ButtonContainerWindowFrame

Swing at the top of AWT

javax.swing

java.awt

Component

ButtonContainerWindowFrame

JButton

JComponent
JWindowJFrame

Problem #1: Brocken Inheritance

javax.swing

java.awt

Component

ButtonContainerWindowFrame

JButton

JComponent
JWindowJFrame

Are not subclasses of JComponent

Problem #1: Brocken Inheritance

Missing inheritance link between JFrame and JWindow

java.awt

Component

ButtonContainerWindowFrame

javax.swing

JComponent

JButton
JWindowJFrame

Problem #2: Code Duplication

java.awt

Component

ButtonContainerWindowFrame

javax.swing

JButtonaccessibleContext
rootPane
update()
setLayout()
...

accessibleContext
rootPane
update()
setLayout()
...

accessibleCont
extupdate()

Code Duplication

JComponent
JFrame JWindow

Problem #3: Explicit Type Checks
and Casts

public class Container extends Component {
 Component components[] = new Component [0];
 public Component add (Component comp) {...}
}

public class JComponent extends Container {
 public void paintChildren (Graphics g) {
 for (; i>=0 ; i--) {
 Component comp = getComponent (i);
 isJComponent = (comp instanceof JComponent);
 ...
 ((JComponent) comp).getBounds();
 }
 }}

Supporting Unanticipated Changes

 AWT couldn’t be enhanced without risk of breaking
existing code

 Swing is, therefore, built on the top of AWT using
subclassing

 As a result, Swing is a big mess internally!

Why do we care to have a messy
Swing ?

 Swing appeared in 1998, and has not evolved since!

 Swing is too heavy to be ported to PDA,
cellphones, ...

 SWT is becoming a new standard.

 Either a system evolves, or it is dead. [Lehmans74]

Outline

1.Liskov principle
1.theory

2.concrete applications

2.Inheritance examples

3.Example1: Swing and AWT

4.Example2: The Smalltalk collection class
hierarchy

the Stream framework in Squeak

 Example of a library that has been in use for almost
20 years

 Contains many flaws in its design

the Stream framework in Squeak

atEnd
close
contents
do:
flush
next
next:
next:put:
nextPut:
nextPutAll:
upToEnd

Stream

atEnd
contents
isEmpty
next:
peek
position
position:
reset
setToEnd
skip:
skipTo:
upTo:
upToEnd

collection
position
readLimit

Positionable

Stream

next
next:
nextPut:
size
upTo:
upToEnd

ReadStream

contents
flush
next
nextPut:
nextPutAll:
position:
reset
setToEnd
size
space
cr

writeLimit
WriteStream

close
contents
next
next:

ReadWriteStream

atEnd
close
flush
fullName
next
next:
nextPut:
nextPutAll:
peek
position
position:
reset
setToEnd
size
skip:
upTo:
upToEnd

rwmode
name
fileID
buffer1

FileStream

Methods too high

atEnd
close
contents
do:
flush
next
next:
next:put:
nextPut:
nextPutAll:
upToEnd

Stream

atEnd
contents
isEmpty
next:
peek
position
position:
reset
setToEnd
skip:
skipTo:
upTo:
upToEnd

collection
position
readLimit

Positionable

Stream

next
next:
nextPut:
size
upTo:
upToEnd

ReadStream

contents
flush
next
nextPut:
nextPutAll:
position:
reset
setToEnd
size
space
cr

writeLimit
WriteStream

close
contents
next
next:

ReadWriteStream

atEnd
close
flush
fullName
next
next:
nextPut:
nextPutAll:
peek
position
position:
reset
setToEnd
size
skip:
upTo:
upToEnd

rwmode
name
fileID
buffer1

FileStream

nextPutAll: aCollection
 aCollection do: [:v| self nextPut: v].
 ^ aCollection

Methods too high

 The nextPut: method defined in Stream allows for
element addition

 The ReadStream class is read-only

 It therefore needs to “cancel” this method by
redefining it and throwing an exception

Unused state

atEnd
close
contents
do:
flush
next
next:
next:put:
nextPut:
nextPutAll:
upToEnd

Stream

atEnd
contents
isEmpty
next:
peek
position
position:
reset
setToEnd
skip:
skipTo:
upTo:
upToEnd

collection
position
readLimit

Positionable

Stream

next
next:
nextPut:
size
upTo:
upToEnd

ReadStream

contents
flush
next
nextPut:
nextPutAll:
position:
reset
setToEnd
size
space
cr

writeLimit
WriteStream

close
contents
next
next:

ReadWriteStream

atEnd
close
flush
fullName
next
next:
nextPut:
nextPutAll:
peek
position
position:
reset
setToEnd
size
skip:
upTo:
upToEnd

rwmode
name
fileID
buffer1

FileStream

Unused state

 State defined in the super classes are becoming
irrelevant in subclasses

 FileStream does not use inherited variables

Multiple Inheritance Simulation

atEnd
close
contents
do:
flush
next
next:
next:put:
nextPut:
nextPutAll:
upToEnd

Stream

atEnd
contents
isEmpty
next:
peek
position
position:
reset
setToEnd
skip:
skipTo:
upTo:
upToEnd

collection
position
readLimit

Positionable

Stream

next
next:
nextPut:
size
upTo:
upToEnd

ReadStream

contents
flush
next
nextPut:
nextPutAll:
position:
reset
setToEnd
size
space
cr

writeLimit
WriteStream

close
contents
next
next:

ReadWriteStream

atEnd
close
flush
fullName
next
next:
nextPut:
nextPutAll:
peek
position
position:
reset
setToEnd
size
skip:
upTo:
upToEnd

rwmode
name
fileID
buffer1

FileStream

Multiple Inheritance Simulation

 Methods are duplicated among different class
hierarchies

Class schizophrenia?

 Too many responsibilities for classes

 object factories => need for completeness

 group methods when subclassing => need to incorporate
incomplete fragments

Class schizophrenia?

 Too many responsibilities for classes

 object factories => need for completeness

 group methods when subclassing => need to incorporate
incomplete fragments

What you should know!

 What is the Liskov principle?

 How the Liskov principle affects the design of a
programming language

 Why a good class hierarchy is not easy to obtain and
requires experience

 Defining a subclass should be driven by the IS-A
relation

Can you answer to these questions?

 Why a class Window should not be defined as a
subclass of Stream?

 What makes class inheritance so difficult to use?

 Is there a definitive answer on what a good class
hierarchy is?

Attribution-ShareAlike 2.5
You are free:
• to copy, distribute, display, and perform the work
• to make derivative works
• to make commercial use of the work

Under the following conditions:

Attribution. You must attribute the work in the manner specified by the author or licensor.

!
Share Alike. If you alter, transform, or build upon this work, you may distribute the resulting
work only under a license identical to this one.

• For any reuse or distribution, you must make clear to others the license terms of this work.
• Any of these conditions can be waived if you get permission from the copyright holder.

Your fair use and other rights are in no way affected by the above.

http://creativecommons.org/licenses/by-sa/2.5

License

