Universidad de Chile Facultad de Ciencias Físicas y Matemáticas Departamento de Ingeniería Matemática 26 de Marzo de 2012

Auxiliar 1 MA3403 3

Profesor: Roberto Cortez M.. Auxiliares:Francisco Castro A., Alfredo Torrico P.

Problemas

P1. (a) Sean A y B dos sucesos. Prube que

$$\mathbb{P}(A \cup B) = \mathbb{P}(A \cap B) \Rightarrow \mathbb{P}(A) = \mathbb{P}(B).$$

(b) Sean $\{A_i\}_{i=1}^n$ una colección de sucesos relativos a un espacio muestral Ω , tales que $\mathbb{P}(A_i)$ $1, \forall i = 1, 2, \dots, n$. Pruebe que

$$\mathbb{P}(\bigcap_{i=1}^{n} A_i) = 1.$$

- **P2.** (a) Sea $(\Omega, \mathcal{F}, \mathbb{P})$ un espacio de probabilidad. Considere $\{B_i : i = 1, \ldots, n\}$ una partición medible de Ω , es decir,
 - $B_i \in \mathcal{F}, \forall i = 1, \ldots, n$.

 - $B_i \cap B_j = \emptyset, \forall i \neq j.$ $\bigcup_{i=1}^n B_i = \Omega.$

Pruebe que existe $i \in \{1, ..., n\}$ tal que $\mathbb{P}(B_i) \leq \frac{1}{n}$.

- (b) Sea $(\Omega, \mathcal{F}, \mathbb{P})$ un espacio de probalidad. Este se dice no atómico si $\forall B \subseteq \Omega$, con $\mathbb{P}(B) > 0$, $\exists A \subseteq \Omega, A \subseteq B \text{ tal que } 0 < \mathbb{P}(A) < \mathbb{P}(B)$
 - i) Sea $(\Omega, \mathcal{F}, \mathbb{P})$ un espacio no atómico y $x \in \Omega$. Muestre que $\mathbb{P}(\{x\}) = 0$.
 - ii) Muestre que si Ω es numerable entonces $(\Omega, \mathcal{P}(\Omega), \mathbb{P})$ no puede ser no atómico.
- P3. Una mano de póker consta de 5 cartas escogidas al azar de un total de 52 que posee el mazo inglés. El joven Mixtor es un ferviente jugador de póker y esta interesado en calcular la probabilidad de obtener:
 - (a) Color: Las 5 cartas son de la misma pinta.
 - (b) Un par: Dos cartas tienen el mismo número entre sí, y las tres restantes tienen números distintos al resto y entre sí.
 - (c) Dos pares: Dos cartas tienen el mismo número entre sí, otras dos poseen el mismo número entre sí, pero distinto al anterior, y la última tiene un número distinto al resto.
 - (d) Un trío: La misma lógica que un par.
 - (e) Póker: Cuatro cartas tienen el mismo número.
- **P4.** Tres parejas digamos A, B y C, se sientan en una fila. Suponga que todos los ordenamientos son igualmente probables.
 - (a) Pruebe que hay 2³3! ordenamiento distintos tales que todos los esposos queden sentados junto a sus respectivas esposas.
 - (b) Pruebe que la probabilidad de que algun esposo se siente con su respectiva esposa es 2/3. Hint:Utilice el principio inlcusión/exclusión.
- **P5.** Una partícula se desplaza aleatoriamente por $\mathbb{Z}_{+}^{2} = \{0, 1, \dots\}^{2}$ partiendo de (0, 0) y dando un total de n pasos unitarios, ya sea hacia arriba o hacia la derecha. Suponga que el espacio muestral es el conjunto de las trayectorias $\Omega = \{(x_1, \dots, x_n) : x_i \in \{\text{arriba, derecha}\}, i = 1, \dots, n\}$ y que todas las trayectorias tienen igual probabilidad.

- (a) Calcule la probabilidad de que la partícula termine su recorrido en el punto de coordenadas $(p,q)\in\mathbb{Z}_+^2$
- (b) Sean $p, q \in \mathbb{Z}_+$ tales que p+q=n. Calcule la probabilidad de que la partícula termine en (p,q) y que pase por el punto $(i,j) \in \mathbb{Z}_+^2$, tal que $i+j \leq n$.
- (c) Sabiendo que la partícula pasa por (i,j), i+j < n, calcule la probabilidad de que llegue a (p,q), p+q=n.