MA3403-4: PROBABILIDADES Y ESTADÍSTICA AUXILIAR 7: VARIABLES ALEATORIAS CONTINUAS.

1. Distribución Uniforme

Un segmento de largo L se corta en un punto al azar, con distribución uniforme. Con los trozos obtenidos se construye un rectángulo y se obtiene el área. Calcule la esperanza del área a obtener.

Propio.

2. Distribución Laplace

Una v.a. aleatoria tiene distribución Laplace o doble exponencial de parámetro λ , $\lambda > 0$ si su función de densidad está dada por $f(x) = Ce^{-\lambda|x|}$.

- a) Determine C para que f sea función de densidad.
- b) Muestre que para una v.a.X con distribución Laplace, $\mathbb{P}(|X|>t+s\mid |X|>t)$ no depende de t.

3. Distribución Exponencial

Sean $X_1...X_n$ v.a. exponenciales, independientes idénticamente distribuidas (i.i.d) de parámetro λ . Calcule la esperanza de $X = min\{X_1...X_n\}$.

4. Distribución Gamma

Una v.a. aleatoria Z tiene distribución Gamma de parámetros (α, β) , $\alpha > 0$ $\beta > 0$ si su función de densidad está dada por $f(x) = \frac{\beta e^{-\beta x} (\beta x)^{\alpha - 1}}{\Gamma(\alpha)}$ $x \ge 0$, y f(x) = 0 x < 0. Donde $\Gamma(\alpha) = \int_0^\infty e^{-y} y^{\alpha - 1} dy$.

- a) Encuentre la función generadora de momentos de la distribución exponencial y la función generadora de momentos de la distribución Gamma.
 - Si dos distribuciones Tienen la misma función generadora de momentos, entonces las distribuciones son iguales. Para $Z = X_1 + ... + X_r$, en donde X_i son r variables aleatorias independientes e idénticamente distribuidas y cada una con distribución exponencial con el mismo parámetro β , muestre que Z tiene una distribución Gamma con parámetros r y β .
- b) Muestre que si α es entero, entonces $\mathbb{P}(Z \leq x) = \mathbb{P}(Y \geq \alpha)$, donde Y es una v.a. poisson con parámetro $\lambda = x\beta$.
- c) Ahora supongamos que $\beta=1$. Muestre que $\mathbb{E}(Z^k)=\frac{\Gamma(\alpha+k)}{\Gamma(\alpha)}$ $k\geq 0$. Deduzca de acá la Esperanza y Varianza de la Gamma estandarizada.

Meyer, Capítulo 10, p220,p221,p229; Jacod, Protter Cap9 p63

5. Distribución Normal

Sea Z con distribución normal (0,1). Muestre que:

- a) $\mathbb{E}(Z^r) = 0$ para cada entero positivo impar.
- b) $\mathbb{E}(Z^r) = \frac{2^{r/2}}{\pi^{1/2}}\Gamma(\frac{1}{2}r + \frac{1}{2})$ para cada entero positivo par. Muestre que para una normal general aparece un término determinado por la varianza. ¿Cuál es?